
Performance Analysis of a Fluid Queue with
Random Service Rate in Discrete-Time

Onno J. Boxma
Dept of Mathematics and Computer Science

and EURANDOM
Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven

The Netherlands.
Email: boxma@win.tue.nl

Vinod Sharma, D. K. Prasad
Dept Elect. and Comm. Engg.

Indian Institute of Science
Bangalore, 560012, India

Email: {vinod, dkp}@ece.iisc.ernet.in

Abstract— We consider a fluid queue in discrete time with
random service rate. Such a queue has been used in several
recent studies on wireless networks where the packets can be
arbitrarily fragmented. We provide conditions on finiteness of
moments of stationary delay, its Laplace-Stieltjes transform,
various approximations under heavy traffic and asymptotics of
its tail distribution. Results are extended to the case where the
wireless link can transmit in only a few slots during a frame.
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I. I NTRODUCTION

We consider a discrete-time queue served by a wireless
link. The input to the queue is a stochastic fluid. The link
rate of the wireless link changes randomly with time. We will
assume that the link rate stays constant during a slot. Such
a queue has been used to model wireless systems in several
previous studies ([10], [21], [22], [24]). Although in practical
wireless systems the input arrives at a wireless link as packets,
due to varying link rate, the packets need to be fragmented
(for efficient utilization of the link) or several packets may
be transmitted within a slot, as the case may be. Thus, the
packets loose their identity (from the point of view of service
at the queue) and it may be convenient to consider all the
contents in a queue as a fluid. As if usually done, we will
ignore the overheads due to packet fragmentation.

Discrete-time queues, where the identity of packets is
retained (i.e., the packets are not fragmented) have been
studied extensively ([7], [9], [29]). The discrete-time queue
that we study has two differences from the discrete queues
studied in the above literature. The packets in our queues can
be fragmented and thus packet boundaries have no relevance,
and the number of bits that can be served during a slot is
variable (due to wireless link). The discrete-time fluid queue
we study has many similarities to the queues usually studied
in literature, like the GI/GI/1 queue in continuous time ([2],
[8]) and fluid queues in continuous time ([1], [6], [16]),
but there are also significant differences. Fortunately, the
similarities between our model and continuous and discrete
queues studied previously are so strong that we can borrow

significantly from previous studies. Interestingly the similar-
ities are stronger with a continuous time queue than with a
discrete queue.

Although, as pointed out above, the queue we study has
been considered in wireless literature, it has not been studied
extensively. We provide conditions for stability, finiteness
of moments of queue length and stationary delay, various
approximations under heavy traffic and the exact Laplace-
Stieltjes transform (LST) of the delay for our queue. We also
provide tail asymptotics when the fluid arriving in a slot has
a distribution which is subexponential or has light tails.

We also consider a generalization of the queue which is
useful for practical wireless systems. Often, a wireless link
is not available at all slots, i.e., the time axis is divided into
frames made of several slots and only in some of the slots
the link can transmit data ([25]). For example, this happens in
uplink and downlink of cellular systems using Time Division
Multiple Access (TDMA) and in multihop wireless networks
([15], [20]) due to interference in neighbouring links. The
performance of such a link will certainly be different from
the queue considered so far. Such a system in wireline context
(e.g., when the service rate is fixed) has been studied in [7],
[26], [27] (see also the references there-in). We will extend
most of our results to this queue.

We are currently working on feed-forward networks of the
queues studied in this paper.

The paper is organized as follows. Section II presents the
model and the preliminaries. Section III studies stationary
delay. It provides the finiteness of moments of stationary
delay, its LST, various approximations under heavy traffic and
asymptotics of its tail probabilities. Section IV considers the
discrete queue embedded in a frame and extends most of the
results provided in Section III. Section V provides simulation
results to show the closeness of approximations.

II. T HE MODEL AND PRELIMINARIES

We consider a discrete-time queue with infinite buffer. At
time k, the queue length isqk, the new arrivals areXk and
the link (service) rate isrk during the time slot(k, k + 1).
We will denote byX andr r.v.s (random variables) with the



distribution ofX1 andr1 respectively. Then

qk+1 = (qk + Xk − rk)+ (1)

where(x)+ denotesmax(0, x). We will assume{Xk, k ≥ 0}
and{rk, k ≥ 0} are iid (independent, identically distributed)
and independent of each other. However for the stability
results in the paper we will only assume that{Xk} and{rk}
are stationary, ergodic sequences.

Sometimes one can assumeXk and rk to be nonnegative
integers (bits). But the granularity ofXk and rk can often
be fine enough such that these can be taken nonnegative real
valued. In the following we will do that.

Equation (1) is the well studied Lindley equation ([2], [8])
and {qk} in (1) corresponds to the waiting time process in
a G/G/1 queue. IfE[X] < E[r] < ∞ (this assumption will
be made in the rest of the paper) and{Xk, rk} is strictly
stationary and ergodic, there is a unique stationary distribution
of qk. Let q be a r.v. with this stationary distribution. If the
queue starts atk = 0 with any initial distribution,qk converges
to q in total variation.

From now on we will make the above mentioned
independence assumptions on{Xk} and {rk}. Then ([14],
[28], [30]), E[qα−1] < ∞ if and only if E[Xα] < ∞ for
α ≥ 1 and if X has finite moment generating function (mgf)
in a neighbourhood of 0 then so doesq. Various results on
asymptotics of tails of distributions are also available which
we will discuss in Section III-D.

The epochs whenqk = 0, are the regeneration epochs for
the process{qk, k ≥ 0}. Let τ be a regeneration length (it
corresponds to the number of customers served in a busy
period in a GI/GI/1 queue). Then ([12], [28], [30])E[τα] < ∞
for α ≥ 1, if and only if E[Xα] < ∞. Also, τ has a finite mgf
in a neighbourhood of 0 if and only ifX has. This provides
rates for the convergence of the distribution ofqk to that ofq.
Combined with results onE[qα] < ∞, one can obtain various
functional limit theorems ([28]).

For a queueing system the stationary delay distribution is a
key performance measure. We use the results provided above
to study the delay distribution in the next section.

III. D ELAY DISTRIBUTION

In this section we study the delay distribution for the system
described in Section II. We will study delay for the FCFS
(First Come First Served) discipline.

For the fluidXk arriving at timek, the first time its contents
are served (i.e., the delay of the first bit) is

Dk = inf{n : rk + rk+1 + ... + rk+n−1 > qk}. (2)

The last bit ofXk will wait for

D̄k = inf{n : rk + rk+1 + ... + rk+n−1 ≥ qk + Xk}. (3)

Since the bits served in a slot may belong to packets corre-
sponding to different flows in a wireless system, to ensure
QoS (Quality of Service) it is important to study both{Dk}

and {D̄k} and not just the delay of some average (typical)
bit in {Xk}. Observe thatτ is also a regeneration length for
{Dk} and{D̄k}. Thus, ifE[Xk] < E[rk] thenE[τ ] < ∞ and
τ will also be aperiodic. Hence{Dk} and{D̄k} have unique
stationary distributions. We denote byD andD̄ r.v.s with the
stationary distributions of{Dk} and {D̄k} respectively. We
can defineD and D̄ from (2) and (3) by replacingqk and
qk +Xk by q andq +X (because of iid{Xk}, the stationary
distribution of queue length seen by arriving bits is the same
as that ofq), whereq, X and{rk} can be taken independent
of each other. For convenience we write

D = inf{n : r1 + r2 + ... + rn > q} (4)

and
D(t) = inf{n : r1 + r2 + ... + rn > t} (5)

for any t ≥ 0. To avoid trivialities we assumeP [r > 0] > 0
andP [X > 0] > 0.

From (4), if E[q] < ∞ (then from Proposition 1 in Section
III-A below, E[D] < ∞ andE[D̄] < ∞),

E[D]E[r] > E[q] and E[D̄]E[r] ≥ E[q] + E[X]. (6)

We remark thatE[D] and E[D̄] do not satisfy Little’s law.
Thus the bounds provided in (6) are useful ifE[q] is known.
One can also obtain bounds on higher moments. For example,

E[D2] ≥ E[q2]
B2E[r2]

(7)

whereB2 is a known constant. Thus if we know moments
of q or have bounds/approximations for them, we will obtain
bounds on moments ofD andD̄. We will study the accuracy
of the bounds in (6) in Section III-C.

If we assumerk to be exponentially distributed, thenE[q]
equals the mean delay in the M/GI/1 queue and hence is
E[X2]/(2E[r](1 − ρ)), whereρ = E[X]/E[r]. For this case
we will provide an exact expression forE[D] in Section III-
B. Exponentially distributedr is of particular importance in
wireless channels because a Rayleigh distributed channel at
low SNR could lead to an exponentialr. Thus we will pay
special attention to this case throughout the paper.

For the GI/GI/1 queue several approximations for the mean
waiting time are available. For example from [17] we get

E[q] ≈ ρgE[X](C2
X + C2

r )
2(1− ρ)

(8)

where

ρ = E[X]/E[r], C2
X =

var(X)
(E[X])2

,

g = exp
[
− 2

1− ρ

3ρ

(1− C2
r )2

C2
r + C2

X

]
, if C2

r < 1

= exp
[
− (1− ρ)

C2
r − 1

C2
r + 4C2

X

]
, if C2

r ≥ 1

andC2
r is defined asC2

X . This approximation can be used with
(6) to obtain approximations/bounds forE[D]. For exponential
r this approximation reduces to the exact formula provided



above. Under heavy traffic it is close to the exponential
approximation provided at the end of Section III-C. If we
addE[X] on the right side of (8), we get approximations for
E[D̄]. In Section V we will provide some simulation results
to check the accuracy of these approximations.

The LST ofq is also available ifXk is of phase type. We
will obtain from this the LST ofD and D̄ in Section III-B.

In the rest of the section we study theD and D̄ in more
detail. Section III-A provides conditions for finiteness of
moments and mgf. Section III-B provides the LST. Section
III-C shows that the bounds in (6) can be tight in heavy traffic
and in fact the heavy traffic analysis provides a correction term
for these bounds. Section III-D studies the tail asymptotics for
the distributions ofD and D̄.

A. Finiteness of Moments

In this section we provide conditions for finiteness of
moments ofD and D̄.

Proposition 1. If E[τα+1] < ∞ for some α ≥ 1 then
E[Dα] < ∞ and E[D̄α] < ∞. Also, if E[exp(γτα)] < ∞
for someγ > 0 and α > 0 then E[exp (γ′Dα)] < ∞ and
E[exp (γ′D̄α)] < ∞ for γ′ < γ.

Proof. SinceD̄ ≥ D, we show the results for̄D. Observe
that regenerations occur when all the backlog in the queue is
cleared. Thus, ifk = 0 is a regeneration epoch andτ is the
next regeneration epoch, then̄Dk ≤ τ for 0 ≤ k ≤ τ . Hence

E[D̄α] =
1

E[τ ]
E

[ τ−1∑
k=0

(D̄k)α
]
≤ 1

E[τ ]
E[τα+1]

and henceE[D̄α] < ∞ if E[τα+1] < ∞.
Similarly,

E[exp (γ′D̄α)] =
1

E[τ ]
E

[ τ−1∑
k=0

exp (γ′D̄α
k )

]
≤ 1

E[τ ]
E[τ exp (γ′τα)]

≤ E[τp]
E[τ ]

E[exp (qγ′τα)]

for any p > 1, 1/p + 1/q = 1. ThusE[exp (γ′D̄α)] < ∞ if
E[exp (γτα)] < ∞ for someγ > γ′. �
Thus we obtain that ifE[Xα+1] < ∞ for someα > 0 then
E[Dα] < ∞ and E[D̄α] < ∞. Also, D and D̄ have finite
mgf in a neighborhood of0 if X has. The next proposition
provides a partial converse.

Proposition 2. (i) If E[Dα] < ∞ for someα ≥ 1 then
E[qα] < ∞.
(ii) If E[exp (γD)] < ∞ for some γ > 0 then
E[exp (γ′q)] < ∞ for someγ′ > 0.

Proof. (i) From [12], Chapter 3, Theorem 8.1,
E[Dα(t)]/tα → 1/(E[r])α for α ≥ 1. Thus for
any ε > 0 there is a T > 0 such that for t > T ,

E[D(t)α] > tα[1/(E[r])α − ε]. This implies

E[Dα] =
∫ T

0

E[D(t)α] dPq(t) +
∫ ∞

T

E[D(t)α] dPq(t)

≥
[ 1
(E[r])α

− ε
] ∫ ∞

T

tα dPq(t)

wherePq is the distribution function ofq. Thus

E[qα] =
∫ T

0

tα dPq(t) +
∫ ∞

T

tα dPq(t)

≤ Tα +
∫ ∞

T

tα dPq(t) < ∞.

(ii) Let us assumeE[exp (γD)] < ∞ for someγ > 0. Let
N(1) = max{n : r1+...+rn ≤ 1} and let{Nk(1), k ≥ 1} be
iid with the distribution ofN(1). ThenN1(1)+...+Nn(1) ≤st

D(n). There exists aγ1 > 0 such thatE[exp(γ1N(1))] < ∞
([12], Chapter 2). Letγ2 = min(γ, γ1). Choose aγ′ > 0 such
that E[exp (γ2N(1))] > exp (γ′). Then,

E[exp (γ2D(t))]
exp (γ′t)

≥ E[exp (γ2N(1))][t]

exp (γ′[t])
1

exp (γ′(t− [t]))

where [t] is the integer part oft. The right side tends to∞
ast →∞. Fix a positiveM < ∞. There is aT such that for
t > T ,

E[exp (γ2D(t))] ≥ M exp (γ′t).

Hence

E[exp(γ′q)] =
∫ T

0

exp (γ′t) dPq(t) +
∫ ∞

T

exp (γ′t) dPq(t)

≤ exp (γ′T ) +
1
M

∫ ∞

T

E[exp (γ2D(t))] dPq(t)

≤ exp (γ′T ) +
1
M

E[exp (γ2D)] < ∞.

�

From Propositions 1 and 2, using the previously known
results forq mentioned in Section II, we obtain thatE[Dα] <
∞ (E[D̄α] < ∞) if and only if E[Xα+1] < ∞ for some
α ≥ 1. Also, D(D̄) has an mgf in a neighbourhood of 0 if
and only if q has. Some of these results could be obtained
from (28) below under the additional assumptionE[r2] < ∞.

B. LST of the Delay Distribution

Let us first consider the case ofexp(λ) distributedrk. Then,
according to (4),D − 1 = number of Poisson(λ) arrivals in
[0, q]. Hence

E[zD−1] = E[e−λ(1−z)q]. (9)

Using the well-known Pollaczek-Khintchine formula for the
LST of the waiting time distribution in theM/G/1 queue, it
then follows, withβ(·) denoting the LST of the distribution
of X:

E[zD] =
(1− λE[X])(1− z)z

β(λ(1− z))− z
.



Next we consider the case whenXk has a rational LSTβ(s) =
β1(s)/β2(s) whereβ2(s) is a polynomial of degreem and
α(s) is the LST of the distribution ofr. From [8], Section II
5.10,

E[e−sq] =
β2(s)
β2(0)

m∏
i=1

ξi

ξi − s
, <(s) ≥ 0,

whereξi, i = 1, ...,m are the zeros of

1− β(s)α(−s)

in the left half plane. If theξi are different then we rewrite

E[e−sq] = C0 +
m∑

i=1

Ciξi

ξi − s

and then

P [q > t] =
m∑

i=1

Ci eξit, t > 0,

P [q = 0] = C0 = 1−
m∑

i=1

Ci .

Next we consider the distributions ofD and D̄. We have

P [D > n] = P [q ≥ r1 + ... + rn] (10)

=
m∑

i=1

Ci

∫ ∞

0

eξit dP [r1 + ... + rn ≤ t]

=
m∑

i=1

Ci αn(−ξi).

Hence the distribution ofD is a mixture ofm geometric dis-
tributions with parametersα(−ξ1), ..., α(−ξm). In particular,

E[D] =
∞∑

n=0

P [D > n] =
m∑

i=1

Ci
1

1− α(−ξi)
.

If r is exponential then we can get a more explicit expression
for E[D]. Indeed, from (10)

E[D] = P [D > 0] +
∞∑

n=1

P [D > n]

= 1 +
∞∑

n=1

P [q ≥ r1 + ... + rn] (11)

= 1 +
∫ ∞

0

∞∑
n=1

P [r1 + ... + rn ≤ t] dPq(t)

= 1 +
E[q]
E[r]

(12)

where the last equality follows from the fact that
∑∞

n=1 P [r1+
...+ rn ≤ t] = t/E[r]. Of course, (12) could also be obtained
by taking the derivative ofE[ZD] at z = 1 in (9).

One can similarly obtain the LST of̄D and E[D̄] by
replacingq with q + X, q andX being independent of each
other.

If X andr can be taken discrete andr ≤ r̄ < ∞ then (1)

can be rewritten as

qk+1 = (qk + Yk − r̄)+ (13)

where
Yk = Xk + r̄ − rk.

Now (13) also occurs for the bulk service queue (with bulk
sizer̄) in discrete-time. Then the moment generating function
of the stationary distribution ofqk is given by ([18])

Q(Z) =

∑r̄−1
j=0 yj (Z r̄ − Zj)

Z r̄ − Y (Z)
(14)

whereZ0, ..., Zr̄−1 are the roots of the denominator in (14),
Y (Z) is the moment generating function ofYk and yj are
obtained from

∑r̄−1
j=0 yj (Z r̄

k−Zj
k) = 0, k=0, ...,r̄−1. Various

computational techniques to obtainZ0, ..., Zr̄−1 are available
in [18] which then provide the mgf ofq. From this, as above,
we can obtain the distributions and moments ofD and D̄.

C. Heavy Traffic Approximations

In this section we show that in heavy traffic the bound in (6)
will indeed be tight. We also obtain upper bounds on higher
moments ofD which are valid in heavy traffic. In fact we
first obtain bounds which are valid under congestion for any
traffic intensity. Hence our bounds are valid whenever there
is congestion in the queue thus covering all the cases where
the delay is of real concern.

Proposition 3. For p ≥ 1,

lim
t→∞

E[Dp|q > t]
E[qp|q > t]

≤ 1
(E[r])p

.

Proof. From Gut [12], Chapter 3, Theorem 8.1,

E[D(t)p]
tp

→ 1
(E[r])p

.

Thus for anyδ > 0 there exists aT such that fort > T

E[D(t)p] ≤
( 1

E[r]p
+ δ

)
tp.

Sinceq is independent of{rk}, for t > T ,

E[D(q)p | q > t] =
1

P [q > t]

∫ ∞

t

E[D(s)p | q = s] dPq(s)

≤ 1
P [q > t]

∫ ∞

t

sp
( 1

E[r]p
+ δ

)
dPq(s)

=
( 1

E[r]p
+ δ

)
E(qp | q > t). (15)

Taking t →∞ and thenδ ↓ 0 we obtain the result. �
From (4) we obtainE[D | q > t]E[r] ≥ E[q | q > t]. Then

using Proposition 3

lim
t→∞

E[D | q > t]
E[q | q > t]

= 1/E[r]. (16)

In the following we show that under heavy traffic the condi-
tioning on{q > t} in (16) can be removed.



Consider a sequence of queues where the distribution of
sequence{rk} is fixed but thenth queue is fed an iid input
sequence{X(n)

k , k ≥ 0} such thatX(n)
k ≤st X

(n+1)
k and

ρ(n) = E[X(n)
1 ]/E[r1] ↗ 1 asn →∞. In the following q(n)

andD(n) denote the stationary queue length and delay in the
nth queue and thenn →∞ provides us a heavy traffic result.

Proposition 4 Under the above assumptions, forp ≥ 1,

lim
n→∞

E[(D(n))p]
E[(q(n))p]

≤ 1
(E[r])p

. (17)

Proof. We will use (15) in our proof. Observe thatT in
(15) depends only onδ and the distribution ofrk but not on
that ofq(n). Thus, for a givenδ > 0, chooseT such that (15)
holds. Since

E[(D(n))p] = E[(D(n))p | q(n) > T ] P (q(n) > T )
+ E[(D(n))p | q(n) ≤ T ] P (q(n) ≤ T ),(18)

we consider the two terms on the right side of this equality.
As ρ ↗ 1, P (q(n) ≤ T ) → 0 for any fixedT . Also,

E[(D(n))p | q(n) ≤ T ] ≤ E[(D(n))p | q(n) = T ] < ∞

and this upper bound is independent ofn. Thus for any given
δ1 > 0, we can choose anN1 such that

E[(D(n))p | q(n) ≤ T ] P [q(n) ≤ T ] ≤ δ1 (19)

for any n ≥ N1. Then, from (15), (18) and (19) forn ≥ N1

E[(D(n))p] ≤( 1
E[r]p

+ δ
)

E[(q(n))p | q(n) > T ] P (q(n) > T ) + δ1. (20)

Next we show that for anyδ2 > 0 there is anN2 such that

| E[(q(n))p | q(n) > T ] P (q(n) > T )− E[(q(n))p] | < δ2

for all n > N2. But this easily follows from the fact that

E[(q(n))p] = E[(q(n))p | q(n) > T ] P (q(n) > T )
+ E[(q(n))p | q(n) ≤ T ] P (q(n) ≤ T )

and limn→∞ E[(q(n))p | q(n) ≤ T ] P (q(n) ≤ T ) = 0. Thus
we obtain

E[(D(n))p] ≤
( 1

(E[r])p
+ δ

)
(E[(q(n))p] + δ2) + δ1

for any positiveδ, δ1, δ2 for all n ≥ N , N chosen large
enough. Therefore,

lim
n→∞

E[(D(n))p]
E[(q(n))p]

≤ 1
(E[r])p

.

�
From (4) and Proposition 4 we obtain

lim
n→∞

E[D(n)]
E[q(n)]

=
1

E[r]

and hence(E[D(n)]E[r]− E[q(n)])/E[q(n)] → 0.

The above results show that under heavy traffic the relative
error in approximating

∑D
k=1 rk with q goes to zero in mean.

However, the error itself does not go to zero. Now we provide
some information on it. IfE[r2] < ∞, then from Gut [12],
Chapter 3, Section 10,

lim
t→∞

E[R(t)] =
E[r2]
2E[r]

(21)

if r is nonarithmetic. Ifr has an arithmetic distribution on a
lattice with spand then

lim
k→∞

E[R(kd)] =
E[r2]
2E[r]

+
d

2
.

In the following we provide the results for only the nonarith-
metic case. For the arithmetic, just addd/2. Using the above
techniques, one can easily show from (21)

lim
T→∞

E[R(q) | q > T ] =
E[r2]
2E[r]

. (22)

The next proposition removes the conditioning in heavy
traffic.

Proposition 5. If E[r2] < ∞,

lim
n→∞

E[R(n)] =
E[r2]
2E[r]

.

Proof. We have

E[R(n)] = E[R(n) | q(n) > T ] P (q(n) > T )
+ E[R(n) | q(n) ≤ T ] P (q(n) ≤ T ). (23)

Given δ > 0 from (22) there exists aT s.t.∣∣∣ E[R(n) | q(n) > t]− E[r2]
2E[r]

∣∣∣ < δ (24)

for all t > T . ThisT depends only on the distribution ofr and
δ but is independent ofn. We also haveP (q(n) > T ) ↗ 1
asn →∞ for any fixedT .

Next consider the second term on the right side in (23). For
any fixedT ,

E[Rn | q(n) ≤ T ] ≤ max
0≤t≤T

E[R(t)] (25)

and R(t) ≤ rD(t) . From [12], Chapter 3, Theorem 7.2,
{rD(t)/t, t ≥ 1} is uniformly integrable. In particular, the
right side of (25) is upper bounded byMT for someM < ∞.
Thus ∣∣∣ E[R(n)]− E[r2]

2E[r]

∣∣∣ < 2δ

for all n large enough. �
Thus(E[q] + E[r2]/2E[r])/E[r]) provides a better approx-

imation of E[D] under heavy traffic. For exponentialr, this
reduces to the exact formula (12).

One can similarly obtain results for higher moments of
R(n). We also know thatR(t) →W Y whereP [Y ≤ x] =



∫ x

0
(1 − Fr(s))ds/E[r] and→W denotes weak convergence.

This then will provide us withR(n) →W Y .
We can also exploit the standard heavy traffic approxima-

tions on the GI/GI/1 queue. For example, ([2], Chapter X) we
know that ifE[r]−E[X(n)] → ν andV ar(X(n))+V ar(r) →
σ2 then

2νq(n)/σ2 →W exp(1). (26)

Since t → D(t) is a continuous function, this implies
that D(2νq(n)/σ2) →W D(Y ) where Y is exponentially
distributed with mean 1. In particular, then from (10) in
heavy traffic (but withρ < 1),

P [D > m] =
∫ ∞

0

P [D(t) > m]dPq(t)

=
2ν

σ2

∫ ∞

0

P [D(t) > m] exp[−2νt/σ2]dt

=
2ν

σ2

∫ ∞

0

P [r1 + ... + rm ≤ t] exp[−2νt/σ2]dt

= αm(2ν/σ2)

whereα(s) is the LST ofr. Thus as a heavy traffic approxima-
tion, D is geometrically distributed with parameterα(2ν/σ2).
This provides

E[D] = 1/(1− α(2ν/σ2)). (27)

Comparing these results with those in Section III-B, one
observes that these results are simpler and hold under general
assumptions on the distribution ofX but of course provide
good approximations only under heavy traffic (interestingly
we will see in Section V via simulations that although the
approximation forE[q] is not good under light traffic, for
E[D] it is).

Finally considerE[D2]. From (7) and (17)

1
(E[r])2

≥ E[D2]
E[q2]

≥ 1
B2E[r2]

under heavy traffic whereas the above exponential approxi-
mation providesE[q2] = σ4/2ν2.

D. Asymptotics for Tail Probabilities

In this section we consider the asymptotics on the tail
of the distributions ofD and D̄. In Section III-A we have
provided conditions for finiteness ofE[Dα], E[D̄α] and of
their mgf in a neighborhood of0. These provide asymptotics
for the tail distributions ofD andD̄ via the relationship: for
α ≥ 1, E[Dα] = α

∫∞
0

xα−1P [D ≥ x]dx < ∞ if and only
if

∫∞
0

xαP [X ≥ x]dx < ∞. ThusD is of regular variation
with index −α − 1 if and only if X is of regular variation
with index−α. Also, D has an mgf in a neighbourhood of0
if X has. ThusD has a light tailed (exponentially decaying)
distribution if X has.

Some more information on the tail distribution can be
obtained for subexponential distributions. From the results on
the waiting time distribution for a GI/GI/1 queue we know

([11], [30]):
If Xe is subexponential, then

P [q > x] ∼ ρ

1− ρ
P [Xe > x]

whereXe is a r.v. with the equilibrium distribution ofX:

P [Xe > x] =
1

E[X]

∫ ∞

x

P (X > u) du,

andf(x) ∼ g(x) denoteslimx→∞ f(x)/g(x) = 1.

The asymptotics ofD are more complicated. From (4) we
observe thatD = N(q) + 1 where N(t) is the undelayed
renewal process formed from{rk}. Then using results from
[3] we obtain:

1) From Theorems 3.6, 3.11 and Proposition 3.1 of [3]:
If E[r2

1] < ∞ and q has tail heavier thane−
√

x, i.e.,
limx→∞ P [q > x] e+

√
x = ∞ then

P [D > x] ∼ P
[
q >

x

E[r]

]
as x →∞. (28)

We have observed above that, ifXe is subexponential
then q has asymptotics ofXe. Thus if Xe has tail
heavier thane−

√
x, (28) holds. Also thenXe and hence

q has heavier tails than that ofX. Therefore, ifX is
also subexponential thenq andX being independent in
defining D̄, q + X is subexponential and has the same
tail behaviour as that ofq. ThusD andD̄ also have the
same tail behaviour.

2) For rk exponentially distributed, there are results in [3]
corresponding toq with heavy tails but lighter than
e−
√

x. These directly provide corresponding results for
D and D̄.

IV. D ISCRETEQUEUE EMBEDDED IN A FRAME

In a practical wireless system it will often happen that a
wireless link gets the opportunity to transmit data from its
queue only in some of the slots and often these slots appear
periodically. For example, this can happen if several queues
share a common wireless link in TDMA fashion (e.g., GSM
cellular system, the subscriber stations in a WiMAX uplink
([23]) and a multihop wireless network ([15])). These slots
can also appear randomly: if the wireless channel is bad in
a slot it may be decided not to transmit in that slot in order
to save transmit power. In this section we extend the results
obtained so far to this setup when a queue is served at periodic
intervals.

We assume a frame is made up ofT slots. The queue under
consideration gets to serve in the firstL ≤ T slots of each
frame. In the lastT −L slots the fluid can arrive at the queue
but it will need to wait till the next frame for transmission.
Let qk be the queue length at the beginning of thekth frame.
Let Xk,i be the new arrivals to the queue in the beginning of
the ith slot of thekth frame and letrk,i be the link rate in



that slot,i = 1, ...,T . Then

qk = qk,1,

qk,i+1 = (qk,i + Xk,i − rk,i)+, i = 1, ..., L, (29)

qk+1 = (qk,L+1 + Xk,L+1 + ... + Xk,T ).

We denoteYk = Xk,L+1 + ... + Xk,T . We assumeXk,i and
Yk,i to be iid for eachk andi (for the stability result we need
to assume them to be only stationary, ergodic, sequences). We
will also denote

Xk = (Xk,1, Xk,2, ..., Xk,T ),
rk = (rk,1, rk,2, ..., rk,T ).

Then

qk+1 = f(qk, (Xk, rk))

where f can be found from (29). One can easily see from
(29) that f is nondecreasing and continuous inq. Thus,
from Loynes [19], if{(Xk, rk)} forms a stationary, ergodic
sequence thenqk has a stationary distribution (which may
be infinite with positive probability). Letq be a r.v. with
this stationary distribution. Since sequence{qk} can be lower
bounded by sequence

q̄k+1 =
(
q̄k +

T∑
i=1

Xk,i −
L∑

i=1

rk,i

)+

, (30)

q̄0 = q0

and q̄k converges a.s. to∞ if TE[Xk,1] > LE[rk,1], qk also
converges to∞ a.s. under these conditions.

Next we show that whenTE[Xk,1] < LE[rk,1], q has a
proper distribution, i.e.,P (q < ∞) = 1. Suppose it is not
true. Using Loynes’ construction ([19]), we show it leads to
a contradiction. Let the0th frame start atk = 0. Let q−k

0,i be
the queue length at the beginning of theith slot in the0th

frame when the system started empty at the beginning of−kth

frame. Thenq−k
0,1 monotonically increases a.s. andq−k

0,1 (ω) ↗
∞ on a setA with P (A) > 0 under our assumptions. Also,
q−k
0,i (ω) ↗ ∞ for ω ∈ A for i = 2, ..., L. Thus there is an

M s.t. from k > M , q−k
0,i (ω) will not be zero fori = 1, ...,

L. Thus fromk > M , q−k
0,1 (ω) will follow (30) without the

superscript +. But by the Strong Law of Large numbersq−k
0,1

will converge to 0 a.s. and henceP (A) = 0. Thus q has a
proper stationary distribution.

Using the above construction we can also show that when
TE[Xk,1] < LE[rk,1] the stationary distribution is unique and
starting from any initial distribution,qk converges in total
variation to it. From now on in this section we will assume
TE[Xk,1] < LE[rk,1].

From now onwards we will make the independence as-
sumptions on{(Xk, rk)}. We can rewrite (29) slotwise as in
(1) with rk,i = 0 for i = L + 1, ..., T . Now however the
rate sequence is no longer iid but periodic and the results
obtained in the previous section cannot be directly used.
However, this can be taken as a regenerative sequence with

regeneration epochs the frame boundaries. Then we are within
the framework of [28]. Thus we obtainE[τα] < ∞ (τ has a
finite mgf in a neighborhood of0), if E[Xα

1 ] < ∞ (X has a
finite mgf in a neighborhood of0) for α ≥ 1 whereτ is a
regeneration length for this system, the regeneration epochs
being the frame boundaries whereqk = 0. We also obtain
E[qα] < ∞ wheneverE[Xα+1

1 ] < ∞ for α ≥ 1 whereq is
the stationary queue length at frame boundaries. Finiteness of
the mgf of q in a neighborhood of0 is also implied by that
of X1.

Various functional limit theorems for the process{qk} and
rates of convergence to the stationary distribution are also
obtained ([28]). Although [28] provides these results for the
process observed at slot boundaries, these results at frame
boundaries can be obtained easily in the same way. The
stationary distribution of the queue length process is different
at theith slot than at thejth slot,j 6= i within a frame but one
can easily relate these stationary distributions. Also finiteness
of moments of their stationary distributions holds under the
same conditions. For example, for1 < i ≤ L (denoting byqi

a r.v. with the stationary distribution ofqk,i)

qi = ((q + X1 − r1)+ + ... + Xi−1 − ri−1)+ ≤ q +
i−1∑
j=1

Xj

and henceE[qα
i ] < ∞ if E[qα] < ∞ and E[Xα] < ∞.

Similarly we obtain the finiteness of the exponential moments.

Let Di andD̄i be r.v.s obtained from (2) and (3) by replac-
ing qk by qi. Thus the Propositions 1-5 and the asymptotics
on the tail distributions hold as for the system in Section II.
Let D̂i and ˆ̄Di be the delay of the first bit ofXk,i under
stationarity. LetD, D̄, D̂, ˆ̄D denote these quantities wheni =
1. Then,(D

L
− 1

)
T ≤ D̂ =

[D

L

]
T +

(
D −

[D

L

]
L

)
≤ D

T

L
(31)

where [x] denotes the largest integer< x. Similarly one can
relateD̂i andDi. Thus we obtain the finiteness of moments of
D̂i and ˆ̄Di from that ofDi andD̄i, for which we obtain these
results as in Proposition 1 from that ofqi. Also the distribution
of D̂ is of regular variation of index−α if and only if that
of D is. Similarly D̂ has a mgf in a neighbourhood of 0 if
and only if D has. If we know the distribution ofD then we
can use the equality in (31) to obtain the distribution ofD̂.
If we have only moments and/or bounds or approximations
on moments ofD then the inequalities in (31) can be used to
obtain the corresponding bounds/approximations forD̂.

Under heavy traffic, one expects that the queue will not be
empty most of the time. Then, one can approximate (29) by
removing ()+ on the RHS of (29). Now observe this queue
only at frame boundaries. Consider the frame as a slot and
then use the results of Section III withXk = Xk,1+...+Xk,T

andrk = rk,1 + ... + rk.L.

Finally we obtain the LST ofq andD whenr is exponen-
tially distributed. As commented before, this could correspond
to Rayleigh fading channels and hence is of practical concern.



The corresponding results forqi, Di andD̄i can then be easily
obtained by relating them toq, D and D̄.

Let β(s) be the LST ofX. Then

E[e−sqk,2 | qk,1 = y]

= E[e−s(qk,1+Xk,1−rk,1)
+
| qk,1 = y]

= E[e−s(y+X−r)]− E[e−s(y+X−r) 1{y+X−r≤0}]
+ P [y + X − r ≤ 0]

= e−sy β(s)
λ

λ− s
− λ

λ− s
P [y + X − r ≤ 0]

+ P [y + X − r ≤ 0]

= e−sy β(s)
λ

λ− s
− s

λ− s
β(λ) e−λy.

Thus

E[e−sqk,2 ] = β(s)
λ

λ− s
E[e−sqk,1 ]− β(λ)

s

λ− s
E[e−λqk,1 ].

We can iterate this equation to obtain

E[e−sqk,L+1 ] = hL(s) E[e−sqk,1 ]− g(s)
L−1∑
j=0

hj(s) E[e−λqk,L−j ]

whereh(s) = β(s)λ/(λ − s), g(s) = β(λ)s/(λ − s) . Fur-
thermore, we obtainE[e−sqk,T+1 ] = βT−L(s)E[e−sqk,L+1 ]. In

steady stateE[e−sqk,T+1 ] = E[e−sqk,1 ]
4
= E[e−sq]. Thus we

obtain

E[e−sq] = −
[
1− βT (s)

( λ

λ− s

)L]−1

{
βT−L(s)β(λ)

s

λ− s

L−1∑
j=0

(
β(s)

λ

λ− s

)j

yL−j(λ)
}

.(32)

The right hand side containsL unknownsyL−j , j = 0, ...,
L − 1. From Rouch́e’s theorem ([8], p 652), we know that
under stability,

1− βT (s)
( λ

λ− s

)L

has exactlyL zeross0, ..., sL−1 in the right half plane. The
term in curly brackets in the right side of (32) should also
be zero fors = s0, ..., sL−1. This yields L equations that
can be used to obtainy1(λ), ..., yL(λ). There are several
algorithms available to compute the zeross0, ..., sL−1 (see
[18]). It follows, after a lengthy calculation, that

E[q] = (T − L)E[X] +
1

L− TλE[X]

[
β(λ)

L−1∑
j=0

yL−j(λ)(jE[X] +
L− j − 1

λ
)

+ λT (T − 1)
E[X]2

2
+ λT

E[X2]
2

− L(L− 1)
2λ

]
.(33)

It should be noted that this formula reduces to the familiar
expression for the mean waiting time in theM/G/1 queue
whenT = L = 1.

The mgf ofD follows from the LST ofq in (32), using (9):

E[zD] =

βT−L(λ(1− z))β(λ)(1− z)
∑L−1

j=0 β(λ(1− z))jzL−jyL−j(λ)
βT (λ(1− z))− zL

.

If we are able to invert this mgf to obtain the distribution of
D (there are various techniques to perform such a numerical
inversion) then the mgf of̂D follows from (31):

E[zD̂] =
∞∑

j=0

L−1∑
k=0

zjT+kP (D = jL + k).

In fact one can show that

E[zLD̂] =
1
L

L−1∑
k=0

E[zTDak]
1− (a−kzL−T )L

1− a−kzL−T
,

wherea = exp( 2πi
L ), i =

√
−1. Thus one can avoid inverting

the mgf ofD. One can then obtain

E[D̂] =
1
L

d

dz
E[zLD̂]

∣∣
z=1

. (34)

V. SIMULATION RESULTS

In this section we provide some simulation results to
verify the accuracy of approximations provided in Sections
III and IV.

We first consider the single queue studied in Sections II
and III. For X we have taken a few discrete distributions:
Poisson (examples 9, 10) and finite valued while forr we
have taken Rayleigh (examples 9, 10), exponential (examples
7, 8) and a few discrete finite valued distributions. Theρ
has been taken as 0.3, 0.5, 0.7, 0.9, 0.95 and 0.98. Each
simulation was done for 20 million slots, long enough to
have negligible estimation error. The simulated values of
E[q], E[D], E[q] from formula (8) and its heavy traffic
approximation = (var(X) + var(r))/(2(E[r] − E[X]))
and E[D] via the lower boundE[q]/E[r] and with the
heavy traffic correctionE[q]/E[r] + E[r2]/(2(E[r])2) (with
d/(2E[r]) added if r has an arithmetic distribution) and
as 1/(1 − α(2ν/σ2)) are provided in Tables I and II. As
commented before, forr exponential, (8) andE[D] with
heavy traffic correction are in fact exact formulae for all
traffic intensities. This is also seen from Table II. For other
distributions, the theoretical formulae forE[q] and E[D] are
very close to the simulated values forρ ≥ 0.90. For lower
values of ρ the approximations are not good as expected
(but the approximation (27) forE[D] is still working quite
well). We also observe thatE[q] from (8) is quite close to
simulations even for smallρ and is always more accurate
than the heavy traffic approximation.

Next we provide an example for the queue in Section V.
We consider exponential service and arrival rates. We fix the
service rate atE[r] = 7.5 and take different values forE[X].
Also, we takeT = 10 andL = 4. We obtainedE[q] andE[D̂]



TABLE I

SIMULATION RESULTS FOR SINGLE QUEUE OFSECTIONS II AND III:

MEAN QUEUE LENGTH

Eq
ex From
am ρ EX Er var(X) var(r) simulated From heavy
pl value (8) traffic
es appro
es (26)
1 0.30 0.36 12.00 17.09 21.00 0.61 0.52 2.27
2 0.50 5.00 10.00 20.10 33.75 2.65 2.21 5.38
3 0.70 7.13 10.18 37.36 23.39 6.45 6.69 9.95
4 0.90 7.13 7.92 37.36 32.33 40.23 39.58 44.01
5 0.95 7.13 7.50 37.36 18.75 70.39 71.33 74.81
6 0.98 7.35 7.50 12.23 18.75 100.08 99.70 103.26
7 0.95 7.13 7.50 37.36 56.25 118.00 117.50 124.81
8 0.98 7.35 7.50 12.23 66.25 220.99 220.83 228.26
9 0.95 7.13 7.50 7.13 15.41 27.10 26.81 30.04
10 0.98 7.35 7.50 7.35 15.41 73.48 72.54 75.85

TABLE II

SIMULATION RESULTS FOR SINGLE QUEUE OFSECTIONS II AND III:

MEAN DELAY

ED
ex with
am ρ EX Er var(X) var(r) simulated Eq/Er heavy from
pl value traffic (27)
es correction
1 0.30 0.36 12.00 17.09 21.00 1.12 0.04 0.82 1.12
2 0.50 5.00 10.00 20.10 33.75 1.39 0.22 1.14 1.44
3 0.70 7.13 10.18 37.36 23.39 1.47 0.66 1.32 1.68
4 0.90 7.13 7.92 37.36 32.33 6.01 5.00 6.51 6.35
5 0.95 7.13 7.50 37.36 18.75 10.40 9.51 10.84 10.66
6 0.98 7.35 7.50 12.23 18.75 14.13 13.29 14.63 14.45
7 0.95 7.13 7.50 37.36 56.25 16.74 15.67 16.67 17.64
8 0.98 7.35 7.50 12.23 66.25 30.46 29.44 30.44 31.43
9 0.95 7.13 7.50 7.13 15.41 4.30 3.58 4.21 4.66
10 0.98 7.35 7.50 7.35 15.41 10.46 9.67 10.31 10.76

via simulations and compared with the theory. The theoretical
results are obtained via (33) and (34). We also obtainedE[q]
via heavy traffic approximation mentioned Section IV.

TABLE III

EXAMPLE FOR QUEUE EMBEDDED IN A FRAME

Simu- E D̂
lated E[q] E[q] Simu- via via (33) via HT

ρ E[X] E[r] E[q] from (33) via HT lated (34) D̂upper D̂upper
0.80 2.40 7.50 28.45 28.44 23.55 9.00 9.60 10.35 10.35
0.90 2.70 7.50 55.06 55.34 49.65 17.48 18.63 18.45 19.05
0.95 2.85 7.50 107.40 108.15 102.17 34.74 36.27 36.05 36.56
0.98 2.94 7.50 262.17 265.83 259.53 86.21 88.85 88.61 89.01

The results of the simulations and theory are presented
in Table III. The simulated valuesE[D̂] are closer to the
upper bounds than to the lower bounds forE[D̂] when we
used (33) and hence we present only the upper bounds. We
further observe that the heavy traffic approximations are also
providing good approximations.
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