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a b s t r a c t

We study parallel knock-out schemes for graphs. These schemes proceed in rounds in each
of which each surviving vertex simultaneously eliminates one of its surviving neighbours;
a graph is reducible if such a scheme can eliminate every vertex in the graph. We resolve
the square-root conjecture, first posed at MFCS 2004, by showing that for a reducible graph
G, the minimum number of required rounds is O(

√
n); in fact, our result is stronger than the

conjecture as we show that the minimum number of required rounds is O(
√
α), where α is

the independence number of G. This upper bound is tight. We also show that for reducible
K1,p-free graphs at most p − 1 rounds are required. It is already known that the problem
of whether a given graph is reducible is NP-complete. For claw-free graphs, however, we
show that this problem can be solved in polynomial time. We also pinpoint a relationship
with (locally bijective) graph homomorphisms.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we continue the study on parallel knock-out schemes for finite undirected simple graphs introduced in [9]
and studied further in [3–5]. Such a scheme proceeds in rounds: in the first round each vertex in the graph selects exactly
one of its neighbours, and then all the selected vertices are eliminated simultaneously. In subsequent rounds this procedure
is repeated in the subgraph induced by those vertices not yet eliminated. The scheme continues until there are no vertices
left, or until an isolated vertex is obtained (since an isolated vertex can never be eliminated).

A graph is KO-reducible if there exists a parallel knock-out scheme that eliminates the whole graph. The parallel knock-out
number of a graph G, denoted by pko(G), is the minimum number of rounds in a parallel knock-out scheme that eliminates
every vertex of G. If G is not KO-reducible, then pko(G) = ∞.

Our main motivation for studying knock-out schemes is the intimate relationship between this concept and well-studied
structural graph theoretical concepts such as perfect matchings, hamiltonian cycles and 2-factors (they all yield knock-out
schemes of one round). Apart from these structural properties, we are also interested in complexity aspects. Whereas the
classical complexity problems related to matchings and hamiltonian cycles have been settled many years ago, the analogous
problems related to knock-out schemes have only been resolved recently, and only for general graphs and graphs of bounded
tree-width. For many interesting classes, however, these problems on knock-out schemes remain open [4].

Knock-out schemes also have a clear relationship with games on graphs, a topic which has received considerable attention
in recent decades [7]. But unlike many games on graphs, knock-out schemes may be motivated by practical settings, e.g.,
in which objects exchange entities that deactivate the receiving objects, like viruses that paralyse or block computers, or
computational tasks that prevent processors or sensors from working on other tasks.
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1.1. Our results

In [4], a number of results, conjectures and questions on upper bounds for knock-out numbers were presented. For trees,
it was shown that the knock-out number of a tree on n vertices was O(log n) and a family of trees that met this bound was
exhibited. Also presented was a family of bipartite graphs whose knock-out numbers grow proportionally to the square
root of the number of vertices, and it was conjectured that for any KO-reducible graph on n vertices the parallel knock-out
number is at most 2

√
n. In this paper, in Section 3, we prove this conjecture by showing that a KO-reducible n-vertex graph

G has

pko(G) ≤ min

−1
2
+

√
2n−

7
4
,

1
2
+

√
2α−

7
4

 ,

where α denotes the independence number of G.
In [4], a polynomial algorithm was also given that would determine the parallel knock-out number of any tree. In [5]

it was shown that the problem of finding parallel knock-out numbers is, for general graphs, NP-complete. In this paper, in
Section 4, we present a polynomial algorithm that finds the knock-out number of claw-free graphs, that is, graphs that do
not contain an induced K1,3; these form a well-studied class of graphs, see [6] for a survey. We also give a tight bound on the
knock-out number of KO-reducible K1,p-free graphs, generalising a result of [4] on claw-free graphs.

In Section 5, we give an upper bound on the parallel knock-out number of one graph in terms of the parallel knock-out
number of another graph: we show that if a graph G allows a so-called locally bijective homomorphism to a smaller graph
H then pko(G) ≤ pko(H). Locally bijective homomorphisms are also called graph coverings. They are well studied and have
many applications [1,8].

2. Preliminaries

Graphs in this paper are denoted by G = (V, E). An edge joining vertices u and v is denoted by uv. If not stated otherwise
a graph is assumed to be undirected and simple. If a graph G is directed then an arc from a vertex u to a vertex v is denoted
by (u, v). For graph terminology not defined below, we refer to [2].

For a vertex u ∈ V we denote its neighbourhood, that is, the set of adjacent vertices, by N(u) = {v | uv ∈ E}. The degree
of a vertex is the number of edges incident with it, or, equivalently, the cardinality of its neighbourhood. A subset U ⊆ V is
called an independent set of G if no two vertices in U are adjacent to each other. The independence number α of a graph G is
the number of vertices in a maximum independent set of G.

A complete bipartite graph K|X|,|Y| is a bipartite graph with the maximum number of edges between its bipartite classes X
and Y. If |X| = 1, then it is a star and the vertex in X is the centre vertex and the vertices in Y are leaves. If |X| = |Y| = 1 we
arbitrarily choose one of the star’s two vertices to be the centre vertex. A graph G that does not contain a K1,p as an induced
subgraph for some p ≥ 1 is said to be K1,p-free. A K1,3-free graph is also called claw-free.

Now we give a more formal definition of knock-out schemes. First, for a graph G = (V, E) and set of vertices W ⊆ V , a
KO-selection is a function f : W → W with f (v) ∈ N(v) for all v ∈ W. If f (v) = u, we say that vertex v fires at vertex u, or
that vertex u is knocked out by vertex v. We also say that u is a victim of v, and that v is an assassin of u. For each u ∈ W, we
denote the set of assassins of u by A(u); that is, v ∈ A(u) if and only if f (v) = u. If A(u) contains a single vertex v (that is, v is
the only vertex that fires at u), then we call u the unique victim of v. If A(u) = ∅, we say that u is a survivor of f and the set of
all survivors of f is denoted B(f ). For a subset U ⊆ W we use the shorthand notation A(U) =

⋃
u∈U A(u), and we say that U is

knocked out by a subset Z ⊆ W if A(U) ⊆ Z, that is, if every vertex in U is knocked out by a vertex in Z.
For G = (V, E), a KO-reduction scheme S is a finite sequence of rS KO-selections f1, . . . frS where the domain of f1 is V and

the domain of fi, 2 ≤ i ≤ rS is B(fi−1) and B(frS) = ∅. Each selection in the sequence is called a round, or a firing, of the KO-
reduction scheme and so rS denotes the number of rounds in the scheme (we omit the subscript when there is no ambiguity).
Thus a KO-reduction scheme for a graph is a sequence of firings such that every vertex fires in the first round and in each
subsequent round every surviving vertex fires. At the end of the scheme no vertex survives; they have all been knocked out.

If a KO-reduction scheme exists for G, then G is called KO-reducible. The parallel knock-out number of G, pko(G), is either
the smallest number r for which such a sequence with r rounds exists or, if no such sequence exists, pko(G) = ∞. For a
KO-reduction scheme S we denote the set of vertices that are victims of a vertex v (over all rounds) by L(v). For a subset
Z ⊆ V , we use the shorthand notation L(Z) =

⋃
v∈Z L(v).

Note that if S is a KO-reduction scheme for G, then it may be possible to obtain further schemes by making small changes
to some of the KO-selections. For example, if in some round i, the victim u of a vertex v is not unique, and v has another
neighbour w that does not survive round i, then it makes no difference if v fires at w instead of u. So we can obtain another
valid KO-reduction scheme by letting fi(v) = w (instead of having fi(v) = u). In such a case, we might say informally that we
are adjusting the firing.

An in-tree is a directed tree that contains a root u that can be reached from any other vertex by a directed path. Note that
a graph containing only one vertex is an in-tree.

Given a KO-reduction scheme, we denote the subset of vertices knocked out in round i, i = 1, . . . , r, by Ri. Let Gi be the
directed graph with vertex set Ri and an arc from a vertex u to a vertex v if and only if fi(u) = v. We may also use Gi to denote
the underlying undirected graph; it will always be clear which from the context.
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Fig. 1. A component of a graph Gi .

Let us make some simple observations about Gi. Let i ≥ 1 and let u be a vertex in Gi. By definition of Gi, u is knocked out
in round i. It may happen that u is knocked out by vertices that survive round i; that is, A(u) ∩ Ri = ∅. Then u has in-degree
zero in Gi. On the other hand, A(u)∩ Ri may contain one or more vertices in Gi that fire at u. The vertex u itself fires at exactly
one vertex in round i. By definition of Gi, the victim of u is in Gi. Hence, u has out-degree exactly one in Gi. We conclude that
every component of Gi is a directed graph with out-degree equal to one. It is easy to see that this implies the following; see
Fig. 1 for an illustration.

Observation 1. Let S be a KO-reduction scheme for a graph G. For i = 1, . . . , r, each component of Gi is formed by a directed cycle
D on at least two vertices, such that each vertex on D is the root of some pendant in-tree.

Another observation we will use is the following.

Observation 2. If a graph G contains two distinct vertices of degree 1 that share the same neighbour, then G is not KO-reducible.

Note that when referring to, for example, Gi, it is implicit that we know with respect to which KO-reduction scheme this
graph is defined. We wish to avoid the cumbersome notation necessary to make it explicit. Sometimes we will be considering
pairs of schemes S and S′ and will write, for instance, that G2 has fewer vertices under S′ than under S. By this we mean that
the number of vertices of G that are knocked out in the second round when we apply scheme S′ is less than the number of
vertices of G that are knocked out in the second round when we apply scheme S.

3. Resolving the square-root conjecture

Let S be a KO-reduction scheme for a KO-reducible graph G. In this section we prove the square-root conjecture by
constructing schemes that knock out vertices “as early as possible”. Let us make this notion precise. Let

w(S) =
rS∑
i=1

i|Ri|,

and we say that S is a minimal KO-reduction scheme for G if w(S) is minimum over all KO-reduction schemes for G.
For a minimal KO-reduction scheme S of a graph G, we can make a number of further assumptions. We use the following

terminology. If Gi has a component C that consists of two vertices u and v we call C a two-component of Gi. Note that there
must be arcs (u, v) and (v, u) between the vertices u and v of a two-component C. If Gi has a component C that consists of
vertices u, v1, . . . , vp for some p ≥ 2 and arcs (u, v1), (v1, u), (v2, u), . . . , (vp, u) then we call C a star-component of Gi with
centre vertex u. The vertices v1, . . . , vp are called the leaves of C, and v1 is called the centre-victim, and the other leaves are
called centre-free. Finally, if Gi has a component that is a directed cycle with an odd number of vertices then we call such a
component an odd cycle-component of Gi.

Lemma 3. If G is KO-reducible, then G admits a minimal KO-reduction scheme S with the following properties:

(i) Each component C of G1 is either a two-component, a star-component or an odd cycle-component.
(ii) For 2 ≤ i ≤ r − 1, every component of Gi is either a two-component or a star-component.
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(iii) Every component of Gr is a two-component.
(iv) If C is an odd cycle-component (in G1) then no vertices of R2, . . . , Rr fire at vertices of C in round 1.
(v) For 1 ≤ i ≤ r − 1, there is no edge in G between any two leaves of the same star-component or of two different star-

components in Gi.

Proof. Let G be a KO-reducible graph. Then G admits a KO-reduction scheme S. Let C be a component in Gi for some 1 ≤ i ≤ r.
We start the proof by showing that if S is minimal, then we can assume that C is either a two-component, a star-component
or an odd cycle-component. By Observation 1, C is formed by a directed cycle D on vertices u1, . . . , up for some p ≥ 2, such
that each ui is the root of some pendant in-tree Ti.

Suppose that p is even and p ≥ 4. We adjust the firing by letting the vertices of VD fire at each other according to a perfect
matching of D. Hence, we may assume that this case does not occur.

Suppose that p ≥ 3 is odd. If D contained a vertex that is knocked out by some vertex v in its corresponding pendant
in-tree, then we can adjust the firing by letting the vertices of VD ∪ {v} fire at each other according to a perfect matching of
this subgraph. Hence, we may assume that C = D is an odd cycle-component.

Suppose that p = 2. Then the underlying undirected graph of C is a tree, and it is obvious that it can be decomposed into
two-components and star-components (and that we can let these components define the firing).

By Observation 2, we have that Gr cannot contain any star-components. To complete the proof of (i)–(iii), we must show
that odd cycle-components only occur in G1. To do this we shall first prove a claim which also immediately implies (iv): for
any odd cycle-component D we may assume that A(D) = D; that is, vertices in D are only knocked out by each other. Suppose
D is an odd cycle-component on vertices u1, . . . , up in some Gi for i ≥ 1, such that there exists a vertex v ∈ A(D)\D and v fires
at u1. We adjust the firing by replacing the arc (up, u1) by (up, up−1) and return to a previous case. Hence, we may assume
that this case does not occur.

Now suppose that a graph Gi, i ≥ 2, contains an odd cycle-component D. First suppose that in round i − 1 all vertices in
D fire at vertices in Ri−1 that either are centre vertices of star-components, or else belong to two-components or odd cycle-
components. Since we just saw that no vertices in Ri+1 ∪ · · · ∪ Rr fire at D, we can move D to Gi−1 (since all victims of D in Ri−1
are not unique, it does not matter if the vertices of D fire at each other instead). This way we obtain a KO-reduction scheme
S′ with w(S′) < w(S). This contradicts the minimality of S. In the remaining case, there exists a vertex u in D that fires at a leaf
w in a star-component in Ri−1. We let u and w fire at each other in round i− 1, so we are able to move u to Ri−1 as A(D) = D.
We let the other vertices in D fire at each other in round i according to a perfect matching of D− u. This way we again obtain
a KO-reduction scheme S′ with w(S′) < w(S), contradicting the minimality of S.

To finish the claim we prove (v). Suppose that u and v are leaves in Gi for some 1 ≤ i ≤ r − 1, such that u and v are
adjacent in G. In case u and v are leaves of different star-components, we adjust the firing by letting u and v fire at each other,
and, if necessary, changing the centre-victims to be vertices other than u and v. Suppose that u and v are leaves of the same
star-component C. Let z be the centre vertex of C. If C has a third leaf, then we again let u and v fire at each other and let
another leaf be the centre-victim. Otherwise we can form an odd cycle-component and return to a previous case. �

We call a minimal KO-reduction scheme S of a graph G that satisfies the properties (i)–(v) of Lemma 3 a simple KO-reduction
scheme of G. We will continue to find further properties of simple KO-reduction schemes.

Observation 4. Let S be a simple KO-reduction scheme for a graph G. Let u, v be, respectively, vertices of Ri and Rj, i < j, such that
u is the unique victim of v. Then u is a centre-free leaf of a star-component in Gi.

Proof. By Lemma 3, u cannot be a vertex of an odd cycle-component. If u is in a two-component, or u is the centre vertex
or centre-victim of a star-component, then there are at least two vertices firing at u. Hence u must be a centre-free leaf of a
star-component. �

Lemma 5. Let S be a simple KO-reduction scheme for a graph G with r ≥ 2. Let C be a two-component in Gr . Then in rounds
1, . . . , r − 1 all victims of one of the two vertices of Gr are not unique, and all victims of the other one are unique.

Proof. For i = 1, . . . , r − 1, let xi be the victim of u in round i, and let yi be the victim of v in round i.
Suppose that both xr−1 and yr−1 are not unique victims. We show that this means that it is possible to move u and v to

Rr−1. If xr−1 6= yr−1 or xr−1 = yr−1 is the victim of vertices other than u and v, then let u and v fire at each other in round r− 1.
If xr−1 = yr−1 is fired at by only u and v, then it is a centre-free vertex of a star-component and we can adjust the firing to let
u, v and xr−1 form an odd cycle-component in Gi−1. Either way we obtain a new KO-reduction scheme S′ with w(S′) < w(S),
contradicting the minimality of S. Hence we can assume that yr−1 is a unique victim.

We show that all victims of u are not unique by contradiction. Let h be the largest index such that xh is unique. By
Observation 4, vertices xh and yr−1 are centre-free leaf vertices of star-components. Since centre vertices are not unique
victims, we can let u and xh fire at each other in round h, and we can let v and yr−1 fire at each other in round r− 1. This way
we obtain a new KO-reduction scheme S′ with w(S′) < w(S). This contradicts the minimality of S.

Now we again find a contradiction to show that all victims of v are unique. Let h be the largest index such that yh is not
a unique victim. Then we let v fire at yj in round j − 1 for j = h + 1, . . . , r − 1 (so we move those vertices from Rj to Rj−1),
and v does not fire at yh anymore. Since xr−1 is not a unique victim, we can then let u and v fire at each other in round r − 1.
This way we obtain a new KO-reduction scheme S′ with w(S′) < w(S). This contradicts the minimality of S and completes
the proof of the lemma. �
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Lemma 6. Let S be a simple KO-reduction scheme for a graph G with r ≥ 2. For each i ≥ 2, Ri contains a vertex vi whose victims
in round 1, . . . , i − 1 are all unique. Let ur be the (unique) neighbour of vr in Gr . Then

⋃r
i=2 L(vi) ∪ {ur} is an independent set of

cardinality r2
−r+2

2 in G.

Proof. Since Rr is non-empty, there exists a two-component C in Gr . Let ur and vr be the two vertices of C. By Lemma 5, we
may assume that all victims of ur in rounds i = 1, . . . , r − 1 are not unique, and all victims of vr are unique. Denote the
victims of vr in rounds i = 1, . . . , r− 1 by yr1, . . . , y

r
r−1, respectively. By Observation 4, every yri is a centre-free leaf vertex of

a star-component Cr
i . For i = 2, . . . , r − 1, let vi be the centre vertex of Cr

i and for h = 1, . . . i− 1, let yih be the victim of vi in
round h. We claim that these victims yih are all unique. For i = r, this is already shown. We prove the rest of the statement
by contradiction. Let 2 ≤ i ≤ r − 1. Let h be the largest index such that yih is not a unique victim of vi. We adjust the firing
as follows. Since yih is not a unique victim of vi, we do not have to let vi fire at it. Then we let vi fire at yij in round j − 1 for
j = h + 1, . . . , i − 1, so we move yij to Rj−1 for j = h + 1, . . . , i − 1. In round i − 1 we let vi fire at yri , so we move yri to Ri−1.
Then we do not have to let vr fire at yri . Hence, we can let vr fire at yrj in round j − 1 for j = i + 1, . . . , r − 1, so we move yrj
to round j− 1 for j = i+ 1, . . . , r − 1. Finally, we let ur and vr fire at each other in round r − 1. This is possible, because the
victim of ur in round r − 1 is not unique, due to Lemma 5. This way we have obtained a new KO-reduction scheme S′ with
w(S′) < w(S), contradicting the minimality of S.

We will now prove that

L =
r⋃

i=2
L(vi) =

r⋃
i=2

i−1⋃
h=1

yih

is an independent set. We first note that

|L| =

∣∣∣∣∣ r⋃
i=2

i−1⋃
h=1

yih

∣∣∣∣∣ = r∑
i=2

i−1∑
h=1

1 =
r2
− r

2
,

since all vertices in L are unique victims.
As S is simple, by Lemma 3, there is no edge between any two vertices yih and yjh. Suppose that there is an edge yihy

r
j , where

h 6= j. If h < j, then we move yrj to Rh, each yrk for k = j + 1, . . . , r − 1 to Rk−1, and finally ur and vr to Rr−1. We can adjust
the firing and obtain a new KO-reduction scheme S′ with w(S′) < w(S). This contradicts the minimality of S. If h > j, then
we move yih to Rj, each yrk for k = i, . . . , r − 1 to Rk−1, and finally ur and vr to Rr−1. We adjust the firing and obtain the same
contradiction as before. Suppose that there exists an edge between two vertices yih and ykj with h < j and r /∈ {i, j}. We move
ykj to Rh, each yr` for ` = j, . . . , r−1 to R`−1, and finally ur and vr to Rr−1. We adjust the firing and obtain the same contradiction
as before.

Now suppose that ur is adjacent to a vertex yih of L. By Lemma 5, all victims of ur are not unique. Then we can let ur fire at
yih in round i. Then yih is no longer a unique victim and we find a KO-reduction scheme S′ with w(S′) < w(S) as before. This
final contradiction completes the proof. �

We are now ready to state our main theorem, which proves (and strengthens) the square-root conjecture posed in [4].

Theorem 7. Let G be a KO-reducible graph. Then

pko(G) ≤ min

−1
2
+

√
2n−

7
4
,

1
2
+

√
2α−

7
4

 .

Proof. It is straightforward to check that the statement holds for a graph G with pko(G) = 1. Let S be a simple KO-
reduction scheme for a graph G with r ≥ pko(G) ≥ 2. By Lemma 6, we find an independent set L′ of G that has cardinality
|L′| = 1

2 (r2
− r + 2) ≤ α. Note that R1 contains a centre vertex of a star-component. This, together with Lemmas 5 and 6,

implies that n ≥ |L′| + r − 1+ 1 = 1
2 (r2
− r + 2)+ r. Solving both inequalities gives us the required upper bound. �

We note that the bound mentioned in Theorem 7 is asymptotically tight. In [4], it has been proven that for all p ≥ 1,
pko(Kp,q) = p = Θ(

√
n) = Θ(

√
α) for all complete bipartite graphs on n = p+ q vertices with q = 1

2p(p+ 1).

4. Claw-free graphs

It is known that claw-free graphs can be knocked out in at most two rounds [4] if they are KO-reducible (not all claw-free
graphs are, take for example an isolated vertex or a path on three vertices). We generalise this result for K1,p-free graphs for
any p ≥ 2. This solves a question in [4].

Theorem 8. Let p ≥ 1. If a K1,p-free graph G is KO-reducible then pko(G) ≤ p− 1.

Proof. The case p = 1 is trivial. For p ≥ 2, the statement follows directly from Lemma 6. �
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This result is the best possible. In [4, Section 4], a tree Y` is defined for each integer ` ≥ 1, and it is shown that pko(Y`) = `.
It is also easy to check that Y` is K1,`+1-free. We omitted the details.

In the rest of this section, we suppose that G = (V, E) is a claw-free graph and show that pko(G) can be determined in
polynomial time. We need the following lemma.

Lemma 9. Let G be a connected claw-free graph with pko(G) = 2. Then there is a simple KO-reduction scheme in which only two
vertices u and v survive to the second round.

Proof. By Lemma 3 and claw-freeness, we know there is a simple two-round KO-reduction scheme S for G such that

(i) each component of G1 is a two-component, star-component or odd cycle,
(ii) each component of G2 is a two-component,

(iii) in the first round the vertices of G2 do not fire at vertices that belong to odd cycles in G1, and
(iv) the leaves of the star-components in G1 are not adjacent.

As the leaves of the star-components are not adjacent, we can, by claw-freeness and Lemma 3, further suppose that each
star-component is a path on three vertices which we shall call a three-component.

Note that among all schemes that satisfy these properties, S is the one with the fewest number of components in G2 (as it
is minimal). To prove the lemma, we show that if, for S, G2 contains more than one component, then we can find a scheme S′

that admits fewer components to G2.
For S, let the vertex sets of the two-components of G2 be {{ui, vi} | i = 1, . . . , q}. By Lemma 5, we can assume that the

victim of ui in G1 is not unique, but that of vi is unique. By Observation 4, vi fires at the centre-free leaf of a three-component,
say yi. Let xi be the victim of ui. Suppose that xi is the centre vertex of a three-component. Then there is also an edge from ui

to one of the leaves, say w, of the three-component (else, by (iv), xi, ui and the leaves of the three-component induce a claw).
Let z be the other leaf of the three-component.

Suppose that yi = w. Then let S′ be a scheme identical to S except that in the first round

• vi fires at yi,
• yi fires at ui,
• ui fires at vi,
• xi and z fire at each other.

Thus S′ has one fewer two-component in G2 than S.
Suppose that yi = z. Then let S′ be a scheme identical to S except that in the first round

• vi and yi fire at each other,
• ui fires at xi,
• xi fires at w,
• w fires at ui.

Thus S′ has one fewer two-component in G2 than S.
Suppose that yi /∈ {w, z}. Then let S′ be a scheme identical to S except that in the first round

• vi and yi fire at each other,
• ui and w fire at each other, and
• xi and z fire at each other.

Thus S′ has one fewer two-component in G2 than S. Hence, we have proven that xi is not the centre-vertex of a three-
component.

Suppose that xi is the leaf of a three-component. If yi also belongs to this three-component, then, since xi 6= yi, we have
that ui, vi and the three-component of their victims lie on a 5-cycle in G. Then let S′ be a scheme identical to S except that in
the first round these five vertices fire according to an orientation of this 5-cycle. Thus S′ has one fewer two-component in G2
than S.

If xi is the leaf of a three-component that does not contain yi, then ui, vi and the components containing their first round
victims lie on a path of length 8 in G so can be matched. So let S′ be a scheme identical to S except that in the first round
these eight vertices fire according to this matching. Thus S′ has one fewer two-component in G2 than S.

Thus xi is not the leaf of a three-component, and, by (iii), xi belongs to a two-component.
Thus ui and vi combined with the components of G1 containing their victims lie on a path of length 7 in G. We call such a

path a seven-component. Let us motivate this choice of name by showing that the seven-components are vertex-disjoint.
The vertices vi, 1 ≤ i ≤ r, fire at distinct three-components in the first round (as their victims are unique and one of the

leaves of each three-component is the centre-victim). We must also show that the victims xi of the vertices ui, 1 ≤ i ≤ r,
belong to distinct two-components. Suppose that xi and xj, i 6= j, are distinct but belong to the same two-component in G1.
Then let S′ be a scheme identical to S except that in the first round

• vi and yi fire at each other,
• vj and yj fire at each other,
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• ui and xi fire at each other, and
• uj and xj fire at each other.

Again S′ has fewer two-components in G2 than S. Now suppose that xi = xj. If either ui or uj is adjacent to the other vertex
in xi’s two-component, then we have the previous case. Otherwise, there is an edge uiuj (else there is a claw). So let S′ be a
scheme identical to S except that in the first round

• vi and yi fire at each other,
• vj and yj fire at each other, and
• ui and uj fire at each other.

Again S′ has fewer two-components in G2 than S.
We have shown that the seven-components are vertex-disjoint. Note that all the three-components in G1 contain a victim

of a vertex in G2 and so must be a subgraph of a seven-component. Thus we can represent S as a collection of vertex-disjoint
seven-components, two-components and odd cycles that span G. We denote such a representation G∗. Note that the number
of two-components in G2 is equal to the number of seven-components in G∗. Thus to prove the lemma we show that if for S
there is more than one seven-component in G∗, then we can find another scheme with fewer seven-components.

Let A = a1 · · · a7 and B = b1 · · · b7 be a pair of seven-components in G∗. First we consider the case where, in G, A and B
are joined by an edge aibj for some i, j. We shall show that this implies that the vertices of A and B admit a perfect matching;
thus we can replace two seven-components by seven two-components.

If i and j are both odd, then we match ai with bj and the remaining vertices and edges of A and B form paths of even
length, so can clearly be matched. If i is even and j is odd, then, if either ai−1 or ai+1 is adjacent to bj, we have the previous
case. Otherwise, by claw-freeness, there is an edge ai−1ai+1 and we include both this and aibj in the matching, and, again,
what remains of A and B are paths of even length. Finally suppose that i and j are both even. If there are any other edges
from a vertex in {ai−1, ai, ai+1} to a vertex in {bj−1, bj, bj+1}, then we have an earlier case. Otherwise, claw-freeness implies
edges ai−1ai+1 and bj−1bj+1, and we include these and aibj in the matching to again leave only even-length paths.

So we can assume that no pair of seven-components in S are joined by an edge in G. Now let us assume that S is such that
we can find seven-components A and B such that the length of the shortest path in G between them is minimum (that is,
there is no pair of seven-components in any other simple scheme separated by a shorter path).

Suppose that a shortest path from A to B meets A at ai and the next vertex along is w. In G∗, w must belong to either a
two-component or an odd cycle.

First suppose that w is in a two-component C whose other vertex is z. We describe how to use the vertices of A and C to
find a seven-component A′ and two-component C′ such that w is in A′; thus A′ is closer to B than A contradicting our choice
of A and B. By symmetry, there are four cases according to which vertex of A neighbours w. Suppose that a1 is adjacent to w.
Then replace A and C with A′ = zwa1 · · · a5 and C′ = a6a7. If a2 is adjacent to w, then claw-freeness implies that one of the
edges a1a3, a1w or a3w is present. Let C′ be, respectively, a6a7, a6a7 or a1a2, and in each case we find a path of length 7 on the
remaining vertices to be A′. If a3 is adjacent to w, then let A′ = zwa3 · · · a7 and C′ = a1a2. If a4 is adjacent to w, then one of a3a5,
a3w or a5w is present. Let C′ be, respectively, a1a2, a1a2 or a6a7, and in each case we find a path of length 7 on the remaining
vertices to be A′.

Finally suppose that w belongs to an odd cycle. If ai, i odd, is joined to w, then there is a perfect matching on the vertices
of A and the cycle and we have a scheme with fewer seven-components. Suppose that ai, i even, is adjacent to w. If either ai−1
or ai+1 is joined to w, then we have the previous case. Otherwise, there must be an edge ai−1ai−1, and if we match both this
pair of vertices and ai and w, then the remaining vertices of A and the cycle induce even-length paths and a perfect matching
can again be found. �

Theorem 10. Computing the parallel knock-out number of a claw-free graph can be done in polynomial time.

Proof. By Theorem 8, it is sufficient to present methods for checking whether or not pko(G) is equal to 1 or 2, since if it is
neither it must be∞. Deciding whether a graph can be knocked-out in a single round can be solved in polynomial time [4].
So we need only show how to check whether G can be knocked out in two rounds.

Suppose that pko(G) = 2. By Lemma 9, we can assume that there is a two-round simple KO-reduction scheme for G
in which only two vertices, say u and v, survive to the second round, and, by the proof of the lemma, there is exactly one
three-component in G1.

Let w be the first round victim of v. Then G−{u, v,w} has a spanning subgraph comprising two-components and odd cycles
(that is, G1 −w) and can thus be knocked out in one round. Therefore the following is a necessary condition for pko(G) = 2:
there are three vertices u, v and w in V such that

• there are edges uv and vw,
• u and w have neighbours other than v and each other, and
• pko(G− {u, v,w}) = 1.

It is easy to see that this condition is also sufficient. Therefore to decide whether or not pko(G) = 2, we look for a set of three
vertices that satisfies this condition. This can be done in polynomial time. �
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Fig. 2. Two graphs G,H with G B
−→ H and pko(G) < pko(H).

As noted before any graph with pko(G) = 1 has a spanning subgraph consisting of a number of mutually disjoint matching
edges and disjoint cycles. For claw-free graphs we have found the following characterisation, which directly follows from
the proof of Lemma 9.

Corollary 11. Let G be a connected claw-free graph with pko(G) = 2. Then G has a spanning subgraph consisting of a number of
vertex-disjoint matching edges, odd cycles and one path on seven vertices.

5. Locally bijective homomorphisms

A graph homomorphism from G = (VG, EG) to H = (VH, EH) is a vertex mapping f : VG → VH satisfying the property that
for any edge uv in EG, we have f (u)f (v) in EH as well, i.e., f (NG(u)) ⊆ NH(f (u)) for all u ∈ VG. For two graphs G and H we write
G B
−→ H if there exists a so-called locally bijective homomorphism f : VG → VH satisfying:

for all u ∈ VG : f (NG(u)) = NH(f (u)) and |f (NG(u))| = |NG(u)|.

We compare the parallel knock-out numbers of two graphs G and H with G B
−→ H. Then we find that pko(H) is an upper bound

for pko(G).

Proposition 12. If G B
−→ H then pko(G) ≤ pko(H).

Proof. If pko(H) = ∞ the statement holds. Suppose that pko(H) = k for some integer k and consider a parallel knock-out
scheme that eliminates H in exactly k rounds. Let f : VG → VH be a locally bijective homomorphism. For any pair x, y ∈ VH

with x firing at y in the first round we do as follows. In G we let each vertex u with f (u) = x fire at its (only) neighbour v
with f (v) = y. Clearly there is a locally bijective homomorphism from the KO-successor of G to the KO-successor of H (the
restriction of f to the remaining vertices is one). Thus we can, in the same way, decide how the vertices of G should fire in
the second and subsequent rounds, and so a reduction scheme for G that also has k rounds is obtained. �

We note that the reverse implication is not true. Let Pn denote the path on n vertices. Then we can take G = P2 and H = P3.
Clearly, there does not exist a locally bijective homomorphism from G to H. However, pko(G) = 1 < pko(H) = ∞.

In Fig. 2, we illustrate an example that shows that strict inequality may hold in the statement of Proposition 12: it displays
two graphs G and H with G B

−→ H and pko(G) < pko(H). This can be seen as follows. The mapping f : VG → VH defined by
f (x′i) = f (x′′i ) = xi, for 1 ≤ i ≤ 6, and f (y′j) = f (y′′j ) = yj, for 1 ≤ j ≤ 4, is a locally bijective homomorphism from G to H. Below
we show that pko(G) = 2 <∞ = pko(H).

We first need some terminology. A bipartite graph G is called (2, 3)-regular if all vertices in one class of the bipartition
have degree 2 and all other vertices have degree 3. Let F = (V, E) be a (2, 3)-regular bipartite graph. Let X denote the vertices
with degree 2, and Y the vertices with degree 3. Then |E| = 2|X| = 3|Y|, so |Y| = 2` and |X| = 3` for some positive integer `.
We call a subset Y∗ of Y with ` vertices that has the whole set X as its neighbourhood a star cover of F. Note that both G and
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H are (2, 3)-regular bipartite graphs. Furthermore, G has a star cover {y′1, y′4, y′′3, y′′2}while H does not have a star cover. Then
pko(G) = 2 and pko(H) = ∞ follow immediately from a result from [5] on (2, 3)-regular bipartite graphs that states that a
(2, 3)-regular bipartite graph G is KO-reducible if and only if G has a star cover and in this case pko(G) = 2.

6. Conclusions

We solved the square-root conjecture of [4] by giving a tight upper bound on the parallel knock-out number of a KO-
reducible graph G. We also showed that the parallel knock-out number of a KO-reducible K1,p-free graph is at most p−1, and
that this bound is tight. We also gave an upper bound on the parallel knock-out number of a graph in terms of the parallel
knock-out number of a smaller graph, to which a locally bijective homomorphism exists. For claw-free graphs we showed
that their parallel knock-out number can be computed in polynomial time. The question of whether the parallel knock-out
number for K1,p-free graphs with p ≥ 4 can also be computed in polynomial time remains open.
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