Skip to main content

Computational Studies of Peptide and Protein Structure Prediction Problems via Multiobjective Evolutionary Algorithms

  • Chapter
Multiobjective Problem Solving from Nature

Part of the book series: Natural Computing Series ((NCS))

Summary

Finding the native structure of a protein starting from its amino acid sequence remains one of the most challenging open problems in bioinformatics and molecular biology. The Protein Structure Prediction (PSP) problem has been tackled from many different directions. The common approach is to cast it in the form of a global single-objective optimization problem using energy functions to evaluate the physical state of the conformations. In this work we reformulate the PSP as a multiobjective optimization problem motivated by the fact that the folded state of a protein is a small ensemble of conformational structures. A 2-objective decomposition of the CHARMM energy function is proposed based on local and nonlocal interactions between atoms, supported by experimental evidence that these objectives are in fact conflicting. A new MOEA algorithm is used to search for (observed) Pareto-optimal sets of conformations with respect to the 2-objective formulation and tested on a large set of medium-size proteins (26-70 residues), with results demonstrating the effectiveness of this approach and providing different measures of protein complexity. Results also point to instances in which the CHARMM energy model suffers from low accuracy owing to the required trade-off between differing objectives in finding “good” conformations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Anfinsen. Principles that govern the folding of protein chains. Science, 181:223–230, 1973.

    Article  Google Scholar 

  2. C. Anfinsen, E. Haber, M. Sela, and J. F. H. White. The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. Proc. Natl. Acad. Sci. USA, 47:1309–1314, 1961.

    Article  Google Scholar 

  3. J. U. Bowie and D. Eisemberg. An evolutionary approach to folding small alpha-helical proteins that uses sequence information and an empirical guiding fitness function. Proc. Natl Acad Sci USA, 91:4436–4440, 1994.

    Article  Google Scholar 

  4. J. Branke, K. Deb, H. Dierolf, and M. Osswald. Finding knees in multi-objective optimization. In PPSN, pages 722–731, 2004.

    Google Scholar 

  5. W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc., 117(19):5179–5197, 1995.

    Article  Google Scholar 

  6. Y. Cui, R. S. Chen, and W. H. Wong. Protein folding simulation using genetic algorithm and supersecondary structure constraints. Proteins: Structure, Function and Genetics, 31(3):247–257, 1998.

    Article  Google Scholar 

  7. V. Cutello, G. Narzisi, and G. Nicosia. A class of Pareto archived evolution strategy algorithms using immune inspired operators for ab-initio protein structure prediction. In EvoWorkshops, pages 54–63, 2005.

    Google Scholar 

  8. V. Cutello, G. Narzisi, and G. Nicosia. A multi-objective evolutionary approach to the protein structure prediction problem. Journal of Royal Society Interface, 3(6):139–151, Feb. 2006.

    Article  Google Scholar 

  9. A. Dal Palu, A. Dovier, and F. Fogolari. Constraint logic programming approach to protein structure prediction. BMC Bioinformatics, 5(1):186, 2004.

    Article  Google Scholar 

  10. R. O. Day, J. B. Zydallis, and G. B. Lamont. Solving the protein structure prediction problem through a multiobjective genetic algorithm. ICNN, 2:31–35, 2001.

    Google Scholar 

  11. J. Handl and J. D. Knowles. Exploiting the trade-off - the benefits of multiple objectives in data clustering. In EMO, pages 547–560, 2005.

    Google Scholar 

  12. U. H. Hansmann and Y. Okamoto. Numerical comparisons of three recently proposed algorithms in the protein folding problem. J Comput Chem, 18:920–933, 1997.

    Article  Google Scholar 

  13. J. Hermans, H. J. C. Berendsen, W. F. V. Gunsteren, and J. P. M. Postma. A consistent empirical potential for water-protein interactions. Biopolymers, 23(8):1513–1518, 1984.

    Article  Google Scholar 

  14. E. Huang, S. Subbiah, and M. Levitt. Recognizing native folds by the arrangement of hydrophobic and polar residues. J. Mol. Biol., 252:709–720, 1995.

    Article  Google Scholar 

  15. J. L. Klepeis, M. J. Pieja, and C. A. Floudas. Hybrid Global Optimization Algorithms for Protein Structure Prediction: Alternating Hybrids. Biophys. J., 84(2):869–882, 2003.

    Article  Google Scholar 

  16. J. D. Knowles and D. W. Corne. The Pareto archived evolution strategy : A new baseline algorithm for Pareto multiobjective optimisation. In Proceedings of the 1999 Congress on Evolutionary Computation (CEC’99), 10:98–105, 1999.

    Article  Google Scholar 

  17. J. D. Knowles and D. W. Corne. Approximating the nondominated front using the Pareto archived evolution strategy. Evolutionary Computing, 8(2):149–172, 2000.

    Article  Google Scholar 

  18. C. Levinthal. Are there pathways to protein folding? J. Chem. Phys., 65(44-45), 1968.

    Google Scholar 

  19. F. A. Momany, R. F. McGuire, A. W. Burgess, and H. A. Scheraga. Energy parameters in polypeptides. vii. geometric parameters, partial atomic charges, nonbonded interactions, hydrogen bond interactions, and intrinsic torsional potentials for the naturally occurring amino acids. J. Phys. Chem., 79(22):2361–2381, 1975.

    Article  Google Scholar 

  20. N. F. N and J. A. D. MacKerell A. D. All-atom empirical force field for nucleic acids: I. parameter optimization based on small molecule and condensed phase macromolecular target data. J Comput Chem, 21:86–104, 2000.

    Google Scholar 

  21. M. Nanias, M. Chinchio, J. Pillardy, D. R. Ripoll, and H. A. Scheraga. Packing helices in proteins by global optimization of a potential energy function. PNAS, 100(4):1706–1710, 2003.

    Article  Google Scholar 

  22. G. Nicosia. Immune Algorithms for Optimization and Protein Structure Prediction. PhD thesis, Department of Mathematics and Computer Science, University of Catania, 2004.

    Google Scholar 

  23. J. T. Pendersen and J. Moult. Protein folding simulations with genetic algorithms and a detailed molecular description. J Mol Biol, 169:240–259, 1997.

    Article  Google Scholar 

  24. S. S. Plotkin and J. N. Onuchic. Understanding protein folding with energy landscape theory. Quarterly Reviews of Biophysics, 35(2):111–167, 2002.

    Article  Google Scholar 

  25. G. Pollastri, D. Przybylski, B. Rost, and P. Baldi. Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles. Proteins: Structure, Function, and Genetics, 47(2):228–235, 2002.

    Article  Google Scholar 

  26. J. R. L. Dunbrack and F. E. Cohen. Bayesian statistical analysis of protein sidechain rotamer preferences. Protein Science, 6:1661–1681, 1997.

    Article  Google Scholar 

  27. K. T. Simons, C. Kooperberg, E. Huang, and D. Baker. Assembly of of protein tertiary structures from fragments with similar local sequences using simulated annealing and bayesian scoring function. J Mol Biol, 306:1191–1199, 1997.

    Article  Google Scholar 

  28. Z. Sun, X. Rao, L. Peng, and D. Xu. Prediction of protein supersecondary structures based on the artificial neural network method. Protein Eng., 10:763–769, 1997.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cutello, V., Narzisi, G., Nicosia, G. (2008). Computational Studies of Peptide and Protein Structure Prediction Problems via Multiobjective Evolutionary Algorithms. In: Knowles, J., Corne, D., Deb, K. (eds) Multiobjective Problem Solving from Nature. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72964-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72964-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72963-1

  • Online ISBN: 978-3-540-72964-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics