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Abstract. In Functional Data Analysis (FDA) multivariate data are
considered as sampled functions. We propose a non-supervised method
for finding a good function basis that is built on the data set. The basis
consists of a set of Gaussian kernels that are optimized for an accurate
fitting. The proposed methodology is experimented with two spectro-
metric data sets. The obtained weights are further scaled using a Delta
Test (DT) to improve the prediction performance. Least Squares Support
Vector Machine (LS-SVM) model is used for estimation.

1 Introduction

In Functional Data Analysis [1] samples are treated as functions instead of tradi-
tional discrete vectors. A crucial part of FDA is the choice of basis that allow the
functional representation. Commonly used bases are b-splines, Fourier series or
wavelets. However, it is appealing to build a problem-specific basis that employs
the statistical properties of the data at hand.

In literature, there are examples of finding the optimal set of basis functions
that minimize the fitting error, such as Functional Principal Component Analysis
[1]. The basis functions obtained by Functional PCA usually have global support
(i.e. they are non-zero throughout the data interval). Thus these functions are
not good for encoding spatial information of the data. The spatial information,
however, may play a major role in many fields, such as spectroscopy. For example,
often the measured spectra contains spikes or ditches at certain wavelengths that
correspond to certain substances in the sample. Therefore these areas are bound
to be relevant for estimating the quantity of these substances.

We propose that locally supported functions, such as Gaussian kernels, can
be used to encode this sort of spatial information. In addition, variable selection
can be used to select the relevant kernels from the irrelevant ones. Selecting
important variables directly on the raw data is often difficult due to high di-
mensionality of data; computational cost of variable selection methods (such as
Backward-Forward [5]) grows exponentially with the number of variables. There-
fore, wisely placed Gaussian kernels are proposed as a tool for encoding spatial
information while reducing data dimensionality so that other more powerful in-
formation processing tools become feasible. Delta Test (DT) based scaling of
variables is suggested for improving the prediction performance.
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The methodology is presented in Section 2 starting with a brief overview. The
optimization of Gaussian kernels is explained in Section 2.2, DT based scaling in
Section 2.3 and LS-SVM model in Section 2.4. Section 3 presents two real world
applications with results. Finally the concluding remarks are drawn in Section 4.

2 Methodology

Consider a problem where the goal is to estimate a certain quantity p ∈ R from a
measured spectrum X based on the set of N training examples CL = (Xj , pj)N

j=1.
In practice, the spectrum Xj is a set of discretized measurements (xj

i , y
j
i )

m
i=1

where xj
i ∈ R stand for the wavelength and yj

i ∈ R is the response.
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Fig. 1. Outline of the prediction method

Adopting the FDA framework [1], our goal is to build a prediction model F so
that p̂ = F (X). The argument X is a real-world spectrum, i.e. a continuous func-
tion that maps wavelengths to responses. Without much loss of generality it can
be assumed that X ∈ L2([a, b]). However, since the spectrum X is unknown and
infinite dimensional it is approximated with a q dimensional vector ω = P(X), P :
L2 �−→ R

q. In this case our prediction model can be reformulated as p̂ = F (ω).
Figure 1 presents a graph of the overall prediction method. Gaussian fitting is

used for the approximation of X . The obtained vectors ω are further scaled by
a diagonal matrix A before the final LS-SVM modeling. The following sections
explain these steps in greater detail.

2.1 Finite Dimensional Representation of X

Because the space L2([a, b]) is infinite dimensional, it is necessary to consider
some finite dimensional subspace A ⊂ L2([a, b]). We define A by a set of Gaussian
kernels

ϕk(x) = e
− ‖x−tk‖2

σ2
k , k = 1, . . . , q (1)

where tk is the center and σk is the width parameter. If the kernels are linearly
independent, the set ϕk(x) spans a q dimensional normed vector space and we
can write A = span{ϕk}. A natural choice for the norm is the L2 norm: ‖ f̂ ‖A =
( ∫ b

a f̂(x)2dx
)1/2

.
Now X can be approximated using the basis representation X̂(x) = ωT ϕ(x),

where ϕ(x) = [ϕ1(x), ϕ2(x), . . . , ϕq(x)]T . The weights ω are chosen to minimize
the square error:

min
ω

m∑

i=1

| yi − ωT ϕ(xi) |2 (2)
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Using this basis, any function X̂ ∈ A is uniquely determined by the weight
vector ω. This suggests that, under certain constraints, it is equivalent to analyze
the discrete weight vectors instead of the continuous functions X̂ .

Radial symmetric models (such as the LS-SVM presented in Section 2.4) de-
pend only on the distance metric d(·, ·) in the input space. Thus, we require
that the mapping from A to R

q is isometric, i.e. dA(f̂ , ĝ) = dq(α, β) for any
functions f̂(x) = αT ϕ(x) and ĝ(x) = βT ϕ(x). The first distance is calculated
in the function space and the latter one in R

q . In the space A, distances are
defined by the norm d(f̂ , ĝ) = ‖ f̂ − ĝ ‖A. Now a simple calculation gives

‖ f̂ − ĝ ‖2
A =

∫ b

a

(
q∑

k=1

(αk − βk)ϕk(x))2dx = (α − β)T Φ(α − β)

where Φi,j =
∫ b

a ϕi(x)ϕj(x)dx. This implies that if the basis is orthonormal,
the matrix Φ becomes an identity matrix and the distances become equal, i.e.
‖ f̂ − ĝ ‖A = ‖ α−β ‖2 = ((α−β)T (α−β))1/2. Unfortunately this is not the case
with Gaussian kernels and a linear transformation ω̃ = Uω is applied. Here the
matrix U is the Cholesky decomposition of Φ = UT U. In fact, the transformed
weights ω̃ are related to a set of new orthonormal basis functions ϕ̃ = U−T ϕ.

2.2 Finding an Optimal Gaussian Basis

When the locations and widths of the Gaussian kernels are known, the weights
ω are obtained easily by solving the problem (2). The solution is the well-known
pseudoinverse ω = (GT G)−1GT y [4], where y = [y1, y2, . . . , ym]T are the values
to be fitted and Gi,j = ϕj(xi).

Since the kernels are analytical functions, the locations and widths can be
optimized for a better fit. The average fitting error of all functions is obtained
by averaging Eq. (2) over all of the sample inputs j = 1, . . . , N . Using the matrix
notation given above, it can be formulated as

E =
1

2N

N∑

j=1

(
Gωj − yj

)T (
Gωj − yj

)
.

The partial derivates are

∂E

∂tk
=

1
N

N∑

j=1

(
Gωj − yj

)T
G(t)

k ωj,k

∂E

∂σk
=

1
N

N∑

j=1

(
Gωj − yj

)T
G(σ)

k ωj,k,

where the notation G(t)
k and G(σ)

k stand for the k-th column of G differentiated
with respect to tk and σk, respectively.
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Knowing the gradient, the locations and the widths are optimized using uncon-
strained non-linear optimization. Actually, the problem is constrained to σ > 0
but the kernel (1) is an even function with respect to σ and the constraint can
be relaxed. In this paper, Broyden-Fletcher-Goldfarb-Shanno (BFGS) Quasi-
Newton method with line search is used. The formulation of the BFGS algorithm
is out of the scope of this paper. The reader can refer to [2], for example.

2.3 Scaling

Variable scaling can be seen as a generalization of variable selection; instead
of restricting the scalars to attain either values 0 or 1, the entire range [0, 1]
is allowed. In this section, we present a method for choosing the scaling using
Delta Test (DT).

The scalars are optimized by iterative Forward-Backward Selection (FBS)
(see [5], for example). FBS is usually used for variable selection, but it can be
extended to scaling as well; Instead of turning scalars from 0 to 1 or vice versa,
increases by 1/h (in the case of forward selection) or decreases by 1/h (in the
case of backward selection) are allowed. Integer h is a constant grid parameter.

DT is a method for estimating the variance of the noise within a data set.
Having a set of general input-output pairs (xi, yi) ∈ R

m × R and denoting the
nearest neighbor of xi by xNN(i), the variance estimate is

δ =
1

2N

N∑

i=1

∣
∣yNN(i) − yi

∣
∣2 ,

where yNN(i) is the output of xNN(i). DT is useful in evaluation of correlation
of random variables and therefore it can be used for scaling: The set of scalars
that give the smallest δ is selected.

2.4 LS-SVM

LS-SVM is a least square modification of the Support Vector Machine (SVM)
[3]. The quadratic optimization problem of SVM is simplified so that it reduces
into a linear set of equations. Moreover, regression SVM usually involves three
unknown parameters while LS-SVM has only two; the regularization parameter
γ and the kernel width θ.

Consider a set of N training examples (xi, yi)N
i=1 ∈ R

m × R. The LS-SVM
model is ŷ = wT ψ(x) + b, where ψ : R

m �−→ R
n is a mapping from the input

space onto a higher dimensional hidden space, w ∈ R
n is a weight vector and b

is a bias term. The optimization problem is formulated as

min
w,b

J(w, e) =
1
2
‖w‖2 +

1
2
γ

N∑

i=1

e2
i ,

so that yi = wT ψ(xi) + b + ei,
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where ei is the prediction error and γ ≥ 0 is a regularization parameter. The
dual problem is derived using Lagrangian multipliers which leads into a linear
KKT system that is easy to solve [3]. Using the dual solution, the original model
can be reformatted as

ŷ =
N∑

i=1

αiK(x,xi) + b,

where the kernel K(x,xi) = ψ(x)T ψ(xi) is a continuous and symmetric mapping
from R

m×R
m to R and αi are the Lagrange multipliers. It should be emphasized

that although we formally define the high dimensional hidden space R
n and the

mapping ψ(x), there is no need to compute anything in the hidden space; The
knowledge of the kernel K is enough. A widely-used choice for is the standard
Gaussian kernel K(x1,x2) = exp{−‖x1 − x2‖2

2/θ2}.

3 Application

3.1 Data Sets

The proposed prediction method was tested on two spectrometric data sets from
the food industry. Tecator data set consists of absorption spectra and fat con-
tents of 215 samples of minced pork meat [6]. Each spectrum has 100 values
corresponding to wavelengths from 850nm to 1050nm. The accuracy of the mea-
sured fat content is 1 per cent. The first 172 spectra were used as a learning
set CL and the remaining 43 were used as a test set CT . The training set is
illustrated in Figure 2.

The second data set contains 124 measured Near Infrared (NIR) absorption
spectra of wine samples and the goal is to determine the percentage of alcohol.
Each spectrum has 256 variables corresponding to wavenumbers from 400 to
4000cm−1 [5]. Alcohol content ranges from 7.48 per cent to 18.5 per cent and
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the accuracy is three digits. First 94 spectra were used as a learning set CL while
the remaining 30 were regarded as a test set CT . The spectra are illustrated in
Figure 3.

3.2 Training

The Gaussian basis was optimized in the learning set CL as described in Section
2.2. Number of kernels ranged from 3 to 35 and initially the kernels were equally
distributed. The obtained weights ω were transformed using the Cholesky ma-
trix. Next, the DT scaling method was applied to improve accuracy. For a ref-
erence non-scaled weights were also experimented.

Finally, a LS-SVM model was trained using a two-dimensional grid search and
10-fold cross validation in CL. To obtain reliable values for γ and θ, a 10-by-10
grid was computed four times starting from a coarse global grid and moving
on to a finer one near the optimum. The error measure was normalized mean
square error NMSEL (averaged over the 10 cross validation results). To evaluate
the generalization performance the best model was simulated in the test set CT

and NMSET was computed,

NMSET =
( 1

NT

∑

j∈CT

(pj − p̂j)2
)/( 1

NL + NT

∑

j∈CL∪CT

(pj − p̄)2
)
.

3.3 Results and Discussion

TECATOR Data Set. The obtained results are presented in Table 1. The
best results were obtained using 13 kernels. The best basis is plotted in Figure
2. It can be seen that there are wide functions at the both ends of the spectrum
where the data is smoother and two narrow kernels near the center where there
is more variation in the data.

Scaling improves the NMSE by 20 per cent. Ten variables are assigned a
nonzero scalar and the corresponding ten orthonormal basis functions are plot-
ted in Figure 4. Although the functions cover the whole spectrum, the most
important ones (i.e. ones with high scalar) are related to frequencies in the
center.

Comparing to other results in the literature, the performance is very good,
although not the best. Thodberg reports a RMSE (calling it Standard Error of
Prediction, SEP) 0.36 obtained with a committee of Bayesian neural networks
[6] and Vila et. al. report even better RMSE (0.34) for another Bayesian neural
network method [7]. The RMSE of our method is 0.43 (LS-SVM with scaling),
which is better than the results reported in [8], [10] and [9].

Wine Data Set. In the case of the wine data set, 30 kernels (plotted in Figure 3)
were selected. The locations of the narrowkernels coincide to the spikes in the data.
Especially, there are many narrow kernels between indexes 20 to 40.

Scaling improves the performance by 15 per cent. Interestingly enough, only
four variables obtain a non-zero scalar. This implies that the majority of the
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Table 1. Results (NMSET ) for the Tecator data set and the wine data set

Tecator

LS-SVM 0.00148
LS-SVM + Scaling 0.00116

Wine

LS-SVM 0.01004
LS-SVM + Scaling 0.00849

data is irrelevant to the prediction and can be discarded. The selected functions
are presented in Figure 5. It can be seen that the first three variables are related
to the indexes from 20 to 40. Thus one can conclude that this area is highly
correlated to the alcohol content.

Comparing to literature, Benoujdit et al. have reported a NMSE 0.0009 using
a Radial Basis Function Network with FBS on the raw data itself [5]. They
selected only 20 variables among the 256 which further stresses the fact that
most of the variables are irrelevant.
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Fig. 4. Tecator data set: selected orthogonal basis functions
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Fig. 5. Wine data set: selected orthogonal basis functions

4 Conclusions

This paper deals with the problem of finding a good set of basis functions for
dimension reduction. We have proposed a Gaussian kernel based method where
the kernels are optimized for an accurate fit. When combined with an LS-SVM
model, our results verify that the basis indeed follows the nature of the original
data. And what is more, the basis is useful in the determination of analytical
variables from spectral data. The Delta Test based scaling further improves the
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prediction performance and provides a tool for interpreting the importance of
the inputs.

In literature Bayesian networks have been reported to perform slightly bet-
ter. Thus the authors believe that the proposed method could be improved by
replacing the LS-SVM model by a Bayesian network. The fact that the basis
is optimized for an accurate fit instead of prediction performance is visible in
the wine data set: direct variable selection has been reported to yield better
results [5]. However, it is much more time consuming and, on the other hand,
one should notice that the obtained errors are already smaller than the numeri-
cal accuracy of the original data. Therefore we can conclude that the proposed
Gaussian fitting provides a fast tool for dimension reduction.
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