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Abstract—We consider a fluid queue in discrete time with significantly from previous studies. Interestingly the similar-
random service rate. Such a queue has been used in severalties are stronger with a continuous time queue than with a
recent studies on wireless networks where the packets can bediscrete queue.

arbitrarily fragmented. We provi_de conditions_on_ finiteness of Although, as pointed out above, the queue we study has
moments of stationary delay, its Laplace-Stieltjes transform, o - - ! ! g )
various approximations under heavy traffic and asymptotics of P€en considered in wireless literature, it has not been studied
its tail distribution. Results are extended to the case where the extensively. We provide conditions for stability, finiteness
wireless link can transmit in only a few slots during a frame. of moments of queue length and stationary delay, various

Keywords:Fluid queue, discrete-time queue, wireless linkapproximations under heavy traffic and the exact Laplace-
moments of delay, heavy-traffic approximations, tail asymgtieltjes transform (LST) of the delay for our queue. We also
totics. provide tail asymptotics when the fluid arriving in a slot has
a distribution which is subexponential or has light tails.

We also consider a generalization of the queue which is

We consider a discrete-time queue served by a wirelagseful for practical wireless systems. Often, a wireless link
link. The input to the queue is a stochastic fluid. The linls not available at all slots, i.e., the time axis is divided into
rate of the wireless link changes randomly with time. We wiframes made of several slots and only in some of the slots
assume that the link rate stays constant during a slot. Suhbk link can transmit data ([25]). For example, this happens in
a queue has been used to model wireless systems in sevepdihk and downlink of cellular systems using Time Division
previous studies ([10], [21], [22], [24]). Although in practicalMultiple Access (TDMA) and in multihop wireless networks
wireless systems the input arrives at a wireless link as packe[$5], [20]) due to interference in neighbouring links. The
due to varying link rate, the packets need to be fragmentpdrformance of such a link will certainly be different from
(for efficient utilization of the link) or several packets mayhe queue considered so far. Such a system in wireline context
be transmitted within a slot, as the case may be. Thus, tfeeg., when the service rate is fixed) has been studied in [7],
packets loose their identity (from the point of view of servicg26], [27] (see also the references there-in). We will extend
at the queue) and it may be convenient to consider all theost of our results to this queue.
contents in a queue as a fluid. As if usually done, we will We are currently working on feed-forward networks of the
ignore the overheads due to packet fragmentation. queues studied in this paper.

Discrete-time queues, where the identity of packets isThe paper is organized as follows. Section Il presents the
retained (i.e., the packets are not fragmented) have bemodel and the preliminaries. Section Ill studies stationary
studied extensively ([7], [9], [29]). The discrete-time queudelay. It provides the finiteness of moments of stationary
that we study has two differences from the discrete queugslay, its LST, various approximations under heavy traffic and
studied in the above literature. The packets in our queues @@ymptotics of its tail probabilities. Section IV considers the
be fragmented and thus packet boundaries have no relevaniissrete queue embedded in a frame and extends most of the
and the number of bits that can be served during a slotrissults provided in Section Ill. Section V provides simulation
variable (due to wireless link). The discrete-time fluid queugsults to show the closeness of approximations.
we study has many similarities to the queues usually studied
in literature, like the GI/GI/1 queue in continuous time ([2],
[8]) and fluid queues in continuous time ([1], [6], [16]), We consider a discrete-time queue with infinite buffer. At
but there are also significant differences. Fortunately, tkiene %, the queue length ig;, the new arrivals areX;, and
similarities between our model and continuous and discratee link (service) rate isy, during the time slotk, k + 1).
queues studied previously are so strong that we can borréve will denote byX andr r.v.s (random variables) with the

I. INTRODUCTION

Il. THE MODEL AND PRELIMINARIES



distribution of X; andr; respectively. Then and {D;} and not just the delay of some average (typical)
B n bit in {X}}. Observe that is also a regeneration length for
Grt1 = (g + Xi —7k) @) (D,} and{Dy}. Thus, IFE[X}] < E[rs] thenE[r] < oo and
where(z)* denotesmax(0, z). We will assume{ X,k > 0} 7 will also be aperiodic. HencéD;.} and {D;.} have unique
and {ry, k > 0} are iid (independent, identically distributed)stationary distributions. We denote &y and D r.v.s with the
and independent of each other. However for the stabiligfationary distributions of Dy} and { Dy} respectively. We
results in the paper we will only assume tH&,,} and{r,} can defineD and D from (2) and (3) by replacing; and
are stationary, ergodic sequences. qr + X% by ¢ andg+ X (because of iid X} }, the stationary
distribution of queue length seen by arriving bits is the same
Sometimes one can assum@ andr, to be nonnegative as that ofg), whereq, X and{r;} can be taken independent
integers (bits). But the granularity oX;, and r, can often Of each other. For convenience we write
be fine enough such that these can be taken nonnegative real . )
valued. In the following we will do that. D =inf{nsridre 4ot > af @
Equation (1) is the well studied Lindley equation ([2], [8])and
and {q;} in (1) corresponds to the waiting time process in Dt)=inf{n:r +ro+..+r, >t} (5)
a G/G/1 queue. IE[X] < E[r] < oo (this assumption will
be made in the rest of the paper) afdy,r.} is strictly
stationary and ergodic, there is a unique stationary distributi®h
of g;. Let ¢ be a r.v. with this stationary distribution. If the o
gueue starts &t = 0 with any initial distribution g;, converges llI-A below, E[D] < oo and E[D] < o),
to ¢ in total variation. _ _ E[D]E[r] > E[q] and E[D]E[r] > E[q] + E[X]. (6)
From now on we wil make the above mentioned _ ) )
independence assumptions ¢} and {r;}. Then ([14], We remark thafE[D] a_nd ]ET[D} do not satisfy L_|ttle’s law.
[28], [30]), E[¢° '] < o if and only if E[X?] < oo for Thus the bounds provided in (6) are usefuEff] is known.
o > 1 and if X has finite moment generating function (mgf)One can also obtain bounds on higher moments. For example,
in a neighbourhood of O then so dogsVarious results on ) E[¢?]
asymptotics of tails of distributions are also available which E[D*] = BoE[r] (7)
we will discuss in Section III-D.

for any ¢t > 0. To avoid trivialities we assum@[r > 0] > 0
dP[X > 0] > 0.
From (4), if E[g] < oo (then from Proposition 1 in Section

where B, is a known constant. Thus if we know moments

The epochs when;, = 0, are the regeneration epochs foPf ¢ or have bounds/approximations for them, we will obtain
the process{qx, k > 0}. Let 7 be a regeneration length (itbounds on moments d? and D. We will study the accuracy

corresponds to the number of customers served in a biffyihe bounds in (6) in Section IIl-C.
period in a GI/GI/1 queue). Then ([12], [28], [3®J ] < oo If we assumer; to be exponentially distributed, theiiq] _
for a > 1, if and only ifE[X?] < cc. Also, 7 has a finite mgf €quals the mean delay in the M/GI/1 queue anq hence is
in a neighbourhood of 0 if and only ik has. This provides E[X?)/(2E[r](1 — p)), wherep = E[X]/E[r]. For this case
rates for the convergence of the distributiongpfto that ofg. We Will provide an exact expression fé#[D] in Section Ill-
Combined with results ofi[¢®] < oo, one can obtain various B- Exponentially distributed- is of particular importance in
functional limit theorems ([28]). wireless channels because a Raylelgh d|str|buted_channel at
For a queueing system the stationary delay distribution i@ SNR could lead to an exponential Thus we will pay

key performance measure. We use the results provided ab8P&cial attention to this case throughout the paper.
to study the delay distribution in the next section. For the GI/GI/1 queue several approximations for the mean

waiting time are available. For example from [17] we get

I11. DELAY DISTRIBUTION 9 9
_ pgE[X](C% + CF)

In this section we study the delay distribution for the system Elq] ~ 21 - ) (8)
described in Section Il. We will study delay for the FCFS P
(First Come First Served) discipline. where

For the fluidX}, arriving at timek, the first time its contents B o var(X)
are served (i.e., the delay of the first bit) is = E[XJ/E[], Cx= (E[X])? "’

. 22
Dy, :mf{n T+ Tk+1 T TRyn—1 > Qk}~ (2) — ex o 1-p (1707") if 02 <1
i il wai R S Ve R e N

The last bit of X, will wait for c2_1

_ — _ (1 — _r - ; 2 >

Dy = mf{n T+ Tyl e F Thgn—1 = qr + Xk} (3) xp |: (1 p) Cz 4+ 4C§<]’ if Cr =

Since the bits served in a slot may belong to packets corendC? is defined a€’% . This approximation can be used with
sponding to different flows in a wireless system, to ensu(6) to obtain approximations/bounds f8fD]. For exponential
QoS (Quality of Service) it is important to study bof,} r this approximation reduces to the exact formula provided



above. Under heavy traffic it is close to the exponenti@[D(¢)*] > t*[1/(E[r])® — ¢]. This implies
approximation provided at the end of Section IlI-C. If we

T 00
addE[X] on the right side of (8), we get approximations forE[D?] = / E[D(t)*] dP,(t) +/ E[D(t)*] dP,(t)
E[D]. In Section V we will provide some simulation results 0 - T
to check the accuracy of these approximations. > { L 6} / £ dP,(t)
The LST ofq is also available ifX} is of phase type. We (E[])e T

will obtain from this the LST ofD and D in Section IlI-B.  where P, is the distribution function of. Thus
In the rest of the section we study ti2 and D in more

T o]
detail. Section IlI-A provides conditions for finiteness of E[¢*] = / t“ qu(t)+/ t* dP,(t)
moments and mgf. Section IlI-B provides the LST. Section 0 o T
I1I-C shows that the bounds in (6) can be tight in heavy traffic < T“ +/ t* dP,(t) < oo.
and in fact the heavy traffic analysis provides a correction term T

for these bounds. Section IlI-D studies the tail asymptotics f¢if) Let us assumeE[exp (yD)] < oo for some~y > 0. Let

the distributions ofD and D. N(1) = max{n :r+...4+r, < 1} and let{ Ny(1),k > 1} be
iid with the distribution of N (1). ThenNy (1)+...4+ N, (1) <4
D(n). There exists &, > 0 such thatE[exp(y1 N(1))] < oo

A. Finiteness of Moments ([12], Chapter 2). Lety; = min(+,~y1). Choose &’ > 0 such
that E[exp (72N (1))] > exp (7). Then,

In this section we provide conditions for finiteness O{E (1]

moments ofD and D. [eXp (721/)@)” > E[exp (’YQJY(I))] ; 1

Proposition 1. If E[r*"!] < oo for somea > 1 then exp (1'%) exp (7'[#]) exp (v/(t — [t]))

E[D%] < oo andE[D?] < oo. Also, if Elexp(y7®)] < co Where[t] is the integer part of. The right side tends too

for somey > 0 anda > 0 thenE[exp (7/D®)] < oo and ast — oo. Fix a positiveM < co. There is al" such that for

Elexp (7' D%)] < oo for 4/ < 7. t>T,

Proof. Since D > D, we show the results foD. Observe Elexp (v2D(t))] > M exp (v't).
that regenerations occur when all the backlog in the queuel_is
cleared. Thus, ik = 0 is a regeneration epoch andis the ence

next regeneration epoch, thép, < 7 for 0 < k < 7. Hence T / h /
9 poch thé, < Tfor0 < < 7 Blew(/a] = [ G ar o+ [ en () dp)
- 1 <« - 1 o
E[D% = — E Dp)*| < —— E[r**! / 1
D1 = g [kz_(f 0] < g7 B < en(T)+ o /T Elexp (v2D(t))] dP,(t)
and henceE[D?] < cc if E[r**!] < c0. < exp(Y'T)+ iIE[exp (v2D)] < oo.
Similarly, M
T—1 D
_ 1 _ iy . .
Elexp(v'D*)] = —— E exp (' DY) From Propositions 1 and 2, using the previously known
E[7] [kz_% g } results forg mentioned in Section II, we obtain thBfD] <
1 ' w oo (E[D°] < oo) if and only if E[X*"!] < oo for some
< Ef E[rexp (v'7%)] a > 1. Also, D(D) has an mgf in a neighbourhood of 0 if
E[r7] and only if ¢ has. Some of these results could be obtained
< R Elexp (¢7'7%)] from (28) below under the additional assumptiBp?] < co.
foranyp > 1, 1/p+ 1/q = 1. ThusE[exp (' D%)] < oo if
Elexp (y7%)] < oo for somey > +'. L B. LST of the Delay Distribution

Thus we obtain that i£[X“*!] < oo for somea > 0 then
E[D%] < oo andE[D®] < oo. Also, D and D have finite  Let us first consider the case efp(\) distributedr;. Then,
mgf in a neighborhood of if X has. The next proposition according to (4),.D — 1 = number of Poisson\] arrivals in

provides a partial converse. [0, ¢]. Hence
IIf[z’;[og:l)]ozition 2. (i) f E[D*] < oo for somea > 1 then E[zP1] = E[e~*(1-2)4], )
q 00.
(i) If Elexp(yD)] < oo for some v > 0 then Using the well-known Pollaczek-Khintchine formula for the
Elexp (7/¢)] < oo for somey’ > 0. LST of the waiting time distribution in thdZ/G/1 queue, it

then follows, with3(-) denoting the LST of the distribution

of X:
(1=AE[X])(1—2)z
B —2)) -2

Proof. (i) From [12], Chapter 3, Theorem 8.1,
E[D*(¢)]/t* — 1/(E[r])* for o« > 1. Thus for

any ¢ > 0 there is a7’ > 0 such that for¢ > T,




Next we consider the case whéh, has a rational LST(s) = can be rewritten as
B1(s)/B2(s) where 35(s) is a polynomial of degreen and

_ _ =\t
a(s) is the LST of the distribution of. From [8], Section II Gr1 = (g5 + Y5 —7) (13)
5.10, (5" where
- Ba(s §i Y, = Xp, +7 — 1.
Ele™%] = . R(s) >0, k k K
=G lles e

Now (13) also occurs for the bulk service queue (with bulk
where¢;, i = 1,...,m are the zeros of sizer) in discrete-time. Then the moment generating function
of the stationary distribution ofy is given by ([18])

L - B(s)a(s) R
; ; ; Yico v (27 = Zj)
in the left half plane. If the;; are different then we rewrite QZ) = J_Zf Y2) (14)
Ele™9) = Cp + Z Ci&i where 7, ..., Z-_, are the roots of the denominator in (14),
im1 §i—s Y (Z) is the moment generating function &f. andy; are
and then obtained _fromZ;;é y; (27— 7]) = 0,k=0, ...,r— 1. Various
m computational techniques to obtaify, ..., Z-_; are available
Plg>t] = Z C; €St t>0, in [18] which then provide the mgf of. From this, as above,
= we can obtain the distributions and momentsibfind D.
Plg=0] = Co=1- ; Ci C. Heavy Traffic Approximations
Next we consider the distributions @ and D. We have In this section we show that in heavy traffic the bound in (6)
will indeed be tight. We also obtain upper bounds on higher
PID>n] = Plg>ri+..+r) (10) moments ofD which are valid in heavy traffic. In fact we
s * et first obtain bounds which are valid under congestion for any
- ZC’/O e dP[ry 4 41y < traffic intensity. Hence our bounds are valid whenever there
Z;Ll is congestion in the queue thus covering all the cases where
_ Z C; a™(—&) the delay is of real concern.
im1 Proposition 3.  Forp > 1,
Hence the distribution oD is a mixture ofm geometric dis- . E[DP|q > t] - 1
tributions with parameters(—¢,), ..., «(—&y). In particular, oo E[gPlg > 1] — (E[F])P
o0 m 1
E[D] = P[D = ——— . Proof. From Gut [12], Chapter 3, Theorem 8.1,
n=0 1=1 E[D(t)p] 1
If r is exponential then we can get a more explicit expression ” - E[])?
for E[D]. Indeed, from (10) i
Thus for anyd > 0 there exists & such that fort > T
E[D] = P[D>0]+Y P[D>n] EIDP] < (2 »
n; [D@®)] < (E[r]P ro) e
- 14 i Plg> i+ o+ 7] (11) Sinceq is independent ofr;}, fort > T,
n=1 1 >
0o E[D(g)! | ¢>1] = m/ E[D(s)" | ¢ = s] dPy(s)
- 1+/ D Plry+ o+ < ] dPy(2) ) . )
0 =1 <7/ SP == +40) dP,(s
E[q] = Plg>1J; (E[T]P ) o(s)
= 1+—= (12) 1
Elr] = (EW + 5) E(¢? | ¢ > t). (15)
where the last equality follows from the fact that’> , P[r1+ , _
..ty < ] = t/E[r]. Of course, (12) could also be obtained@kingt — cc and thens | 0 we obtain the result. [
by taking the derivative oE[Z”] at z = 1 in (9). From (4) we obtairk[D | ¢ > {]E[r] > E[g | ¢ > {]. Then
using Proposition 3
One can similarly obtain the LST oD and E[D] by . E[D|q>1]
replacingg with ¢ + X, ¢ and X being independent of each = 1/Elr]. (16)

m ———-
t— E t
other.  Elg | g > 1]

In the following we show that under heavy traffic the condi-
If X andr can be taken discrete and< 7 < oo then (1) tioning on{q > t} in (16) can be removed.



Consider a sequence of queues where the distribution ofThe above results show that under heavy traffic the relative
sequencgry} is fixed but then'” queue is fed an iid input error in approximatingEkD:1 r, With ¢ goes to zero in mean.
sequence{X(”),k > 0} such thatXé") <st XIE”“) and However, the error itself does not go to zero. Now we provide
p(m) = E[X1(n 1/E[r1] /' 1 asn — oc. In the following ¢(®  Some information on it. IfE[r?] < oo, then from Gut [12],

and D(™) denote the stationary queue length and delay in teapter 3, Section 10,

n'" queue and then — oo provides us a heavy traffic result. E[r?]
" : lim E[R(t)] = (21)
Proposition 4 Under the above assumptions, foe> 1, t—o0 2E[r]
. E[(D™)P] 1 if ~ is nonarithmetic. Ifr has an arithmetic distribution on a
lim v LS - (17)  lattice with spand then
n—oc E[(¢™)r] ~ (E[r])
lim E[R(kd)] = 2L 4 ¢

Proof. We will use (15) in our proof. Observe thdt in Pl [R(kd)] = 2E[r] Ty

(15) depends only oh and the distribution of;, but not on
that of ¢(™. Thus, for a givery > 0, choosel" such that (15)
holds. Since

In the following we provide the results for only the nonarith-
metic case. For the arithmetic, just ad®. Using the above
techniques, one can easily show from (21)
E[(D™)] = E[D™) | ¢™ >T] P(¢™ >T) . Ej?]

+ B[O [ <T] Pl < T)A8) Jim B{R() | 4> T) = ggp. 22

we consider the two terms on the right side of this equalitfhe next proposition removes the conditioning in heavy
Asp /' 1, P(¢"™ < T) — 0 for any fixedT. Also, traffic.

E[(D™) | ¢ < T] <E[(DM)? | ¢ =T] < o0
: . _ Proposition 5. If E[r?] < oo,
and this upper bound is independentofThus for any given

01 > 0, we can choose aiV; such that 7}LH;OE[R(TL)] _ ;Eiéﬁ )
E[(D™) | ¢ <T] Plg™ < T] < 6, (19)
for anyn > Nj. Then, from (15), (18) and (19) fot > N;  Proof. We have
E[(D™)] < E[R™] = E[R™ |¢"™ >T] P(¢" >T)

. + E[R™ | g™ <T] P(¢™ <T). (29)
(5 +9) El@™)” | ¢ > T] P(g™ > T)+61. (20)

E[r]p Given § > 0 from (22) there exists & s.t.
Next we show that for any, > 0 there is anV, such that E[R™ | ¢ > ] I;&E:ﬁ 5 (24)

El(¢™P | ¢ > T P(¢™ > T) = El(¢™)P] | < §
| Elld™)" 1 a | P(g ) (™) 2 forall ¢ > T. ThisT depends only on the distribution sfand

for all n > N,. But this easily follows from the fact that  § but is independent of.. We also haveP(¢(™) > T) /1
E[(q(n))p] _ E[(q(n))p | ¢ > T] P(q(”) > T) asn — oo for any fixedT'.

+ E[(¢"™)? | ¢™ <T] P(¢"™ <T) . o

Next consider the second term on the right side in (23). For
andlim,, ... E[(¢"™)? | ¢™) < T] P(¢™ < T) = 0. Thus any fixed,
we obtain
1 E[R" | ¢/ < T] < max E[R(t)] (25)
E[(D™)) < (s +9) (El@™)7] +62) + 0 Osi<T
(E[r]) and R(t) < rpqy . From [12], Chapter 3, Theorem 7.2,
for any positived, d1, d; for all n > N, N chosen large {rp/t, t > 1} is uniformly integrable. In particular, the

enough. Therefore, right side of (25) is upper bounded By T for someM < oco.
Thus
lim < . (n)] _ [7%]
n—so E[(g™)7] = (E[])P BIR™] = ogpy | <20
N _ 0 for all n large enough. O
From (4) and Proposition 4 we obtain Thus (E[g] + E[r2]/2E[r])/E[r]) provides a better approx-
]E[D(n)] 1 imation of E[D] under heavy traffic. For exponentia) this

nli_)rrgo E™] = B reduces to the exact formula (12).
a One can similarly obtain results for higher moments of
and hencgE[D™]E[r] — E[¢™)])/E[¢™] — 0. R™, We also know thatR(t) —" Y where P[Y < z] =



Jy (1 = F.(s))ds/E[r] and —" denotes weak convergence([11], [30]):

This then will provide us withR(™) —W v If X, is subexponential, then
We can also exploit the standard heavy traffic approxima-

tions on the GI/GI/1 queue. For example, ([2], Chapter X) we

know that ifE[r] ~E[X ] — v andVar(X™)+Var(r) —

o? then

PM>ﬂ~I§;PM;>ﬂ
where X, is a r.v. with the equilibrium distribution oX:

wq™ Jo? =W exp(1). (26) PlXe > ] = ﬁ[ﬁ P(X > u) du,

Sincet — D(t) is a continuous function, this implies g F(x) ~ g(x) denotedim,_.~ f(z)/g(z) = 1.
that D(2vq™ /o?) —" D(Y) whereY is exponentially . e .
distributed with mean 1. In particular, then from (10) in The asymptotics oD are more complicated. From (4) we

' ; observe thatD = N(q) + 1 where N(¢) is the undelayed
heavy traffic (but with < 1), renewal process formed frofr;}. Then using results from
[3] we obtain:

PID>m] = /0 PID(t) > mldPy(t) 1) From Theorems 3.6, 3.11 and Proposition 3.1 of [3]:
2 ) If E[r?] < oo and ¢ has tail heavier tham—v7, i.e.,
= 2 ) P[D(t) > m] exp[—2vt/c”]dt lim, o Plg > ] e*V?® = oo then
v [ 5 - T
= ﬁ/o Plry + ... + 1y < t]exp[—2vt/c”]dt P[D > ] P{q > E[r]] as x — oo. (28)
= a™(2v/o?) We have observed above that, Xf, is subexponential
. i ) then ¢ has asymptotics ofX.. Thus if X, has tail
wherea(s) is the LST ofr. Thus as a heavy traffic approxima- heavier thar-—VZ, (28) holds. Also then¥, and hence

tion, D is geometrically distributed with paramete(2v/o?).

. ; g has heavier tails than that of. Therefore, ifX is
This provides

also subexponential thenand X' being independent in
E[D] = 1/(1 — a(2v/c?)). (27) defining D, g + X is subexponential and has the same

] . ) ] tail behaviour as that of. Thus D and D also have the
Comparing these results with those in Section llI-B, one  ggme tail behaviour.

observes that these results are simpler and hold under genergb Forr;, exponentially distributed, there are results in [3]
assumptions on the distribution df but of course provide corresponding tay with heavy tails but lighter than

good approximations only under heavy traffic (interestingly  .—vz These directly provide corresponding results for
we will see in Section V via simulations that although the D and D.

approximation forE[q] is not good under light traffic, for
E[D] it is).
Finally considerE[D?]. From (7) and (17)

1 E[D?] 1

>
(E[r])*> — E[¢*] — B:E[r?] _ _ o
, . .In a practical wireless system it will often happen that a
under heavy traffic whereas the above exponential approxi- : ) . _
. 4 5 4702 wireless link gets the opportunity to transmit data from its
mation providesE[¢®] = o /2v°. .
gueue only in some of the slots and often these slots appear

D. Asymptotics for Tail Probabilities periodically. For example, this can happen if several queues

In this section we consider the asymptotics on the t#ihareé a common wireless link in TDMA fashion (e.g., GSM
of the distributions ofD and D. In Section IlI-A we have Ccellular system, the subscriber stations in a WiMAX uplink
provided conditions for finiteness @[D°], E[D*] and of ([23]) and a multihop wireless network ([15])). These slots
their mgf in a neighborhood df. These provide asymptotics¢@n also appear randomly: if the wireless channel is bad in

for the tail distributions ofD and D via the relationship: for & Slot it may be decided not to transmit in that slot in order
a>1, E[D? =a [;° 2 'P[D > z]dz < o if and only to save transmit power. In this section we extend the results

if [°2*P[X > z]dz < co. Thus D is of regular variation obtained so far to this setup when a queue is served at periodic

with index —a — 1 if and only if X is of regular variation intervals.

with index —«. Also, D has an mgf in a neighbourhood @f  We assume a frame is made uploglots. The queue under

if X has. ThusD has a light tailed (exponentially decaying)consideration gets to serve in the filst< T slots of each

distribution if X has. frame. In the lasfl" — L slots the fluid can arrive at the queue

but it will need to wait till the next frame for transmission.

Some more information on the tail distribution can beéet g, be the queue length at the beginning of tié frame.

obtained for subexponential distributions. From the results aet X, ; be the new arrivals to the queue in the beginning of

the waiting time distribution for a GI/Gl/1 queue we knowthe i*" slot of the k! frame and letr, ; be the link rate in

IV. DISCRETEQUEUE EMBEDDED IN A FRAME




that slot,s = 1, ...,7. Then regeneration epochs the frame boundaries. Then we are within
the framework of [28]. Thus we obtaiB[r*] < co (7 has a

T = k1 _ finite mgf in a neighborhood of), if E[X¢] < oo (X has a
Gkiv1 = (@i +Xei—rr)", i=1,.,L, (29) finite mgf in a neighborhood of) for a > 1 wherer is a
G+1 = (oo + Xeps1 + -+ Xi7)- regeneration length for this system, the regeneration epochs

being the frame boundaries whegg = 0. We also obtain
We denoteY), = X p4+1 + ... + Xi, 7. We assumeX;, ; and E[¢°] < oo WheneverE[X{"“] < oo for a > 1 whereq is

Y}.i 1o be iid for eachk ands (for the stability result we need o siationary queue length at frame boundaries. Finiteness of
to assume them to be only stationary, ergodic, sequences). Y\e mgf of ¢ in a neighborhood o6 is also implied by that

will also denote of X,
Xy = (Xp1,Xk2s 0 Xk1), Various functional limit theorems for the proce§g,} and
P = (PhisTh2 o TRT) rates of convergence to the stationary distribution are also

obtained ([28]). Although [28] provides these results for the
Then process observed at slot boundaries, these results at frame
i1 = [ (@ (Xns 7)) bou_ndaries_ca_n b_e obtained easily in the same way. The
stationary distribution of the queue length process is different
where f can be found from (29). One can easily see fromt thei*” slot than at theg*” slot, j # i within a frame but one
(29) that f is nondecreasing and continuous ¢n Thus, can easily relate these stationary distributions. Also finiteness
from Loynes [19], if {(X,7)} forms a stationary, ergodic of moments of their stationary distributions holds under the
sequence them, has a stationary distribution (which maysame conditions. For example, for< i < L (denoting byg;
be infinite with positive probability). Ley; be a r.v. with a r.v. with the stationary distribution af ;)
this stationary distribution. Since sequergg} can be lower
bounded by sequence

1—1
=g+ Xi—r)T+. + X —rim)T < Q+2Xj
T L 4 j=1
Tt1 = (qurZXk’i*_Zrk?i) ’ B9 ang henceE[¢?] < oo if E[¢®] < oo and E[X?] < oo.
=1 =1 L . .. h
Similarly we obtain the finiteness of the exponential moments.
Let D; and D; be r.v.s obtained from (2) and (3) by replac-
ing ¢x by ¢;. Thus the Propositions 1-5 and the asymptotics
on the tail distributions hold as for the system in Section II.
Let D, and D, be the dglay of the first bit ofX; ; under

Next we .ShO.W th‘.’ﬂ Whe B[ X,y < LE[rk 1], 9 has a stationarity. LetD, D, D, D denote these quantities wher
proper distribution, i.e.P(q < oo) = 1. Suppose it is not 1 Then

true. Using Loynes’ construction ([19]), we show it leads t0

a contradiction. Let the*" frame start at: = 0. Let ¢, be (9 _ 1>T <D= {Q]T i (D _ {Q]L> <pr (31)

the queue length at the beginning of tié slot in the 0** L L L L

frame when the system started empty at the beginningidf where[z] denotes the largest integer x. Similarly one can

frame. Theng, ¥ monotonically increases a.s. amq’f (w) / relateD; andD;. Thus we obtain the finiteness of moments of

oo on a setd with P(A) > 0 under our assumptions. Also,D; and D, from that of D; and D;, for which we obtain these

qif(w) /" oo for w e A fori = 2,...,L. Thus there is an results as in Proposition 1 from that@f Also the distribution

M s.t. fromk > M, qa,f(w) will not be zero fori = 1, ..., of D is of regular variation of index-« if and only if that

L. Thus fromk > M, ¢yt (w) will follow (30) without the ©f D is. Similarly D has a mgf in a neighbourhood of 0 if

superscript +. But by the Strong Law of Large numbeys and only if D has. !f we know the dls_trlbut|0n_ oD th_en we

will converge to 0 a.s. and hend@(A) = 0. Thusq has a €an use the equality in (31) to obtain the dlstrlbutlopmf_

proper stationary distribution. If we have only moments and/or. _bou_nds or approximations
Using the above construction we can also show that wh8f mements of) then the inequalities in (31) can be used to

TE[X},.] < LE[ry,.1] the stationary distribution is unique and®Ptain the corresponding bounds/approximationsZor

starting from any initial distributiong;, converges in total ~Under heavy traffic, one expects that the queue will not be

variation to it. From now on in this section we will assum&mpty most of the time. Then, one can approximate (29) by

TE[X).1] < LE[ry.1]. removing ()* on the RHS of (29). Now observe this queue
From now onwards we will make the independence a8nly at frame boundaries. Consider the frame as a slot and

sumptions on{ (X}, r)}. We can rewrite (29) slotwise as inthen use the results of Section Il wiky, = Xy 1 +...+ X 1

(1) with rp; = 0 fori = L + 1, ..., T. Now however the andry =rx1+ ...+ 7r.L.

rate sequence is no longer iid but periodic and the resultsFinally we obtain the LST off and D whenr is exponen-

obtained in the previous section cannot be directly useihlly distributed. As commented before, this could correspond

However, this can be taken as a regenerative sequence widttiRayleigh fading channels and hence is of practical concern.

Go = Qo
and g converges a.s. too if TE[X} 1] > LE[ry 1], ¢ also
converges tax a.s. under these conditions.



The corresponding results fgf, D; and?i can then be easily The mgf of D follows from the LST ofq in (32), using (9):
obtained by relating them tg, D and D.

E[zP] =
Let 8(s) be the LST ofX. Then BTN = 2))BN)(1 - 2) Z]L;()l B = 2)) 2E Ty i(N)
Ele™*%2 | g1 = y] BT(A1 —2)) — 2F '
. If we are able to invert this mgf to obtain the distribution of
= E[e*S(‘?“*X“*TW) | gr1 =Yl D (there are various techniques to perform such a numerical
E[e—s(ll-i-X—r)} _ E[e—s(wx—r) Lyt x_r<oy] inversion) then the mgf oD follows from (31):
+ Ply+X-r<0 . o L=l
[ \ | A\ E[z"] =Y 2" P(D = jL + k).
= B_Syﬁ(s) 7)\78—EP[y+X—r§O} j=0 k=0
+ Ply+X —r<0] In fact one can show that
A s L—1
= ¢ B(s) - BA) e . rhy_ 1 R e O
A A B = g 2 B
Thus k=0
s A s s _A wherea = exp(%), 1 = y/—1. Thus one can avoid inverting
Ele™®2] = B(s) y— Ele™"] = B(0) v— Ele™™']. the mgf of D. One can then obtain
. . . . R 1 R
We can iterate this equation to obtain E[D] = —iJE[zLD]\ N (34)
L—1 L dZ z=1
E[e™%=+1] = h%(s) Ele™*%1] — g(s) Y h/(s) E[e %3] V. SIMULATION RESULTS
7=0

In this section we provide some simulation results to
whereh(s) = B(s)A/(A —s), g(s) = B(A)s/(A —s) . FU- yerify the accuracy of approximations provided in Sections

thermore, we obtaift[e ==+ 7+1] = gT=L(s)Ele™*%2+1].In |1 and IV.
steady statéE[e *?T+1] = Ele™ 5%1] 2 E[e~*1]. Thus we
obtain We first consider the single queue studied in Sections Il
Eje1) — _[1 B ﬁT(S)( A )L}—l an(_j lll. For X we have taken a.fgw discrete di;tributions:
A—s Poisson (examples 9, 10) and finite valued while fowe

s Lol NN, have taken Rayleigh (examples 9, 10), exponential (examples
{BT‘L(s)ﬁ()\) > (6(5) ) yL_j(/\)]ESZ) 7, 8) and a few discrete finite valued distributions. The
A=si= A—s has been taken as 0.3, 0.5, 0.7, 0.9, 0.95 and 0.98. Each
The right hand side contains unknownsy;_;, j = 0, .. simulation was done for 20 million slots, long enough to

L — 1. From Rouck’s theorem ([8], p 652), we know t'ﬁathave negligible estimation error. The simulated values of
under stability ’ ’ Elg], E[D], E[q] from formula (8) and its heavy traffic
' s A\ approximation = (var(X) + var(r))/(2(E[r] — E[X]))
— 5 (s) <>\,S) and E[D] via the lower boundE[g]/E[r] and with the
- - heavy traffic correctiorE[q]/E[r] + E[r?]/(2(E[r])?) (with
has exactlyL zerossy,...,sy_1 in the right half plane. The . . ATV
term in curly brackets in the right side of (32) should als§/ (2E[r]) added 2'f r has an arithmetic distribution) and
be zero fors = so,...,s;_1. This yields L equations that 2° 1/(1 — o(2v/0%)) are provided in Tables | and Il. As
can be used to obtaig;()\),...,yr(A). There are several commented before, for exponential, (8) andE[D] with

algorithms available to compute the zergs...,s;_1 (see ?e?f\_/y_trtaﬁlc_t_corrt_el_(;]t_lor_l arle n factfexac:[r fglrmllflag fort;lll
[18]). It follows, after a lengthy calculation, that raftic intensities. This 1S also seen from 1able 11. For other

distributions, the theoretical formulae f@l{q] and E[D] are

Elq = (T — L)E[X] + 1 very close to the simulated values for> 0.90. For lower
L — TAE[X] values of p the approximations are not good as expected
(but the approximation (27) foE[D] is still working quite
L=l _ L—j—1 well). We also observe thdk[q] from (8) is quite close to
(BN Yy (N GELX] + — ) simulations even for smalp and is always more accurate
J=0 , , than the heavy traffic approximation.
+ AT — 1)E[X] arET L 1)}.(33) , _ _
2 2 2A Next we provide an example for the queue in Section V.

It should be noted that this formula reduces to the familidile consider exponential service and arrival rates. We fix the
expression for the mean waiting time in thé/G/1 queue service rate aE[r] = 7.5 and take different values féi{X].
whenT =L =1. Also, we takeT’ = 10 andL = 4. We obtaine®[q] andE[D]
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