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Abstract. We consider a BitTorrent-like file sharing system, where the
peers interested in downloading a large file join an overlay network. The
seed node possessing the file stays in the system, whereas all other peers
are non-altruistic in the sense that they leave the system as soon as
they have downloaded the whole file. We consider a flash crowd scenario,
where the peers join the overlay simultaneously. We show that the chunk
selection algorithm is critical, propose an analytic approach to the pro-
cess, and find that the encounters can be restricted to neighbours in a
Chord overlay without losing much in performance.

1 Introduction

BitTorrent [1] revolutionized the technique of distributing a large file to a large
number of recipients. The file is chopped into small chunks that the recipients
can immediately upload further. A salient feature of such networks is the scala-
bility of the service capacity with offered load [2], resulting in efficient utilization
of network resources. Thus, even a seed node with a relatively small available
upload bandwidth is able to distribute a file to a large number of nodes in a
reasonable amount of time. In the original BitTorrent, a “tracker” keeps cer-
tain centralized control over the chunk transfer process. This paper studies file
distribution systems with fully distributed and symmetric architecture.

The Finnish research project PAN-NET (2004-2005) designed an experimental
prototype of a BitTorrent-counterpart with completely distributed architecture.
This system is based on random encounters, i.e., the peers contact each other
randomly and transfer one (or several) chunk(s) if available. The PAN-NET
prototype uses Chord [3] as the underlying structure where random contacts
can be realised.

Massoulie and Vojnovic [4] studied a similar system as an abstract model and
obtained remarkable results by considering a limiting differential system in a lin-
ear scaling of the initial state of the system. In particular, they could conclude
that a random encounter based file sharing system can be essentially insensi-
tive to load balancing strategies like the principle to transfer always the rarest
available chunk first, which is implemented in BitTorrent. This is interesting,
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because several simulation studies have shown that the rarest first policy out-
performs other policies such as random selection [5], [6], and hence could be one
of the main reasons for the good performance of BitTorrent. The above results
are not contradictory, because the insensitivity conclusion of [4] presupposes
that the system has already reached a sufficiently balanced state. In particular,
they show that a sufficient condition for the preservation of a balanced chunk
distribution is that the nodes join the overlay with a uniformly distributed first
chunk in possession.

With this background, we focused in a recent paper [7] on the so called flash
crowd scenario, where all nodes except the seed join the file distribution overlay
simultaneously and empty-handed. This is an extreme case of the so-called flash-
crowd scenario in which a large number of peers try to simultaneously acquire
a copy of a popular software. It is also a model for distributing a new file in an
existing network, say, within a company. We assumed that the nodes are non-
altruistic in the sense that they stay in the system only as long as they have not
downloaded all the chunks. This is an interesting scenario both as a pessimistic
extreme and as being complementary to steady-state-oriented scenarios.

The main findings of [7] were: (i) The random chunk selection policy easily
results in one chunk (usually exactly one!) becoming rare in the system. (ii) The
replication of chunks resembles the growth of the number of balls in Pólya’s urn
model. This analogy helps understanding how the early history of the random
copying process has a long-lasting influence on the chunk distribution. (iii) We
provided an extremely simple distributed load balancing algorithm, the “Deter-
ministic last K chunks policy”, which outperforms the random selection policy
without using any state information.

The present paper continues the work started with [7] mainly in two respects.
First, we draw into consideration the principles of the optimal chunk distribution
algorithms (thanking Michela Meo and Marco Mellia for raising this question),
despite the fact that they require complete coordination and are as such unusable
in a distributed control scenario. Using the optimal solution as a heuristic, we
experimented by replacing unrestricted random encounters by chunk downloads
from Chord topology neighbours only and found encouraging results. Second,
we provide new analytical insight into the random process of the system’s big
bang -like evolution.

Related Work
Performance of file sharing systems has been studied both by simulations and
through mathematical models. The large number of parameters and complicated
algorithms make accurate mathematical models intractable. Hence, articles such
as [4], [8] and [9] have modelled the system in limiting regimes. Fundamental per-
formance limits [10,11] in this connection are discussed in Section 2. The models
in [8] and [9] mainly deal with systems in which the entire file is considered as
a single chunk, and the steady state performance measures (e.g., time to down-
load the file) are then studied through fluid models. Simulation studies such as
[5] and [6] allow to study the effect of various parameters (e.g., the chunk se-
lection policy, the peer selection policy, and heterogenous upload and download
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bandwidths) on the performance of the system. Our observation regarding the
existence of rare chunks in random chunk selection policy is consistent with that
in [5].

Organisation of the Paper
We start in Section 2 by analysing an optimal solution to the file distribution
problem and identify four interesting features of it. In Section 3, we present the
models of uncoordinated file distribution strategies that will be studied in the
sequel. Section 4 proposes a novel analytic scheme to describe the evolution of
the “chunk universe” in the “big bang” of the flash crowd scenario. In Section 5,
we present and discuss the results of several simulation setups. Finally, we draw
the conclusions and propose items for further work in Section 6.

2 About the Optimal File Distribution Speed

Although our focus is on completely distributed algorithms, it is interesting to
note how fast a coordinated procedure can distribute C chunks of same size to
N peers with identical and finite upload capacities. The answer is C + log2 N ,
with single chunk copying time as the time unit. In the case N = 2L, this has
been known for long [11], but a proof for general N was given only quite recently
by Mundinger et al. [10].

Remark 2.1. We assume that chunks must be downloaded completely before
they can be copied further to other peers. If the chunks were infinitely small, the
distribution time would be independent of N .

Although the algorithm for general N is quite complicated, it is based on some
simple but important observations, formulated as lemmas in [10]. The most
important one is that

(i) one should always transmit chunks at full speed, one at the time.

Interestingly, the classical BitTorrent uses typically four simultaneous down-
loads. Maybe this number is motivated by the heterogeneity of the peers’ trans-
mission speeds, but we don’t know rigorous arguments for this choice. For small
chunk size, other delays like queueing delays in the network start to affect along
with the transfer delay. Then it may become favorable to split bandwidth to
reduce these delays by parallel transmission.

When N = 2L with integer L, optimal file distribution algorithms need only
the hypercube topology for chunk tranfer. Here is one of the variants. Let the
node IDs be (ι1, . . . , ιL), ιi ∈ {0, 1}. Call two nodes �-pairs if their IDs differ
only in the �th coordinate. Now, the “copying machine” runs as follows:

Algorithm 2.2 ([11], see also [12].) Assume C > L.
for � = 1, . . . , L, 1, . . . , L, 1 . . . (cyclically) do

if node (0, . . . , 0) has less than C chunks
then node (0, . . . , 0) downloads next chunk from seed
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else the �-pair of node (0, . . . , 0) downloads chunk C from seed
every other node downloads its �-pair’s highest-numbered chunk

For any C and L with C ≥ L + 1, this “machine” distributes all chunks to all
nodes in C +L cycles. We note additional interesting features of this algorithm:

(ii) each node needs only log2 N neighbours with whom to exchange chunks
(iii) most of the transfers are bi-directional, chunks moving along the hypercube

edges in both directions
(iv) no nodes (except the seed) need to be altruistic. (For this we required C > L

— see what happens if C = 1 and the peers are non-altruistic!)

The reason for the sufficiency of the hypercube topology is that the number
of copies of each chunk can at most be doubled in each period. It is easy to
see that copying cyclically to hypercube neighbours, once to each, distributes
a single chunk to all nodes. With appropriate organization, this process can
run for log2 N chunks in parallel and even so that all nodes except one finish
simultaneously.

It is clear that only property (i) is a useful rule in most designs: the faster
the chunks are transferred, the faster proceeds the copying process. A stochastic
variant of property (ii) will be studied in Section 5 by simulations. Although
this Chord-based solution does not reach optimal performance, the results are
encouraging. The usefulness of property (iii) is questionable in an uncoordinated
setup, but we have not experimented on it yet. Finally, property (iv) is obviously
not true in general, on the contrary — the presence of altruistic peers is certainly
advantageous in fully distributed schemes like ours. On the other hand, it is
useful to know that if the copying process is sufficiently well organized, altruism
is not necessary for fast file distribution.

3 Fully Distributed File Sharing Strategies in Overlays

The basic scenario of this paper is the following. One peer, called the seed,
possesses a file, chopped into chunks, and stays in the system as long as it wants
to distribute the file. The seed maintains also an overlay network, being initially
the network’s only node. Each peer interested in downloading the file joins the
overlay and obtains the possibility to contact randomly selected peers of the
overlay. (An algorithm for finding almost uniformly random peers was given in
[7].) The peers then initiate independently such “random encounters” and, if
the counterpart possesses chunks which the initiator does not have, a chunk is
downloaded by the initiator.

This scenario leaves many algorithms and their parameters to be specified:

(i) the overlay structure and its maintenance mechanism
(ii) the peer selection mechanism for encounters
(iii) the rule for selecting the chunk to be downloaded
(iv) the number of chunks tranferred in one encounter
(v) chunks can also be transferred in both directions within the same encounter
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(vi) transfer speed
(vii) number of parallel down- and uploads involving one peer
(viii) distribution of the time a peer stays in the system after having downloaded

the whole file.

We make comments on each item and explain the choices made in this paper.
About (i): The overlay structure used in our experimental prototype is Chord

[3], which is a popular example overlay systems based on a Distributed Hash
Table. In such networks, the nodes take random or hashed identifiers from a
hash value space I =

{
0, 1, . . . , 2M

}
, and the routing and resource discovery

mechanisms are based on these identifiers. In the case of Chord, the hash value
space is interpreted as a ring (in mathematical modelling it could be represented
as the unit circle S1). For x ∈ I, let succ(x) denote the node whose identifier is
closest to x in clockwise direction. A node with identifier i maintains connections
to nodes with identifiers succ((i+2k)mod 2M ), k = 0, 1, . . . , M −1. These nodes
are called the fingers of node i. With N nodes, a typical number of separate
fingers of a node is log2(N). The finger connections are the edges of the Chord
graph.

About (ii): In our original setup, random peers were encountered uniformly
over the whole population of N + 1 peers. A novelty in this paper, motivated by
the considerations of Section 2, is the restriction to encountering only the fingers
of each node, and using cyclic instead of random selection among them.

About (iii): A good rule would be to choose the chunk whose copies are
rarest in the whole population. This information is not available in a distributed
algorithm. The strategies we compare in this paper are random choice and the
“deterministic last chunk” policy, introduced in [7] (see Section 5.2).

About (iv), (v), (vi), (vii): We did not study variations of these parameter. On
the contrary, we adopted in both analysis and simulations the abstract model
of [4], where nodes make encounters according to independent Poisson processes
with unit rate, and the download time is set to zero.

About (viii): Throughout this paper, we assume that the peers are non-
altruistic, i.e., the last parameter is concentrated at zero. This is a natural pes-
simistic assumption. (We have studied the effect of altruism elsewhere and found
it significant in the last phase of the process.)

4 Towards an Asymptotical Analytical Model

We wish to extend our previous results [7] on Pólya’s urn models as simple
models for the starting phase of the random chunk copying process. We take the
case of two chunks, 0 and 1. In total there is a fixed number of n+2 nodes in the
system. At the start, one random node has chunk 1 and another distinct random
node has 0. The remaining n nodes do not have any chunks, they are the empty
nodes. At each time step, a uniformly random ordered pair of nodes is selected
and called a random encounter. The first node downloads a chunk that it does
not have, if the second has it but does not have both chunks. The last condition
means unaltruistic behavior. As soon as a node has both chunks it becomes
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uncooperative and does not share its file. For large n, this copying process is
likely to start as a Pólya’s urn: first there are two balls (0 and 1) in the urn,
then, at each time step, one ball is selected uniformly randomly from the urn
and the selected ball is returned to the urn along with its copy. At any moment
of time the distribution of all possible outcomes is uniform. For a large time it
stabilizes to some value that is still uniformly distributed. However, this model is
a pure growth process. We would rather have a process that has a steady state,
meaning that, eventually, no encounters can change the state of the system. This
means, for instance, that one chunk has become extinct outside the nodes that
have both chunks and all empty nodes have also disappeared. Another option is
that both chunks have disappeared in a similar way, in which case some empty
nodes could be present also.

Our idea is to assume n large and use first Pólya’s model to cope with the
starting phase of the process. Then, for considerable populations of chunks, a
continuous model in the form of differential equations is probably plausible.
Finally, we must fuse these approaches to describe the distribution of the final
states as n → ∞. So far, we have made only the first steps rigorously, but we
have some conjectures how to complete this scenario. First, it can be shown that
the probability p0(t) that after t steps from the start (we count only steps that
result in the change of the state) there have been no encounters between two
nodes possessing 0 and 1, respectively (in other words, at each step an empty
node has encountered a node having 0 or 1):

p0(t) =
1

2(n + 1)
n!

(n − t)!
×

∑

a∈{0,1,···,2t−1}
{ft(a)!(t − ft(a))!

×
t∏

s=2

1
(s + 1)(n − s + 1) + 2(fs−1(a) + 1)(s − fs−1(a))

},

where a runs through all integer values from 0 to 2t − 1, and the functions fs,
s = 1, 2, · · · , t of a are defined as follows: write a =

∑t
k=1 ak2t−1 with ak ∈ {0, 1},

then fs(a) =
∑s

k=1 ak. Using this presentation we can show:

Proposition 4.1. Assume that t, n → ∞ in such a way that t/n
1
3 → 0. Then

p0(t) → 1.

This means that, asymptotically for large n, the system behaves at the beginning
for long time like a Pólya urn, and only after a “macroscopic” time the encoun-
ters between non-empty chunk holders become likely. Another limiting case is
obtained when the number of chunks is already very large. Then it is reasonable
to shift to continuous modelling and continuous time t and assume densities of
the chunk holders: n0 =|(nodes with only chunk 0)| /(n + 2) and similarly n1
and n∅ for chunk 1 holders and the empty nodes, correspondingly. They would
evolve according to an autonomous system of differential equations:
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n′
0(t) = n0(t)(n∅(t) − n1(t)) (1)

n′
1(t) = n1(t)(n∅(t) − n0(t))

n′
∅(t) = −n∅(t)(n0(t) + n1(t)),

where ′ denotes the time derivative.
Now, initial conditions are needed. Returning to the discrete system, at the

moment when the number of chunks reaches the value nα with 0 < α < 1
3 , the

distribution of the number of chunk holders is uniform. The precise value of α is
not principal. Denote c = nα/n. At this instance, we heuristically fuse the two
approximations: take the initial conditions as n0(0) = β(c)c, n1(0) = (1−β(c))c,
and n∅(0) = 1 − c, where β(c) is a random variable taking values in the interval
[0, 1]. We conjecture that, as n → ∞, β(c) converges to a uniformly distributed
random variable β(+0) ∼ U [0, 1], as it should reflect the Pólya-like phase of
evolution. The steady state is reached at time t ≈ log n, due to the exponential
growth at the start. Numerical simulations indicate that the system of equations
above really have such a limit for the steady state, see Figure 1 below. On the
other hand, this limiting scheme seems to be a quite realistic approximation
already for such a small number of nodes as 100. This approach could probably
be extended to more realistic scenarios with more chunks and the seed. This
would result in a different distribution for β(+0).
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Fig. 1. Steady state solution for the larger
component of the chunk holders’ density
as a function of initial conditions on the
interval (0, c]. As c → +0, this function
seems to converge. The values were taken
as 1, 0.5, 10−3, 10−6, 10−20 with seemingly
monotonous convergence. The curves of
two smallest values merge visually.
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Fig. 2. Distribution function F (x) for the
steady state value of the successful (pos-
sessing both chunks) node density x. Solid
line corresponds to the solution of the dif-
ferential equations with c = 10−20 and the
points for a simulated system with n = 98
with experiments repeated 1000 times.

5 Simulation Results

In our simulations, we always assume that N nodes arrive simultaneously to the
system at time zero. The file to be broadcast is available as a set of C chunks at
the seed node. In order to download these chunks, each node initiates encounters
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with other nodes in the system, and downloads missing chunks. Having down-
loaded the whole file, the node leaves the system. Each node initiates encounters
as a Poisson process with rate one, and the download time of a chunk is zero.
The main metric of interest in this model is the average time to broadcast the
file to N nodes.

We shall simulate the above system for two different topologies. In the fully-
connected topology, a node can contact any other node present in the system.
The second topology is the Chord topology which was described in Section 3.

5.1 The Rare Chunk Phenomenon

We shall first assume that the network graph is fully connected, i.e., a node can
initiate an encounter with any other node present in the system.

In Figure 3, we plot the expected number of uploads of a chunk by the seed
node in ascending order of the number of uploads for C = 100.
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Fig. 3. Expected number uploads of
chunks by the seed node. Random
chunk policy. N = 1000. C = 100.
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Fig. 4. Expected number of copies of
the chunks as seen by departing nodes.
Random chunk policy. N = 1000. C =
100.

From this plot, we can observe that there exists one chunk which the seed
node has to upload a disproportionate number of times compared to the other
chunks. This suggests that there exists an imbalance in the number of replicas of
the chunks in the system. This phenomenon becomes critical towards the end of
the system lifetime when the nodes would need to download this rare chunk from
the seed node. In Figure 4, we plot the expected (ordered) number of replicas of
chunks in the system as seen by the nth departing node. We observe that the
number of replicas of the chunks which are distributed first tend to grow faster
than those which enter the system later. Moreover, we see that, after a while,
the very last chunk becomes more and more rare, whereas the others tend to
good balance with each other. A similar observation was made in [5].
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5.2 Deterministic Last K Chunks Policy

We can summarize the observations from the previous sections as follows.

(i) The imbalance in the number of replicas of chunks in the system can be
traced to the first few moments which determine which chunks replicate
faster than the others. It would be desirable to have a more balanced number
of replicas of chunks at the start of the system as this would lead to a more
predicatable number of replicas of chunks in the system at later instants.

(ii) It would be very desirable to have high diversity in the last missing chunk
of each node, say, to be uniformly random and independent of that of all
other nodes. This would make the seed node less critical to the downloading
process.

A decentralized way to ensure a better balance in the number of replicas of
chunks during the first few moments and to ensure a high diversity in last missing
chunk was proposed in [7]:

Deterministic last K chunks policy. Every node selects K < C chunk
indices at random. These chunks are downloaded only after the remaining
C − K chunks have been downloaded.

The order in which these K chunks will be downloaded is arbitrary and is not
decided beforehand.
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Fig. 6. Expected number of copies of the
chunks as seen by departing nodes. De-
terministic last chunk policy. N = 1000.
C = 100. K = 1.

For K = 1, we compare the performance measures of this policy with those of
the random selection policy. The initial number of nodes in the system is the same
as before (i.e., N = 1000). Figure 5 and 6 show the number of expected (ordered)
number of uploads by the seed node, and the expected number of copies of each
chunk at departure instants, respectively, for C = 100. On comparing these with
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Figures 3 and 4 we see that the maximum uploads by the seed node has reduced
compared with the random selection policy. The better performance of this policy
can be ascribed to two reasons. Firstly, by rejecting some chunks that may be
on offer in the initial stages of downloading, the policy delays the departure of
the first few nodes from the system. Thus, there are more uploaders present in
the system for longer duration, thereby reducing the load on the seed. Secondly,
in the random chunk policy, the chunks which entered the system initially would
spread quickly to all nodes. However in the deterministic last K chunks policy
a proportion of nodes would reject these chunks thereby reducing the imbalance
between the rapidly multiplying chunks and rare chunks. However, one cannot
expect to improve the performance by increasing K a lot. As K increases, the
number of unsuccessful encounters, i.e., encounters in which chunks are rejected,
would also increase, and this would increase the broadcast time again.

5.3 Expected Broadcast Time

We now compare the time to broadcast all the C chunks to the N nodes using
the random and deterministic last K policies. We are interested in the scaling of
the broadcast time with the number of nodes. In order to do so we simulate the
system for N = 2j, j = 1, ..., 9. For the Chord topology, we shall always assume
that the number of addresses available, 2M , is twice the number of initial nodes
in the system. In these simulations we considered an augmented Chord topology
where each node was given two additional, randomly distributed fingers. The
finger tables are updated instantaneously as soon as a node leaves the system.
Each node initiates encounters by selecting one finger either at random or, as
another variant, cyclically. Since the Chord topology is a random graph (it is
random because the N + 1 different addresses are chosen randomly), the results
for the Chord graph are obtained by averaging over different topologies.

We recall that in this model each node is initiating an encounter at rate
one. Hence, the expected time to broadcast would give the average number of
encounters initiated by the last departing node. In Figures 7 and 8, we plot
the expected time to broadcast the file in both the Chord and fully-connected
topologies and for the random and deterministic last chunk policy. A surprising
and counter-intuitive observation from these figures is that the expected time to
broadcast on Chord topology is smaller than on the fully connected one for the
random chunk selection policy. The result is surprising because one would expect
restricted connectivity to increase the expected time to broadcast. However, the
restricted connectivity slows down the spread of the intially released chunks as
they are unable to spread to all the network quickly. This reduces the imbalance
in the chunk distribution, and also retains the nodes for a longer duration in the
system, thereby reducing the expected broadcast time. We note that the larger
the number of nodes in the system, the faster the system evolves and the greater
is the number of uploaders in the system. The effect of the Chord topology is
quite similar to the deterministic last K chunks policy in that there would be
some set of nodes where the initially released chunks would not reach quickly
enough, thereby reducing the chunk imbalance. The trade-off between slowing
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down the chunk replication (increasing the broadcast time) and retaining the
nodes for a longer duration is apparent when we compare the expected broadcast
time for small and large values of N . For smaller values of N , the deterministic
last K chunk policy performs worse than the random chunk policy because the
number of ”unsuccessful encounters” may outweigh the benefits of retaining the
nodes for a longer duration.

In Figures 9 and 10, we compare the performance of cyclical finger selection in
the Chord topology to that of random finger selection. We observe that cyclical
finger selection yields slightly better performance than random finger selection.
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6 Conclusions

We have shown that even in a flash crowd scenario, chunk-wise distribution of
large files can be based on random encounters within an overlay. However, atten-
tion must be paid to the avoidance of the rare chunk phenomenon by applying
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some other chunk selection algorithm than random choice. The extremely simple
deterministic last chunk policy was shown to improve the situation already.

To analyse the flash crowd scenario mathematically, we sketched an approach
where the early evolution of the system is modelled by Pólya’s urn model, and
after the stabilization of the chunk distribution the evolution is described by a
system of differential equations.

As a novel idea, suggested by the hypercube-based optimal solution to the
chunk distribution problem, we experimented by replacing random encounters
by encounters restricted to the neighbour nodes in the Chord topology. The
results were promising and prompt for further study of this kind of systems.
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