Skip to main content

Part of the book series: Natural Computing Series ((NCS))

Summary

This book explores some emerging techniques for problem solving of a general nature, based on the tools of EMO. In this introduction, we provide background material to support the reader’s journey through the succeeding chapters. Given here are a basic introduction to optimization problems, and an introductory treatment of evolutionary computation, with thoughts on why this method is so successful; we then discuss multiobjective problems, providing definitions that some future chapters rely on, covering some of the key concepts behind multiobjective optimization. These show how optimization can be carried out separately from subjective factors, even when there are multiple and conflicting ends to the optimization process. This leads to a set of trade-off solutions none of which is inherently better than any other. Both the process of multiobjective optimization, and the set of trade-offs resulting from it, are ripe areas for innovation — for new techniques for problem solving. We briefly preview how the chapters of this book exploit these concepts, and indicate the connections between them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. A. Barricelli. Numerical testing of evolution theories Part II: Preliminary tests of performance, symbiogenesis and terrestrial life. Acta Biotheoretica, 16 (3–4): 99–126, 1963.

    Article  Google Scholar 

  2. V. Belton and T. J. Stewart.Multiple Criteria Decision Analysis: an Integrated Approach. Springer-Verlag, Berlin, Germany, 2002.

    Google Scholar 

  3. H. J. Bremermann. Optimization through evolution and recombination. In Self-Organizing Systems, pages 93–106. Spartan Books, Washington, DC, 1962.

    Google Scholar 

  4. A. Chandra and X. Yao. Ensemble Learning Using Multi-Objective Evolutionary Algorithms. Journal of Mathematical Modelling and Algorithms, 5(4):417– 445, 2006.

    Article  MathSciNet  Google Scholar 

  5. C. A. Coello Coello, D. A. Van Veldhuizen, and G. B. Lamont. Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, New York, May 2002. ISBN 0-3064-6762-3.

    Google Scholar 

  6. D. Corne, K. Deb, P. Fleming, and J. Knowles. The Good of the Many Outweighs the Good of the One: Evolutionary Multi-Objective Optimization. IEEE Connections Newsletter, 1(1):9–13, 2003.

    Google Scholar 

  7. K. Deb. Evolutionary Algorithms for Multi-Criterion Optimization in Engineering Design. In K. Miettinen, M. M. Mäkelä, P. Neittaanmäki, and J. Periaux, editors, Evolutionary Algorithms in Engineering and Computer Science, chapter 8, pages 135–161. John Wiley & Sons, Ltd, Chichester, UK, 1999.

    Google Scholar 

  8. J. S. Dyer, P. C. Fishburn, R. E. Steuer, J. Wallenius, and S. Zionts. Multiple criteria decision making, multiattribute utility theory: the next ten years. Management Science, 38(5):645–654, 1992.

    Article  Google Scholar 

  9. G. Dyson. Darwin Among the Machines. Penguin Books, 1999.

    Google Scholar 

  10. M. Ehrgott. Multicriteria Optimization. Number 491 in Lecture Notes in Economics and Mathematical Systems. Springer, Berlin, 2000.

    Google Scholar 

  11. M. Ehrgott and X. Gandibleux. An Annotated Bibliography of Multi-objective Combinatorial Optimization. Technical Report 62/2000, Fachbereich Mathematik,Universit¨at Kaiserslautern, Kaiserslautern, Germany, 2000.

    Google Scholar 

  12. D. Fogel. Asymptotic convergence properties of genetic algorithms and evolutionary programming: Analysis and experiments. Cybernetics and Systems,25(3):389–407, 1994.

    Article  Google Scholar 

  13. D. B. Fogel. An introduction to simulated evolutionary optimization. IEEE Transactions on Neural Networks, 5(1):3–14, 1994.

    Article  Google Scholar 

  14. L. J. Fogel. Autonomous automata. Industrial Research, 4(1):14–19, 1962.

    Google Scholar 

  15. C. M. Fonseca and P. J. Fleming. An Overview of Evolutionary Algorithms in Multiobjective Optimization. Evolutionary Computation, 3(1):1–16, Spring 1995.

    Article  Google Scholar 

  16. A. S. Fraser. Simulation of genetic systems by automatic digital computers. Australian Journal of Biological Sciences, 10:484–491, 1957.

    Article  Google Scholar 

  17. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP Completeness. W. H. Freeman and Company, San Francisco, 1979.

    Google Scholar 

  18. A. M. Geoffrion, J. S. Dyer, and A. Feinberg. An Interactive Approach for Multi-Criterion Optimization, with an Application to the Operation of an Academic Department. Management Science, 19(4):357–368, 1972.

    Article  Google Scholar 

  19. J. H. Holland. Adaption in Natural and Artificial Systems. University of Michigan Press, 1975.

    Google Scholar 

  20. R. L. Keeney and H. Raiffa. Decisions with Multiple Objectives: Preferences and Value Trade-Offs. Cambridge University Press, Cambridge, UK, 1993.

    Google Scholar 

  21. J. R. Koza. Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, 1992.

    Google Scholar 

  22. W. B. Langdon and R. Poli. Foundations of Genetic Programming. Springer, 2002.

    Google Scholar 

  23. J. Lohn, G. Hornby, and D. Linden. An Evolved Antenna for Deployment on NASA's Space Technology 5 Mission. In Genetic Programming Theory and Practice II, pages 13–15. Springer, 2004.

    Google Scholar 

  24. A. V. Lotov, V. A. Bushenkov, and G. K. Kamenev. Interactive Decision Maps: Approximation and Visualization of Pareto Frontier. Kluwer Academic, 2004.

    Google Scholar 

  25. K. Miettinen. Nonlinear Multiobjective Optimization. Kluwer Academic Publishers,1999.

    Google Scholar 

  26. R. Poli and W. Langdon. Schema Theory for Genetic Programming with One-Point Crossover and Point Mutation. Evolutionary Computation, 6(3):231–252,1998.

    Article  Google Scholar 

  27. G. R. Price. Selection and covariance. Nature, 227:520–521, 1970.

    Article  Google Scholar 

  28. A. Pryke, S. Mostaghim, and A. Nazemi. Heatmap visualization of population based multi objective algorithms. In Evolutionary Multi-Criterion Optimization (EMO 2006), volume 4403 of LNCS, pages 361–375. Springer, 2006.

    Google Scholar 

  29. N. Radcliffe. The algebra of genetic algorithms. Annals of Mathematics and Artificial Intelligence, 10(4):339–384, 1994.

    Article  MathSciNet  Google Scholar 

  30. I. Rechenberg. Cybernetic solution path of an experimental problem, 1965. Library Translation 1122, Royal Aircraft Establishment, Farnborough, UK.

    Google Scholar 

  31. G. Rudolph. Convergence analysis of canonical genetic algorithms. IEEE Transactions on Neural Networks, 5(1):96–101, 1994.

    Article  Google Scholar 

  32. G. Rudolph. Convergence of evolutionary algorithms in general search spaces.In Proceedings of the IEEE International Conference on Evolutionary Computation, pages 50–54, 1996.

    Google Scholar 

  33. H.-P. Schwefel. Kybernetische Evolution als Strategie der experimentellen Forschung in der Stromungstechnik. Master’s thesis, Hermann F¨ottinger Institute for Hydrodynamics, Technical University of Berlin, 1965.

    Google Scholar 

  34. Y. Siskos and A. Spyridakos. Intelligent multicriteria decision support: Overview and perspectives. European Journal of Operational Research, 113(2):236–246, 1999..

    Article  Google Scholar 

  35. R. E. Smith, B. A. Dike, B. Ravichandran, A. El-Fallah, and R. Mehra. Discovering Novel Fighter Combat Maneuvers in Simulation: Simulating Test Pilot Creativity. In Creative Evolutionary Systems, pages 467–486. Morgan Kaufmann, 2001.

    Google Scholar 

  36. N. Srinivas and K. Deb. Multiobjective optimization using nondominated sorting in genetic algorithms. Technical report, Department of Mechanical Engineering, Indian Institute of Technology, Kanpur, India, 1993.

    Google Scholar 

  37. D. Thierens and D. Goldberg. Convergence models of genetic algorithm selectionschemes. In Parallel Problem Solving from Nature — PPSN III, volume 866 of LNCS, pages 119–129, 1994.

    Google Scholar 

  38. P. Vincke. Multicriteria Decision-aid. Wiley, New York, 1992.

    Google Scholar 

  39. D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1:67–82, 1997.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Knowles, J., Corne, D., Deb, K. (2008). Introduction: Problem Solving, EC and EMO. In: Knowles, J., Corne, D., Deb, K. (eds) Multiobjective Problem Solving from Nature. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72964-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72964-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72963-1

  • Online ISBN: 978-3-540-72964-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics