Skip to main content

Multi-competence Cybernetics: The Study of Multiobjective Artificial Systems and Multi-fitness Natural Systems

  • Chapter
Book cover Multiobjective Problem Solving from Nature

Part of the book series: Natural Computing Series ((NCS))

Summary

This chapter provides a comparative discussion on natural and artificial systems. It focuses on multiobjective problems as related to the evolution of systems either naturally or artificially; yet, it should be viewed as relevant to other forms of adaptation. Research developments in areas such as evolutionary design, plant biology, robotics, A-life, biotechnology, and game theory are used to support the comparative discussion. A unified approach, namely multi-competence cybernetics (MCC) is suggested. This is followed by a discussion on the relevance of a Pareto approach to the study of nature. One outcome of the current MCC study is a suggested analogy between species and design concepts. Another resulting suggestion is that multi-fitness dynamic visualization of natural systems should be of a scientific value, and in particular for the pursuit of understanding of natural evolution by way of ∈dexthought experimentthought experiments. It is hoped, at best, that MCC would direct thinking into fruitful new observations on the multi-fitness aspects of natural adaptation. Alternatively, it is expected that such studies would allow a better understanding of the similarities and dissimilarities between the creation of natural and artificial systems by adaptive processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrams, P. (2001) Adaptationism, optimality models, and tests of adaptive scenarios. In: Orzack, S. H., Sober, E. (eds) Adaptationism and optimality. Cambridge University Press, Cambridge, pp. 273–302

    Chapter  Google Scholar 

  2. Avigad, G., Moshaiov, A. (2006) Simultaneous concept-based EMO. Report at: http://www.eng.tau.ac.il/Ëœmoshaiov, also submitted to the IEEE Trans on EC

    Google Scholar 

  3. Avigad, G., Moshaiov, A. (2007) Set-based concept selection in multi-objective problems: optimality and variability approach. Report at: http://www.eng.tau.ac.il/Ëœmoshaiov

    Google Scholar 

  4. Avigad, G., Moshaiov, A., Brauner, N. (2005a) Interactive concept-based search using MOEA: The hierarchical preferences case. Int J of Computational Intelligence,3:182–191

    Google Scholar 

  5. Avigad, G., Moshaiov, A., and Brauner, N. (2005b) MOEA for concept robustness to variability and uncertainty of market’s demands. Proc of the 1st EC workshop in the 9th AI*IA conf on AI, Milan, Italy

    Google Scholar 

  6. Bejan, A. (2000) Shape and structure, from engineering to nature. Cambridge University Press, Cambridge

    Google Scholar 

  7. Bejan, A., Lorente, S. (2006) Constructal theory of generation of configuration in nature and engineering. J of Applied Physics 100:041301-27

    Article  Google Scholar 

  8. Bentley, P. J. (1999) (ed) Evolutionary design by computers. Morgan Kaufmann, San Francisco, California

    MATH  Google Scholar 

  9. Bogatyreva, O., Pahl A-K., Vincent, J. F. V. (2002) Enriching TRIZ with biology — The biological effects database and implications for teleology and epistemology. Proc of the ETRIA World Conf, Strasbourg, pp. 301–307

    Google Scholar 

  10. Coello, C. A. C. (2005) Recent trends in evolutionary multiobjective optimization. In A. Abraham, L. Jain and R. Goldberg (eds) Evolutionary multiobjective optimization: Theoretical advances and applications, Springer-Verlag, London, pp. 7–32

    Chapter  Google Scholar 

  11. Dawkins, R. (1986) The blind watchmaker. Longman Scientific and Technical, Harlow

    Google Scholar 

  12. Deb, K., Gupta, H. (2005) Searching for robust Pareto-optimal solutions in multi-objective optimization. In: Evolutionary Multi-Criterion Optimization, volume 3410 of LNCS, Springer, pp. 150–164

    Google Scholar 

  13. Di Paolo, E. A., Noble, J., Bullock, S. (2000) Simulation models as opaque though experiments. In: Bedau, M. A., McCaskill, J. S., Packard, N. H., Rasmussen, S. (eds) Artificial Life VII: the 7th Int Conf on the Simulation and Synthesis of Living Systems. Reed College, Portland, Oregon, MIT Press/Bradford Books, Cambridge MA, pp. 497–506

    Google Scholar 

  14. Farnsworth, K. D., Niklas, K. J. (1995) Theories of optimization, form and function in branching architecture in plants. Functional Ecology,9:355–363

    Article  Google Scholar 

  15. Fernandez, F. R., Hinojosab, M. A., and Puertoa, J. (2004) Set-valued TU-games. European J of Operational Research159:181–195

    Article  MathSciNet  Google Scholar 

  16. Gould, S.J. (2002) The structure of evolutionary theory. The Belknap Press of Harvard University Press, Cambridge and London

    Book  Google Scholar 

  17. Handl, J., Kell, D. B., Knowles, J. (2006) Multiobjective optimization in bioinformatics and computational Biology. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 4 (2):279–292

