Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4474))

Abstract

A large group of autonomous, mobile entities e.g. robots initially placed at some arbitrary node of the graph has to jointly visit all nodes (not necessarily all edges) and finally return to the initial position. The graph is not known in advance (an online setting) and robots have to traverse an edge in order to discover new parts (edges) of the graph. The team can locally exchange information, using wireless communication devices.

We compare a cost of the online and optimal offline algorithm which knows the graph beforehand (competitive ratio). If the cost is the total time of an exploration, we prove the lower bound of Ω(logk /loglogk) for competitive ratio of any deterministic algorithm (using global communication). This significantly improves the best known constant lower bound. For the cost being the maximal number of edges traversed by a robot (the energy) we present an improved (4 − 2/k)-competitive online algorithm for trees.

This research is partially supported by the DFG-Sonderforschungsbereich SPP 1183: ”Organic Computing. Smart Teams: Local, Distributed Strategies for Self-Organizing Robotic Exploration Teams” and by MNiSW grant number N206 001 31/0436, 2006-2008.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Betke, M., Rivest, R.L., Singh, M.: Piecemeal learning of an unknown environment. In: Proc. of the 6th Annual ACM Conference on Computational Learning Theory (COLT 1993), Santa Cruz, California, United States, pp. 277–286. ACM Press, New York (1993)

    Chapter  Google Scholar 

  2. Bender, M.A., Slonim, D.K.: The power of team exploration: two robots can learn unlabeled directed graphs. In: Proc. of the 35th Annual Symposium on Foundations of Computer Science (FOCS 1994), Santa Fe, New Mexico, November 1994, pp. 75–85. IEEE Computer Society Press, Los Alamitos (1994)

    Chapter  Google Scholar 

  3. Bender, M.A.: The power of a pebble: Exploring and mapping directed graphs. Information and Computation 176(1), 1–21 (2005)

    Article  MathSciNet  Google Scholar 

  4. Fleischer, R., Trippen, G.: Exploring an unknown graph efficiently. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 11–22. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Dessmark, A., Pelc, A.: Optimal graph exploration without good maps. Theoretical Computer Science 326(1-3), 343–362 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gasieniec, L., et al.: Tree exploration with logarithmic memory. In: Proc. of ACM-SIAM Symp. on Discrete Algorithms (SODA 2007), ACM Press, New York (2007)

    Google Scholar 

  7. Dobrev, S., et al.: Black hole search in common interconnection networks. Networks 47, 61–71 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dobrev, S., et al.: Searching for a black hole in arbitrary networks: optimal mobile agent protocols. In: Proc. of the 21st Annual Symposium on Principles of Distributed Computing (PODC ’02), pp. 153–162 (2002)

    Google Scholar 

  9. Dessmark, A., et al.: Deterministic rendezvous in graphs. Algorithmica 46(1), 69–96 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Sugihara, K., Suzuki, I.: Distributed algorithms for formation of geometric patterns with many mobile robots. Journal of Robotic Systems 13(3), 127–139 (1996)

    Article  MATH  Google Scholar 

  11. Das, S., et al.: Distributed exploration of an unknown graph. In: Pelc, A., Raynal, M. (eds.) SIROCCO 2005. LNCS, vol. 3499, pp. 99–114. Springer, Heidelberg (2005)

    Google Scholar 

  12. Fraigniaud, P., et al.: Collective tree exploration. Networks 48(3), 166–177 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dynia, M., et al.: Smart robot teams exploring sparse trees. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 327–338. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Dynia, M., Korzeniowski, M., Schindelhauer, C.: Power-aware collective tree exploration. In: Grass, W., Sick, B., Waldschmidt, K. (eds.) ARCS 2006. LNCS, vol. 3894, pp. 341–351. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Hsiang, T., et al.: Algorithms for rapidly dispersing robot swarms in unknown environments. In: Algorithmic Foundations of Robotics V. Springer Tracts in Advanced Robotics, vol. 7, pp. 77–94. Springer, Heidelberg (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Giuseppe Prencipe Shmuel Zaks

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Dynia, M., Łopuszański, J., Schindelhauer, C. (2007). Why Robots Need Maps. In: Prencipe, G., Zaks, S. (eds) Structural Information and Communication Complexity. SIROCCO 2007. Lecture Notes in Computer Science, vol 4474. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72951-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72951-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72918-1

  • Online ISBN: 978-3-540-72951-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics