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1 INTRODUCTION

The Tile Assembly Model (TAM), an extension of Wang tiling [16, 17, 5], is an abstract

mathematical model of nanoscale self-assembly. The TAM was first introduced by Winfree [18]

and further developed by Rothemund and Winfree [13, 12]. Similar developments of the TAM

can be found in [1, 11, 15, 3]. In the TAM, molecules are represented by tile types (i.e., squares

that cannot be rotated) that each have a “glue strength” and a “color” on all four sides. There

are infinitely many copies of each tile type yet only finitely many tile types. Self-assembly

begins with a special “seed” tile type. A tile type can bind to the existing structure given that

its edge colors and glue strengths match those of all abutting tiles, and that the total glue

strength is at least a certain temperature. The following is a simple example of a tile set from

[13].
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Figure 1.1 A simple example of a set of tile types.
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It is easy to see that the tile set given in the above figure self-assembles an infinite binary

counter in the second quadrant as follows. Note that this particular structure is not “terminal”

in the sense that there are several locations at which new tiles can attach.
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Figure 1.2 Self-assembly of an infinite binary counter in the TAM.

Despite its simplicity, the TAM turns out to be a useful theoretical model (at least in the

sense of universal computation). In his Ph.D. thesis, Winfree [18] not only proved that the TAM

is computationally universal (in two or more dimensions) but also showed that it is possible to

self-assemble the discrete Sierpinski triangle S, which is illustrated in Figure 6.1. Specifically,

Winfree exhibited a set of seven tile types that self-assembles the set S via a simple XOR-like

algorithm that places a “black” tile type at every point (x, y) ∈ S and a “white” tile type

elsewhere. Winfree’s construction for S essentially “paints” the first quadrant of the discrete

Euclidean space Z2 with a picture of the discrete Sierpinski triangle. Furthermore, Papadakis,

Rothemund, and Winfree [14] confirmed the practicality of the TAM in 2004 where they
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experimentally implemented Winfree’s seven tile type construction of S using DNA double-

crossover molecules. In their experiments, they were able to achieve the correct placement of

between 100 and 200 tiles.

It is clear from the previous paragraph that the process of self-assembly can be directed

algorithmically in theory and in practice. However, one can also regard self-assembly itself

as a kind of computational process where the input (a finite set of tile types) is transformed

(self-assembled) into some kind of output (a particular shape). This naturally leads to the

following question.

Question 1.1. What kind of shapes can self-assemble in the Tile Assembly Model?

It is certainly the case that all finite shapes self-assemble in the TAM but in general

Question 1.1 is undecidable and is only interesting when infinite shapes are under consideration.

Note that the natural “optimization” analog of Question 1.1 (with respect to the number of

tile types) is a well-studied (as well as an undecidable) problem, and applies to both finite and

infinite shapes. See [3, 6, 2, 13, 12] for results on the minimum number of tile types required

to self-assemble finite shapes such as trees, squares, and rectangles.

Before we can tackle Question 1.1, we must first specify what it means for a shape to self-

assemble in the TAM. Recall that Winfree [18] proved that S self-assembles in the TAM by

essentially painting the first quadrant with a picture of S. However, in terms of the resulting

shape, this is a less than satisfactory notion of the self-assembly of a shape because self-

assembling infinite squares (along with other infinite periodic shapes) in the TAM is about

as exciting as building a single state deterministic finite automaton that accepts the set Σ∗.

Thus, we introduce the notion of the strict self-assembly of a shape. In order for a shape X to

strictly self-assemble in the TAM, there must exist a finite set of tile types that self-assemble

the set X by placing a tile at all the locations in X and never placing a tile at any location

not in X. To say that a particular shape strictly self-assembles in the TAM is to say that the

shape itself self-assembles and not simply an infinite square onto which the shape is painted.

In this thesis, we study the strict self-assembly of fractal structures in the TAM. Note

that an important characteristic of fractals is that their dimension is less than that of the
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space which they occupy. Thus, (natural or engineered) fractal structures offer advantages for

materials transport, heat exchange, information processing and are generally robust structures.

We specifically investigate the strict self-assembly of the discrete Sierpinski triangles. In doing

so, we present two results: one of which is positive while the other is negative.

Our negative result is that the standard discrete Sierpinski triangle S does not strictly

self-assemble in the Tile Assembly Model. We prove this using a result by Adleman, Cheng,

Goel, Huang, Kempe, Moisset de Espanés, and Rothemund [2] that specifies a lower bound on

the number of tile types required to strictly self-assemble a finite tree shape.

Our positive result is the construction of a modified version of S that we will refer to as the

fibered Sierpinski triangle T. We prove that T and S share the same fractal dimension, but T,

unlike S, strictly self-assembles in the TAM. Our tile set that self-assembles T consists of 51

tile types, and we prove that our construction is correct using the method of local determinism

due to Soloveichik and Winfree [15].

The remainder of this thesis is organized as follows. We first establish notation in Chapter

2. In Chapter 3 we develop our own flavor of the TAM, which not only incorporates the notion

of strict self-assembly but also treats infinite and finite assemblies equally. In Chapters 4, 5,

and 6, we briefly define local determinism, zeta-dimension, and the standard discrete Sierpinski

triangle respectively. In Chapter 7 we prove that S does not strictly self-assemble in the TAM.

In Chapter 8, we construct the fibered Sierpinski triangle and verify that its fractal dimension

agrees with that of S. Finally, in Chapter 9 we prove that T strictly self-assembles in the

TAM, and also prove the correctness of our construction.

This thesis is based on joint work with James I. Lathrop and Jack H. Lutz. Chapter 3 and

4 are based on Jack Lutz’s lecture notes in the course “Computational Models of Nanoscale

Self-Assembly”, which he and Jim Lathrop taught at Iowa State University in the fall of 2006.

Chapters 5 through 9 are based on the research paper [10].
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2 NOTATION AND TERMINOLOGY

Throughout this thesis we work in the n-dimensional discrete Euclidean space Zn, where

n is a positive integer. (In fact, we are primarily concerned with the discrete Euclidean plane

Z2.) We write Un for the set of all unit vectors, i.e., vectors of length 1, in Zn. We regard the

2n elements of Un as (names of the cardinal) directions in Zn.

We write [X]2 for the set of all 2-element subsets of a set X. All graphs in this thesis are

undirected graphs, i.e., ordered pairs G = (V,E), where V is the set of vertices and E ⊆ [V ]2

is the set of edges. A cut of a graph G = (V,E) is a partition C = (C0, C1) of V into two

nonempty, disjoint subsets C0 and C1.

A binding function on a graph G = (V,E) is a function β : E → N. (Intuitively, if

{u, v} ∈ E, then β ({u, v}) is the strength with which u is bound to v by {u, v} according to

β. If β is a binding function on a graph G = (V,E) and C = (C0, C1) is a cut of G, then the

binding strength of β on C is

βC =
∑

{β(e) |e ∈ E, e ∩ C0 6= ∅, and e ∩ C1 6= ∅}.

The binding strength of β on the graph G is then

β(G) = min {βC |C is a cut of G} .

A binding graph is an ordered triple G = (V,E, β), where (V,E) is a graph and β is a binding

function on (V,E). If τ ∈ N, then a binding graph G = (V,E, β) is τ -stable if β(V,E) ≥ τ .

An n-dimensional grid graph is a graph G = (V,E) in which V ⊆ Zn and every edge

{~a,~b} ∈ E has the property that ~a−~b ∈ Un. The full grid graph on a set V ⊆ Zn is the graph

G
#
V = (V,E) in which E contains every {~a,~b} ∈ [V ]2 such that ~a −~b ∈ Un.
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3 THE TILE ASSEMBLY MODEL

We review the basic ideas of the Tile Assembly Model. Our development largely follows

that of [13, 12], but some of our terminology and notation are specifically tailored to our

objectives. In particular, our version of the model only uses nonnegative “glue strengths”, and

it bestows equal status on finite and infinite assemblies.

Definition 1. An n-dimensional tile type is a function t : Un → N×N. We write t = (colt, strt),

where colt, strt : Un → N are defined by t(~u) = (colt(~u), strt(~u)) for all ~u ∈ Un.

Intuitively, a tile of type t is an n-dimensional unit cube. It can be translated but not

rotated, so it has a well-defined “side ~u ” for each ~u ∈ Un. Each side ~u of the tile is covered

with a “glue” of color colt(~u) and strength strt(~u). If tiles of types t and t′ are placed with

their centers at ~a and ~a + ~u, respectively, where ~a ∈ Zn and ~u ∈ Un, then they will bind with

strength strt(~u) · [[t(~u) = t′(−~u)]] where [[φ]] is the Boolean value of the statement φ. Note that

this binding strength is 0 unless the adjoining sides have glues of both the same color and the

same strength.

For the remainder of this chapter, unless otherwise specified, T is an arbitrary set of n-

dimensional tile types, and τ ∈ N is the “temperature.”

Definition 2. A T-configuration is a partial function α : Zn
99K T .

Intuitively, a configuration is an assignment α in which a tile of type α(~a) has been placed

(with its center) at each point ~a ∈ dom α. The following data structure characterizes how

these tiles are bound to one another.

Definition 3. The binding graph of a T -configuration α : Zn
99K T is the binding graph
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Gα = (V,E, β), where (V,E) is the grid graph given by

V = dom α,

E =
{

~a,~b ∈ [V ]2
∣

∣

∣
~a −~b ∈ Un, colα(~a)

(

~b − ~a
)

= col
α(~b)

(

~a −~b
)

, and strα(~a)

(

~b − ~a
)

> 0
}

,

and the binding function β : E → Z+ is given by

β({~a,~b}) = strα(~a)(~b − ~a)

for all {~a,~b} ∈ E.

Definition 4.

1. A T -configuration α is τ -stable if its binding graph Gα is τ -stable.

2. A τ -T -assembly is a T -configuration that is τ -stable. We write Aτ
T for the set of all

τ -T -assemblies.

Note that, if τ > 0, every τ -T -assembly α ∈ Aτ
T has a binding graph Gα that is connected.

Definition 5. Let α and α′ be T -configurations.

1. α is a subconfiguration of α′, and we write α ⊑ α′, if dom α ⊆ dom α′ and, for all

~a ∈ dom α, α(~a) = α′(~a).

2. α′ is a single-tile extension of α if α ⊑ α′ and dom α′ − dom α is a singleton set. In this

case, we write α′ = α + (~a 7→ t), where {~a} = dom α′ − dom α and t = α′(~a).

Note that the expression α + (~a 7→ t) is only defined when ~a ∈ Zn − dom α.

We next define the “τ -t-frontier” of a τ -T -assembly α to be the set of all positions at which

a tile of type t can be “τ -stably added” to the assembly α.

Definition 6. Let α ∈ Aτ
T .

1. For each t ∈ T , the τ -t-frontier of α is the set

∂τ
t α =







~a ∈ Zn − dom α

∣

∣

∣

∣

∣

∣

∑

~u∈Un

strt(~u) · [[α(~a + ~u)(−~u) = t(~u)]] ≥ τ







.
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2. The τ -frontier of α is the set

∂τα =
⋃

t∈T

∂τ
t α. (3.1)

Remark. We note that the union (3.1) is not in general a disjoint union.

The following lemma shows that the definition of ∂τ
t α achieves the desired effect.

Lemma 3.1. Let α ∈ Aτ
T , ~a ∈ Zn − dom α, and t ∈ T . Then α + (~a 7→ t) ∈ Aτ

T if and only if

~a ∈ ∂τ
t α.

Proof. Assume the hypothesis, let α′ = α + (~a 7→ t), and let Gα′ = (V,E, β) be the binding

graph of α′.

(⇒): Assume that α′ is a τ -T -assembly. Let C = (C0, C1), where C0 = dom α and

C1 = {~a}. Then Gα′ is τ -stable, and C is a cut of Gα′ , so

τ ≤ βC

=
∑

{β(e) |e ∈ E, e ∩ C0 6= ∅, and e ∩ C1 6= ∅}

=
∑

{

strt(~u)
∣

∣~u ∈ Un,~a + ~u ∈ dom α,α′(~a)(~u) = α′(~a + ~u)(−~u), and strα′(~a)(~u) > 0
}

=
∑

~u∈Un

strt(~u)[[α(~a + ~u)(−~u) = t(~u)]],

so ~a ∈ ∂τ
t α.

(⇐): Assume that ~a ∈ ∂τ
t α. To see that α′ is a τ -T -assembly, let C ′ = (C0, C1) be a cut of

Gα′ . Without loss of generality, assume that ~a ∈ C1. If C1 = {~a} then we are done because

~a ∈ ∂τ
t α, so assume otherwise. Then C = (C0, C1 − {~a}) is a cut of Gα, and

βC′ ≥ βC ≥ τ

since Gα is τ -stable and ~a ∈ ∂τ
t α.

Notation. We write α
1

−−→
τ,T

α′ (or, when τ and T are clear from context, α
1

−→ α′) to indicate

that α,α′ ∈ Aτ
T and α′ is a single-tile extension of α.

In general, self-assembly occurs with tiles adsorbing nondeterministically and asynchronously

to a growing assembly. We now define assembly sequences, which are particular “execution

traces” of how this might occur.
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Definition 7. A τ -T -assembly sequence is a sequence ~α = (αi | 0 ≤ i < k) in Aτ
T , where

k ∈ Z+ ∪ {∞} and, for each i with 1 ≤ i + 1 < k, αi
1

−−→
τ,T

αi+1.

Note that assembly sequences may be finite or infinite in length. Note also that, in any

τ -T -assembly sequence ~α = (αi | 0 ≤ i < k), we have αi ⊑ αj for all 0 ≤ i ≤ j < k.

Definition 8. The result of a τ -T -assembly sequence ~α = (αi | 0 ≤ i < k) is the unique

T -configuration α = res(~α) satisfying dom α =
⋃

0≤i<k dom αi and αi ⊑ α for each 0 ≤ i < k.

It is clear that res(~α) ∈ Aτ
T for every τ -T -assembly sequence ~α.

Definition 9. Let α,α ∈ Aτ
T .

1. A τ -T -assembly sequence from α to α′ is a τ -T -assembly sequence ~α = (αi | 0 ≤ i < k)

such that α0 = α and res(~α) = α.

2. We write α −−→
τ,T

α′ (or, when τ and T are clear from context, α −→ α′) to indicate that

there exists a τ -T -assembly sequence from α to α′.

Theorem 3.2. The binary relation −−→
τ,T

is a partial ordering of Aτ
T .

Proof. We write −→ for −−→
τ,T

. It is clear that −→ is reflexive and antisymmetric. To see

that −→ is transitive, let α,α′, α′′ ∈ Aτ
T satisfy α −→ α′ and α′ −→ α′′. Then there exist

a τ -T -assembly sequence ~α = (αi | 0 ≤ i < k) from α to α′ and a τ -T -assembly sequence

~α′ = (α′
j | 0 ≤ j < k) from α′ to α′′. We cannot merely concatenate these assembly sequences,

because k may be ∞. Instead, we “dovetail” ~α and ~α′ in the following manner.

For each i and j with 1 ≤ i + 1 < k and 1 ≤ j + 1 < l, let ~ai,~a
′
j ∈ Zn and ti, t

′
j ∈ T be the

locations and tile types such that αi+1 = αi + (~ai 7→ ti) and α′
j+1 = α′

j + (~a′j 7→ t′j). Define a

sequence ~̂α = (α̂m | 1 ≤ m + 1 < k + l) via the procedure

α̂0 := α0;

i, j,m := 0, 0, 0;

while m + 2 < k + l do

P ;Q

end while,
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where P is the macro

if i + 1 < k then

α̂m+1 := α̂m + (~ai 7→ ti);

i,m := i + 1,m + 1

end if

and Q is the macro

if j + 1 < l then

while ~a′j 6∈ ∂τ
t′j

α̂m do

α̂m+1 := α̂m + (~ai 7→ ti);

i, j := i + 1,m + 1

end while

α̂m+1 := α̂m + (~a′j 7→ t′j);

j,m := j + 1,m + 1

end if

It is routine to verify that, regardless of the values of k and l, ~̂α is a τ -T -assembly sequence

from α to α′′, whence α −→ α′′.

Definition 10. An assembly α ∈ Aτ
T is terminal if it is a −−→

τ,T
-maximal element of Aτ

T .

It is clear that an assembly α is terminal if and only if ∂τα = ∅.

We now define an assembly sequence to be fair if no location remains forever in its frontier.

Definition 11. A τ -T -assembly sequence ~α = (αi | 0 ≤ i < k) is fair if, for every ~a ∈ Zn,

|{i |0 ≤ i < k and ~a ∈ ∂ταi }| < ∞.

Note that every finite-length assembly sequence is fair. An obvious but useful property of

infinite-length assembly sequences is that they are fair exactly when their results are terminal.

Observation 3.3. Let ~α = (αi | 0 ≤ i < k) be a τ -T -assembly sequence. If k = ∞ then res(~α)

is terminal if and only if ~α is fair.

We now show that every assembly is −−→
τ,T

-bounded by (i.e., can lead to) a terminal assembly.
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Lemma 3.4. For each α ∈ Aτ
T , there exists a α′ ∈ Aτ

T such that α −−→
τ,T

α′ and α′ is terminal.

Proof. Let α ∈ Aτ
T . Fix an enumeration ~a0,~a1,~a2, . . . of Zn, and define a τ -T -assembly sequence

~α = (αi | 0 ≤ i < k) via the procedure

α0 := α;

i := 0;

while ∂ταi 6= ∅ do

choose the least j ∈ N such that ~aj ∈

∂ταi;

choose t ∈ T such that ~aj ∈ ∂ταi;

αi+1 := αi + (~aj 7→ t);

i := i + 1

end while

Note that our choice of the least j in each iteration of the while-loop ensures that ~α is fair.

Let α′ = res(~α). Then α −−→
τ,T

α′ is clear. If the while-loop terminates, then α′ is terminal

because ∂ταi = ∅. If not, then α′ is terminal by Observation 2.3.

We now define tile assembly systems.

Definition 12.

1. An n-dimensional generalized tile assembly system (n-GTAS, or GTAS) is an ordered

triple

T = (T, σ, τ),

where T is a set of n-dimensional tile types, σ ∈ Aτ
T is the seed assembly, and τ ∈ N is

the temperature.

2. An n-dimensional tile assembly system (n-TAS, or TAS) is an n-GTAS T = (T, σ, τ) in

which the sets T and dom σ are finite.

Definition 13. A GTAS T = (T, σ, τ) is singly seeded if σ is of the form

σ(~a) =











t if ~a = ~0

↑ otherwise
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for some t ∈ T .

Intuitively, a “run” of an n-GTAS T = (T, σ, τ) is any τ -T -assembly sequence ~α = (αi |

0 ≤ i < k) that begins with α0 = σ. Accordingly, we define the following sets.

Definition 14. Let T = (T, σ, τ) be an n-GTAS.

1. The set of assemblies produced by T is

A[T ] =

{

α ∈ Aτ
T

∣

∣

∣

∣

σ −−→
τ,T

α

}

.

2. The set of terminal assemblies produced by T is

A�[T ] = {α ∈ A[T ] |α is terminal} .

Note that A�[T ] is always nonempty by Lemma 2.4.

We are often interested in tile assembly systems that produced unique assemblies in the

following sense.

Definition 15. An n-GTAS T is definitive if |A�[T ]| = 1. In this case, we say that T produces

the unique assembly α, where A�[T ] = {α}.

The following theorem characterizes definitive tile assembly systems in terms of the assem-

bly sequence relation −−→
τ,T

.

Theorem 3.5. An n-GTAS T is definitive if and only if the partial ordering −−→
τ,T

directs the

set A[T ].

Proof. Let T = (T, σ, τ) be an n-GTAS. Assume that T is definitive. To see that −−→
τ,T

directs

A[T ], let α′, α′′ ∈ A[T ]. By Lemma 3.4, there exist α̂′, α̂′′ ∈ A�[T ] such that α′ −−→
τ,T

α̂′ and

α′′ −−→
τ,T

α̂′′. Since T is definitive, we must have α̂′ = α̂′′, whence α′ −−→
τ,T

α̂′ and α′′ −−→
τ,T

α̂′.

This shows that −−→
τ,T

directs A[T ].

Conversely, assume that T is not definitive. Then there exist α′, α′′ ∈ A�[T ] with α′ 6= α′′.

Since α′ and α′′ are terminal, there is no assembly α ∈ A[T ] with α′ −−→
τ,T

α and α′′ −−→
τ,T

α.

Hence, −−→
τ,T

does not direct A[T ].
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In the present paper, we are primarily interested in the self-assembly of sets.

Definition 16. Let T = (T, σ, τ) be an n-GTAS, and let X ⊆ Zn.

1. The set X weakly self-assembles in T if there is a set B ⊆ T such that, for all α ∈ A�[T ],

α−1(B) = X.

2. The set X strictly self-assembles in T if, for all α ∈ A�[T ], dom α = X.

Intuitively, a set X weakly self-assembles in T if there is a designated set B of “black” tile

types such that every terminal assembly of T “paints the set X - and only the set X - black”.

In contrast, a set X strictly self-assembles in T if every terminal assembly of T has tiles on

the set X and only on the set X. Clearly, every set that strictly self-assembles in a GTAS T

also weakly self-assembles in T .

We now have the machinery to say what it means for a set in discrete Euclidean space to

self-assemble in either the weak or the strict sense.

Definition 17. Let X ⊆ Zn.

1. The set X weakly self-assembles if there is an n-TAS T such that X weakly self-assembles

in T .

2. The set X strictly self-assembles if there is an n-TAS T such that X strictly self-assembles

in T .

Note that T is required to be a TAS, i.e., finite, in both parts of the above definition.
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4 LOCAL DETERMINISM

In this chapter, we review the concept of local determinism invented by Soloveichik and

Winfree [15]. Local determinism is a method for proving the correctness of tile assembly

systems in which “irregular” shapes self-assemble. Namely, if an n-GTAS T = (T, σ, τ) is

locally deterministic, then one is assured that every τ -T -assembly sequence will lead to the

correct (a.k.a., unique) result.

Notation. For each n-dimensional T -configuration α, each ~m ∈ Zn, and each ~u ∈ Un,

strα(~m, ~u) = strα(~m)(~u)[[α(~m)(~u) = α(~m + ~u)(−~u)]].

(The Boolean value on the right is 0 if {~m, ~m + ~u} * dom α.)

Notation. If ~α = (αi|0 ≤ i < k) is a τ -T -assembly sequence and ~m ∈ Zn, then the ~α-index of

~m is

i~α(~m) = min{i ∈ N |~m ∈ dom αi }.

Observation 4.1. If dom α0 is finite, then

~m ∈ dom res(~α) ⇔ i~α(~m) < ∞.

Notation. If ~α = (αi|0 ≤ i < k) is a τ -T -assembly sequence, then, for ~m, ~m′ ∈ Zn,

~m ≺~α ~m′ ⇔ i~α(~m) < i~α(~m′).

Definition 18. (Soloveichik and Winfree 2004 [15]) Let ~α = (αi|0 ≤ i < k) be a τ -T -assembly

sequence, and let α = res(~α). For each location ~m ∈ dom α, define the following sets of

directions.

1. IN~α(~m) =
{

~u ∈ Un

∣

∣

∣
~m + ~u ≺~α ~m and strαi~α(~m)

(~m, ~u) > 0
}

.
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2. OUT~α(~m) =
{

~u ∈ Un | − ~u ∈ IN~α(~m + ~u)
}

.

3. TERM~α(~m) = Un − IN~α(~m) − OUT~α(~m).

Intuitively, IN~α(~m) is the set of sides on which the tile at ~m initially binds in the assembly

sequence ~α, and OUT~α(~m) is the set of sides on which this tile propagates information to

future tiles. TERM~α(~m) is the set of sides which are neither input nor output sides.

Note that IN~α(~m) = ∅ for all ~m ∈ α0.

Notation. If ~α = (αi|0 ≤ i < k) is a τ -T -assembly sequence, α = res(~α), and ~m ∈ dom α −

dom α0, then

~α \ ~m (~x) =











α (~x) if ~x 6∈ dom α − {~m} −
(

~m + OUT~α(~m)
)

↑ otherwise

(Note that ~α \ ~m is a T -configuration that may or may not be a τ -T -assembly.

Definition 19. (Soloveichik and Winfree 2004 [15]). A τ -T -assembly sequence ~α = (αi|0 ≤

i < k) with α = res(~α) is locally deterministic if it has the following three properties.

1. For all ~m ∈ dom α − dom α0,

∑

~u∈IN~α(~m)

strαi~α(~m)
(~m, ~u) = τ.

2. For all ~m ∈ dom α − dom α0 and all t ∈ T − {α(~m)}, ~m 6∈ ∂τ
t ~α \ ~m.

3. ∂τα = ∅.

That is, ~α is locally deterministic if (1) each tile added in ~α “just barely” binds to the

assembly; (2) if a tile of type t0 at a location ~m and its immediate “OUT-neighbors” are

deleted from the result of ~α, then no tile of type t 6= t0 will attach itself to the thus-obtained

configuration at location ~m; and (3) the result of ~α is terminal.

Definition 20. An n-dimensional GTAS T = (T, σ, τ) is locally deterministic if there exists a

locally determinstic τ -T -assembly sequence ~α = (αi|0 ≤ i < k) with α0 = σ.

Theorem 4.2. (Soloveichik and Winfree 2004 [15]) Every locally deterministic n-GTAS is

definitive.
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5 ZETA-DIMENSION

The most commonly used dimension for continuous fractals is Hausdorff dimension while

the most commonly used dimension for discrete fractals is zeta-dimension. In this chapter, we

give a brief overview of zeta-dimension.

Zeta-dimension has been re-discovered several times by researchers in various fields over

the past few decades, but its origins actually lie in Euler’s (real-valued predecessor of the

Riemann) zeta-function [8] and Dirichlet series. For each set A ⊆ Z2, define the A-zeta-

function ζA : [0,∞) → [0,∞] by ζA(s) =
∑

(0,0)6=(m,n)∈A(|m| + |n|)−s for all s ∈ [0,∞). Then

the zeta-dimension of A is

Dimζ(A) = inf{s|ζA(s) < ∞}.

It is clear that 0 ≤ Dimζ(A) ≤ 2 for all A ⊆ Z2. It is also easy to see (and was proven by

Cahen in 1894; see also [4, 9]) that zeta-dimension admits the “entropy characterization”

Dimζ(A) = lim sup
n→∞

log |A≤n|

log n
(5.1)

where A≤n = {(m,n) ∈ A | |m| + |n| ≤ n}. Various properties of zeta-dimension, along

with extensive historical citations, appear in the recent paper [7], but our technical arguments

here can be followed without reference to this material. We use the fact that (5.1) can be

transformed by changes of variable up to exponential, e.g.,

Dimζ(A) = lim sup
n→∞

log |A[0,2n]|

n

also holds.
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6 THE STANDARD DISCRETE SIERPINSKI TRIANGLE S

Figure 6.1 Standard Discrete Sierpinski Triangle S

In this chapter, we briefly review the standard discrete Sierpinski triangle and the calcula-

tion of its zeta-dimension.

Let V = {(1, 0), (0, 1)}. Define the sets S0, S1, S2, · · · ⊆ Z2 by the recursion

S0 = {(0, 0)} , (6.1)

Si+1 = Si ∪
(

Si + 2iV
)

,
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where A + cB = {~a + c~b|~a ∈ A and ~b ∈ B}. Then the standard discrete Sierpinski triangle is

the set

S =
∞
⋃

i=0

Si,

which is illustrated in Figure 1. Note that there is an obvious resemblance between the discrete

Sierpinski triangle and its continuous counterpart despite the fact that the latter is a compact

subset of real numbers while the former is an infinite subset of Z2. Moreover, the discrete

and continuous Sierpinski triangles not only look similar but they also share the same fractal

dimension. This is not a mere coincidence but rather an instance of a more general relationship

[7] between the Hausdorff and zeta-dimension of certain types of self-similar fractals.

It is well known that S is the set of all (k, l) ∈ N2 such that the binomial coefficient
(

k+l
k

)

is odd. For this reason, the set S is also called Pascal’s triangle modulo 2. It is clear from the

recursion (6.1) that |Si| = 3i for all i ∈ N. The zeta-dimension of S is thus

Dimζ(S) = lim sup
n→∞

log
∣

∣S[0,2n]

∣

∣

n

= lim sup
n→∞

log |Sn|

n

= log 3

≈ 1.585.
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7 IMPOSSIBILITY OF STRICT SELF-ASSEMBLY OF S

This chapter presents our first main theorem, which says that the standard discrete Sier-

pinski triangle S does not strictly self-assemble in the Tile Assembly Model. In order to prove

this theorem, we first develop a lower bound on the number of tile types required for the

self-assembly of a set X in terms of the depths of finite trees that occur in a certain way as

subtrees of the full grid graph G
#
X of X.

Intuitively, given a set D of vertices of G
#
X (which is in practice the domain of the seed

assembly), we define a D-subtree of G
#
X to be any rooted tree in G

#
X that consists of all vertices

of G
#
X that lie at or on the far side of the root from D. For simplicity, we state the definition

in an arbitrary graph G.

Definition 21. Let G = (V,E) be a graph, and let D ⊆ V .

1. For each r ∈ V , the D-r-rooted subgraph of G is the graph GD,r = (VD,r, ED,r), where

VD,r = {v ∈ V | every path from v to (any vertex in) D in G goes through r}

and

ED,r = E ∩ [VD,r]
2
.

(Note that r ∈ VD,r in any case.)

2. A D-subtree of G is a rooted tree B with root r ∈ V such that B = GD,r.

3. A branch of a D-subtree B of G is a simple path π = (v0, v1, . . .) that starts at the root

of B and either ends at a leaf of B or is infinitely long.

We use the following quantity in our lower bound theorem.



20

Definition 22. Let G = (V,E) be a graph and let D ⊆ V . The finite-tree depth of G relative

to D is

ft-depthD (G) = sup {depth(B)|B is a finite D-subtree of G} .

We emphasize that the above supremum is only taken over finite D-subtrees. It is easy to

construct an example in which G has a D-subtree of infinite depth, but ft-depthD (G) < ∞.

Example 7.1. Let X = {(m, 0) |m ∈ N}∪{(2n+1, 1) |n ∈ N} and note that G
#
X is an infinite

tree. Now let T be subtree rooted at ~r = (0, 0). It is clear that T is a D-subtree rooted at ~r of

infinite depth. However, ft-depthD (T ) < ∞ because every finite D-subtree must be rooted at

some point in the set {(n, 1)|n ≥ 1 and n is odd}, which clearly results in a constant depth.

To prove our lower bound result, we use the following theorem from [2].

Theorem 7.2. (Adleman, Cheng, Goel, Huang, Kempe, Moisset de Espanés, and Rothemund

2002 [2]) Let X ⊆ Z2 with |X| < ∞ such that G
#
X is a tree rooted at the origin. If X strictly

self-assembles in the singly seeded 2-TAS T = (T, σ, 2) then |T | ≥ depth
(

G
#
X

)

.

We now prove our lower bound result, which is the following.

Theorem 7.3. Let X ⊆ Z2. If X strictly self-assembles in a 2-GTAS T = (T, σ, τ), then

|T | ≥ ft-depthdom σ

(

G
#
X

)

.

Proof. Assume the hypothesis, and let B be a finite dom σ-subtree of G
#
X . If suffices to prove

that |T | ≥ depth(B).

Let α ∈ A�[T ], and let ~r be the root of B. Let σ′ be the assembly with dom σ′ = {~r} and

~u,~v ∈ U2. We define σ′(~r) as follows.

σ′(~r) =
(

colσ(~r)(~u), strσ(~r)(~u)
)

=











(

colα(~r)(~u), strα(~r)(~u)
)

if ~u + ~v ∈ B

(−∞, 0) otherwise

Then T ′ = (T, σ′, τ) is an n-GTAS in which B self-assembles. By Theorem 7.2, this implies

that |T | ≥ depth(B).
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We note that Adleman, Cheng, Goel, Huang, Kempe, Moisset de Espanés, and Rothemund

[2] proved the special case of Theorem 7.3 in which G
#
X is itself a finite tree and dom σ = {~r},

where ~r is the root of G
#
X .

We now show that the standard discrete Sierpinski triangle S has infinite finite-tree depth.

Lemma 7.4. For every finite set D ⊆ S, ft-depthD

(

G
#
S

)

= ∞.

Proof. Let D ⊆ S be finite, and let m be a positive integer. It suffices to show that

ft-depthD

(

G
#
S

)

> m. Choose k ∈ N large enough to satisfy the following two conditions.

(i) 2k > max{a ∈ N|(∃b ∈ N)(a, b) ∈ D},

(ii) 2k > m.

Let ~rk = (2k+1, 2k), and let

Bk =
{

(a, b) ∈ S

∣

∣

∣
a ≥ 2k+1, b ≥ 2k and a + b ≤ 2k+2 − 1

}

.

Figure 7.1 The set Bk for k = 0, 1, 2, 3, 4.

It is routine to verify that Bk is a finite D-subtree of G
#
S

with root at ~r and depth 2k. It

follows that

ft-depthD

(

G
#
S

)

≥ depth (Bk) = 2k > m.
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We now have the machinery to prove our first main theorem.

Theorem 7.5. S does not strictly self-assemble in the Tile Assembly Model.

Proof. Let T = (T, σ, τ) be an 2-GTAS in which S strictly self-assembles. It suffices to show

that T is not an 2-TAS. If dom σ is infinite, this is clear, so assume that dom σ is finite. Then

Theorem 7.3 and Lemma 7.4 tell us that |T | = ∞, whence T is not an 2-TAS.

Note that the results of this chapter easily extend to other infinite “tree shapes” in which

finite subtrees of arbitrary depth exist.
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8 THE FIBERED SIERPINSKI TRIANGLE T

Figure 8.1 Fibered Sierpinski Triangle T

We now define the fibered Sierpinski triangle and show that it has the same zeta-dimension

as the standard discrete Sierpinski triangle.

As in Section 2, let V = {(1, 0), (0, 1)}. Our objective is to define sets T0, T1, T2, · · · ⊆ Z2,

sets F0, F1, F2, · · · ⊆ Z2, and functions l, f, t : N → N with the following intuitive meanings.

1. Ti is the ith stage of our construction of the fibered Sierpinski triangle.

2. Fi is the fiber associated with Ti, a thin strip of tiles along which data moves in the self-
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assembly process of Section 5. It is the smallest set whose union with Ti has a vertical

left edge and a horizontal bottom edge, together with one additional layer added to these

two now-straight edges.

3. l(i) is the length (number of tiles in) the left (or bottom) edge of Ti ∪ Fi.

4. f(i) = |Fi|.

5. t(i) = |Ti|.

These five entities are defined recursively by the equations

T0 = S2 (stage 2 in the construction of S),

F0 = ({−1} × {−1, 0, 1, 2, 3}) ∪ ({−1, 0, 1, 2, 3} × {−1}) ,

l(0) = 5,

f(0) = 9,

t(0) = 9,

Ti+1 = Ti ∪ ((Ti ∪ Fi) + l(i)V ) , (4.1)

Fi+1 = Fi ∪ ({−i − 1} × {−i − 1,−i, · · · , l(i + 1) − i − 2})

∪ ({−i − 1,−i, · · · , l(i + 1) − i − 2} × {−i − 1}) ,

l(i + 1) = 2l(i) + 1,

f(i + 1) = f(i) + 2l(i + 1) − 1,

t(i + 1) = 3t(i) + 2f(i).

Comparing the recursions (2.1) and (4.1) shows that the sets T0, T1, T2, · · · are constructed

exactly like the sets S0, S1, S2, · · · , except that the fibers Fi are inserted into the construction

of the sets Ti. A routine induction verifies that this recursion achieves conditions 2, 3, 4, and

5 above. The fibered Sierpinski triangle is the set

T =
∞
⋃

i=0

Ti,

which is illustrated in Figure 2. The resemblance between S and T is clear from the illustra-

tions. We now verify that S and T have the same zeta-dimension.



25

Lemma 8.1. Dimζ(T) = Dimζ(S).

Proof. Solving the recurrences for l, f , and t, in that order, gives the formulas

l(i) = 3 · 2i+1 − 1,

f(i) = 3(2i+3 − i − 5),

t(i) =
3

2

(

3i+3 − 2i+5 + 2i + 11
)

,

which can be routinely verified by induction. It follows readily that

Dimζ (T) = lim sup
n→∞

log t(n)

log l(n)
= log 3 = Dimζ (S) .

We note that the thickness i + 1 of a fiber Fi is O(log l(i)), i.e., logarithmic in the side

length of Ti. Hence the difference between Si and Ti is asymptotically negligible as i → ∞.

Nevertheless, we show in the next chapter that T, unlike S, strictly self-assembles in the Tile

Assembly Model.
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9 STRICT SELF-ASSEMBLY OF T

This chapter is devoted to proving our second main theorem, which is the following.

Theorem 9.1. T strictly self-assembles in the Tile Assembly Model.

To prove Theorem 9.1, we present a modified version of an optimal binary counter that

contains a “shift” element in tandem with the counter. This results in the placement of output

ports (points at which structures may attach to the modified counter) which are used to grow

additional modified counters at right angles. Recursively applying this procedure to the new

counters yields the fibered Sierpinski triangle, as shown in Figure 8.1. Our singly-seeded tile

set that produces the fibered Sierpinski triangle in this manner contains 51 tile types.

The remainder of this chapter gives a detailed description on how these modified counters

are constructed and joined together to form the fibered Sierpinski triangle along with a proof

of correctness. We first review the optimal counter from [6].
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The Standard Optimal Counter

In this subsection we review the optimal binary counter due to Cheng, Goel and Moisett

de Espanés [6]. The optimality of the counter refers to its running time, which is a stochastic

process and thus beyond the scope of this thesis. However, it is perhaps the simplest construc-

tion of a binary counter in the TAM, and is an ideal candidate for use in more complicated

structures such as the fibered Sierpinski triangle. We give the complete tile set for the optimal

binary counter in the following figure.

n u

unu a

b

l

a u

nnu u

l

b

c s

zcc c

s

z

s s

zcc z

0 1

001 1

1

0

Figure 9.1 The tile set for the optimal binary counter.

Self-assembly of the optimal counter proceeds as follows. We first assume the existence of

an initial row of k tiles, which actually requires k additional tile types to self-assemble from a

single seed tile. The right most tile in the initial row will begin the self-assembly of the counter.

In general, the first tile type to attach in any row will do so above the right most 0 bit in the

previous row. Note that there is a special tile type designed to attach in the least-significant

bit position. The self-assembly of a row (i.e., an increment operation) emanates outward from

the initial tile that attaches in both directions. The bits in the previous row that are located

to the left of the initial tile are simply copied up to the current row, and then the tiles to the

right of the initial tile are simply set to 0. This process continues until a right most 0 bit does

not exist. We give an example of the self-assembly of the optimal binary counter in Figure 9.2.

(See [6] for a complete discussion of the optimal binary counter.)
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Figure 9.2 Optimal binary counter.
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A Modified Optimal Counter

In this subsection, we will construct a vertically oriented, “log-width” binary counter, based

on the optimal binary counter presented in the previous subsection. We modify our counter to

have the property that each number is counted twice and then is repeated as many times as

there are 0 bits to the right of its right most 1 bit. This results in our modified counter having

a recursive structure similar to that of the tick marks on a ruler.

Figures 9.3, 9.4, and 9.5 collectively represent a set of tile types that we will use to construct

a self-contained, singly-seeded 2-TAS in which our modified vertical log-width counter strictly

self-assembles.
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Figure 9.3 The seed, initialization, and transition tile types.
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Figure 9.4 Tile types used to increment the counter.
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Construction 9.2. Let T = (TV, σ, 2) be the 2-TAS where

• TV is the set of tile types given in Figures 9.3, 9.4, and 9.5, and

• σ is the seed assembly that places the seed tile at the origin and is undefined at all other

locations.

Self-assembly of T starts with a single seed tile, which is the tile labeled ‘S’ in Figure 9.3.

The initial eight tile types that attach in a modified log-width counter do so according to the

unique assembly sequence illustrated below.
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Figure 9.6 Initialization of a vertical log-width optimal counter.
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In general, self-assembly proceeds in stages, where a stage of width w of a log-width counter

is defined as any contiguous sequence of rows having width w. A transition from the current

stage to the next stage in a log-width counter is when the tile type whose south edge is colored

with the character ‘i’ binds. Note that there is one, and only one tile type to which the first

tile of the next stage can bind.
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Figure 9.7 Vertical log-width modified optimal counter transition from T2

to T3.

As a result of a transition, the width of the counter increases by 1 to the left. This means

that the right borders of every stage in the log-width counter are flush. The above figure shows
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a detailed example of a transition.

Each row in a modified log-width counter is either a count row or a spacing row. Count

rows are the rows in which the counter is incremented by 1. We force the most significant

bit in every count row, excluding the final count row, in our modified counter to always be

1. Figure 9.8a shows the relationship between the counting rows and the spacing rows for a

particular stage (of width 4) of a vertical log-width counter. As shown in this figure, the darker

shaded, un-numbered tiles depict the spacing rows, which are used to “delay” the counter by

an appropriate amount. The height (number of rows) in the spacing element is determined

by the position of the right most 1 digit in the binary counter. A 1 in the least significant

bit (position 0) generates a single spacing row above the count. In general, if position i is the

location of the right most 1 digit in the binary counter, then the number of spacing rows after

that count is i + 1. Note that for a stage of width w, the initial w rows that attach are all

spacing rows.

Figure 9.8b shows the locations of the output ports, depicted in dark green on the right

edge. It is to these locations (and only these locations) that oppositely oriented fixed-width

modified counters ultimately attach.
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Figure 9.8a. Spacing rows Figure 9.8b. Output ports

Figure 9.8 Vertical log-width modified optimal counter.

The internal structure of the modified counter simply contains a fixed-width optimal binary

counter (see [6] for a detailed discussion), interweaved with spacing rows, along with a special

set of left border tiles that allow it to make transitions (i.e., the darkest shaded, left most tiles

in Figure 9.8a). To the north edge of each count row, a spacing row attaches. The number of

spacing rows that follow the count row are determined by the position of the right most 1 in

the previous count row. A “token” tile attaches to this special tile and additional spacing rows

attach but with the token tile shifted to the right one tile. The spacing rows are terminated

when the token tile reaches the right edge of the counter. The spacing rows retain the current
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count of the counter by passing this information through the glue labels of the spacing tiles

vertically. In this way, the last spacing row provides the correct glue labels to produce the

next counting row. This process can be seen in the following figure with the ‘#’ indicating

this special token tile. Here, we can see that the number 1100 (represented by the first row

of tiles) is counted once, followed by exactly three spacing rows because the number 1100 has

two zero bits following the right most one bit.
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Figure 9.9 Shifting element in a vertical modified log-width optimal
counter.

Note that the final row of each stage is a count row in which the north label of left most

tile type is colored with the string ‘i’ and hence initiates a transition from the current stage to

the next stage (see Figure 9.7).
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The following observation testifies to the fact that there exists a direct relationship between

the fibered Sierpinski triangle and our modified optimal counter.

Observation 9.3. The number of rows in a stage of width w + 2 for a log-width modified

counter is l(w) = 3 · 2w+1 − 1.

Proof. Note that the total number of rows in a particular stage of width w + 2 is the number

of count rows plus the number of spacing rows. It is clear that there are exactly 2w+1 count

rows, and the number of spacing rows is

(w + 2) +

w
∑

i=0

(i + 1) · 2w−i = 2w+2 − 1.

A Tile Assembly System for T

We will now present a 2-TAS in which the set T strictly self-assembles. However, before

we can do so, we must first construct three more types of modified optimal counters: a vertical

fixed-width counter and both a horizontal log and fixed-width counter.

First, note that Construction 9.2 actually gives us two modified counters for the price of

one. From the 2-TAS T , we can easily extract a set T ′
V ⊂ TV of tile types that self-assemble

into a vertical fixed-width modified counter, but do so only in the presence of the output ports

that are provided by some horizontal modified counter. We simply take T ′
V to be the set of

tile types given in Construction 9.2 that include all but the two left most columns of tile types

(i.e., all non-left border tile types).

Furthermore (and with hardly any additional effort), we can squeeze two more modified

counters out of Construction 9.2! To see this, simply take the set TV from Construction 9.2 and

“reflect” each tile type, other than the seed tile, about the line y = x. Call this new set of tile

types TH. We must also change all the vertical indicator symbols to horizontal indicators and

vice versa. This will not affect the behavior of TH, but it will prevent the inadvertent binding

between tile types that belong to oppositely oriented modified counters. It is clear that this

simple construction gives us a new 2-TAS in which a horizontal log-width counter, having the
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same fundamental properties as its vertical counterpart, self-assembles. And of course, doing

so also gives us a horizontal fixed-width modified counter that is able to attach to the output

ports provided by modified vertical counters.

We will forego a detailed exposition of the aforementioned counters since their behavior

can all be understood in terms of the vertical log-width modified optimal counter of Construc-

tion 9.2.

The following construction yields a 2-TAS in which T strictly self-assembles.

Construction 9.4. Let TT = (T, σ, 2), where

• T = TV ∪ TH, and

• σ is the same as in Construction 9.2.

Proof of Correctness

We are now ready to prove that TT is a 2-TAS that uniquely produces the fibered Sierpinski

triangle. Note that the following lemma implies Theorem 9.1.

Lemma 9.5. The 2-TAS TT = (T, σ, 2), given in Construction 9.4, is definitive.

Proof. To prove the claim, it suffices to exhibit a locally deterministic 2-T -assembly sequence.

Let ~α = (αi|0 ≤ i < k) be the infinite 2-T -assembly sequence that self-assembles T one stage

at a time, where each stage is self-assembled one modified counter at a time, and the modified

counters are self-assembled in the order of increasing distance from the origin. Note that if two

modified counters share the same distance from the origin, we assume that ~α self-assembles the

counter having the greater x-coordinate first. This implies that ~α will self-assemble a modified

counter if and only if the output ports to which it can attach exist. Further, assume that each

modified counter is self-assembled one row at a time according to the assembly sequence that

is implicit from Figures 9.6, 9.7, and 9.9. It is clear from Sections 5.1 and 5.2 that such an

assembly sequence not only exists, but is in fact unique, whence dom res(~α) = T. A finite

snapshot of the infinite assembly sequence ~α is illustrated in the following figure, where T1 is
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shown fully assembled in the upper left corner, and then modified counters are attached one

at a time by ~α to yield T2.

Figure 9.10 A snapshot of ~α.

We will first show that every tile that binds through ~α does so deterministically via its

input sides, and with exactly strength 2. In doing so, we will restrict our attention to vertical

modified counters and note that our analysis can be easily extended to handle horizontal

modified counters as well.

Recall that ~α self-assembles each modified counter one row at a time. This means that the

first tile type to attach in every row does so via a double strength bond. It is routine to verify

that for all t ∈ T , if there exists ~u ∈ U2 where strt (~u) = 2, then there is a unique t′ ∈ T such

that colt′ (−~u) = colt (~u). Now consider the self-assembly of an increment row. In such a row,

self-assembly proceeds from right to left in the natural way and, therefore it suffices to verify

that following single tile extensions are unique.

0v 1*v 0v 1v 1v 1*v

c c s c s s

In a spacing row, the first tile type attaches via a double strength bond and in general

there will be two directions in which the row can self-assemble. In our definition of ~α, we
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assume that self-assembly first proceeds to the left and then to the right. For the former case,

it suffices to verify that the following three single tile extensions are unique.

*1v 1v 0v

c c c

For the latter case, in which self-assembly proceeds to the right, there are six single tile

extensions to verify.

0v 0*v 0*v 0v 0v 0*v

b b # # z z

Observe that all of the above single tile extensions are in fact unique.

To prove that ~α is locally deterministic, we must show that res(~α) ∈ A�[TT]. In other

words, we must argue that after ~α has strictly self-assembled the set T, it is impossible for

any tile type to bind at any location in the set Z2 −T. We will show that for all ~m ∈ Z2 −T,

~m 6∈ ∂τα

Let ~m ∈ Z2 − T. If ~m + ~u 6∈ T for every ~u ∈ U2, then ~m is not adjacent to T and

~m 6∈ ∂τα because ~α is a 2-T -assembly sequence. However, if ~m is adjacent to T then |{~u ∈

U2|~m + ~u ∈ T}| ∈ {1, 2, 3, 4}. Suppose that |{~u ∈ U2|~m + ~u ∈ T}| = 1. Then it is easy to see

that ~m 6∈ ∂τα due to a lack of binding strength along the border of T. On the other hand, if

|{~u ∈ U2|~m + ~u ∈ T}| ≥ 2 then ~m will be in a “corner” formed when two oppositely oriented

modified counters meet. This implies that if there exists t ∈ T such that ~m ∈ ∂τ
t α, then it must

be the case that t has a vertical indicator symbol on its bottom edge and a horizontal indicator

symbol on its left edge. However, this situation is impossible by the way we constructed TT.

In either case, ~m 6∈ ∂τα, whence res(~α) ∈ A�[TT].
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10 CONCLUSION

This thesis investigated the strict self-assembly of discrete Sierpinski triangles.

We first developed a version of the standard Tile Assembly Model which (1) differentiates

between weak and strict self-assembly and (2) does not discriminate against infinite assemblies.

We showed that the standard discrete Sierpinski triangle does not strictly self-assemble in

the Tile Assembly Model using a lower bound for the number of tile types required to self-

assemble tree shapes [2]. We then went on to show that a “fibered” version of the standard

discrete Sierpinski triangle, having the same fractal dimension as its non-fibered counterpart,

does in fact strictly self-assemble in the Tile Assembly Model. We proved that the fibered

Sierpinski triangle strictly self-assembles by using a modified version of the optimal binary

counter presented in [6], and then showed that our tile assembly system was definitive using

local determinism from [15].

A goal for future research will be to answer the following question, which at the time of

this writing, remains open:

Question 10.1. Does there exist a discrete self-similar fractal F ⊆ Z2 that strictly self-

assembles in the Tile Assembly Model?
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