    Article  Google Scholar 

  18. Holland, J. H. (1975) Adaptation in natural and artificial systems. The University of Michigan Press, Michigan

    Google Scholar 

  19. Jin, Y. (ed) (2005) Multi-objective machine learning. Springer, Berlin

    MATH  Google Scholar 

  20. Mandal, C., Gudi, R. D., Suraishkumar G. K. (2005) Multi-objective optimization in aspergillus niger fermentation for selective product enhancement. Bioprocess Biosyst Eng,28:149–164

    Article  Google Scholar 

  21. Mattson, C. A., Messac, A. (2005) Pareto frontier based concept selection under uncertainty with visualization. Optimization and Engineering,6:85–115

    Article  MathSciNet  Google Scholar 

  22. Meijer and Koppelaar, (2003) Towards multi-objective game theory. GAME-ON conference, available at: http://mmi.tudelft.nl/Ëœmeijer/files/meijer-gameon03_OnlinePDF.pdf

    Google Scholar 

  23. Moshaiov, A. (2006a) Multi-objective design in nature and in the artificial. Invited keynote paper, Proc of the 5th Int Conf on Mechanics and Materials in Design, Porto, Portugal

    Google Scholar 

  24. Moshaiov, A. (2006b) Multi-objective cybernetics and the concept-based approach: Will they ever meet? The PPSN 2006 Workshop on Multiobjective Problem Solving from Nature, (PPSN 2006), available at: http://dbkgroup.org/knowles/MPSN3/Moshaiov-MO-cybernetics_OnlinePDF.pdf

    Google Scholar 

  25. Moshaiov, A., Avigad, G. (2007a) Concept-based multi-objective problems and their solution by EC. Proc of the User-centric EC Workshop of the GECCO 2007 Conf, London, UK

    Google Scholar 

  26. Moshaiov, A., and Avigad, G. (2007b) The extended concept-based multi-objective path planning and its A-life implications. Proc the 1st IEEE Symposium on A-life, in 2007 IEEE Symposium Series on Computational Intelligence, Honolulu, Hawaii, USA

    Google Scholar 

  27. Niklas, K. J. (2004) Computer models of early land plant evolution. Annu. Rev. Earth Planet. Sci.32:47–66

    Article  Google Scholar 

  28. Nishazaki, I., Sakawa, M. (2001) Fuzzy and multiobjective games for conflict resolution. Studies in Fuzziness and Soft Computing 64, Physica-Verlag, Heidelberg.

    Book  Google Scholar 

  29. Nottale, L. (1993) Fractal space-time and microphysics, World Scientific, Singapore

    Book  Google Scholar 

  30. Orzack, S. H., Sober, E. (2001) Introduction, in Orzack SH, Sober E (Eds.) Adaptationism and optimality, Cambridge University Press, Cambridge

    Chapter  Google Scholar 

  31. Parker, G. A., Maynard Smith, J. (1990) Optimality theory in evolutionary biology. Nature,348:27–33

    Article  Google Scholar 

  32. Parmee, I. C. (2005) Human centric intelligent systems for design exploration and knowledge discovery. Proc of ASCE 2005 Int Conf on Computing in Civil Eng, Cancun, Mexico

    Google Scholar 

  33. Poladian, L., Jermlin, L. S. (2006) Multi-objective evolutionary algorithms and phylogenetic inference with multiple data sets. Soft Comp,10:359–368

    Article  Google Scholar 

  34. Pukkala, T. (2002) (ed) Multi-objective Forest Planning, Kluwer Academic Publishers, Durdrecht

    Book  Google Scholar 

  35. Sarkar, S. (2005) Maynard Smith, optimization, and evolution. Biology and Philosophy

    Google Scholar 

  36. Savransky, S. D. (2000) Engineering of creativity: Introduction to TRIZ methodology of inventive problem solving. CRC Press LLC, Boca Raton, Florida

    Google Scholar 

  37. Spencer, H. (1864) Principles of Biology, Williams and Norgate

    Google Scholar 

  38. Sobek, D. K., Ward, A. C. (1996) Principles from TOYOTA’S set-based concurrent engineering process. Proc of the 1996 ASME Design Engineering Technical Conferences and Computers in Engineering Conference, Irvine, California, USA

    Google Scholar 

  39. Teo, J., Abbass, H. A. (2005) Multiobjectivity and complexity in embodied cognition. IEEE Trans. on Evolutionary Computation, 9 (2):337–360

    Article  Google Scholar 

  40. Wiener, N. (1948) Cybernetics or control and communication in the animal and the machine. MIT Press, Cambridge

    Google Scholar 

  41. Wright, S. (1932) The roles of mutation, inbreeding, cross-breeding and selection in evolution. Proc of the 6th Int Congress of Genetics, pp. 356–366

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moshaiov, A. (2008). Multi-competence Cybernetics: The Study of Multiobjective Artificial Systems and Multi-fitness Natural Systems. In: Knowles, J., Corne, D., Deb, K. (eds) Multiobjective Problem Solving from Nature. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72964-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72964-8_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72963-1

  • Online ISBN: 978-3-540-72964-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics