
F. Sandoval et al. (Eds.): IWANN 2007, LNCS 4507, pp. 235–243, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

ViSOM Ensembles for Visualization and Classification 

Bruno Baruque, Emilio Corchado, and Hujun Yin 

Department of Civil Engineering. University of Burgos, Spain 
bbaruque@ubu.es, escorchado@ubu.es 

School of Electrical and Electronic Engineering. University of Manchester, UK 
h.yin@manchester.ac.uk 

Abstract. In this paper ensemble techniques have been applied in the frame of 
topology preserving mappings in two applications: classification and 
visualization. These techniques are applied for the first time to the ViSOM and 
their performance is compared with ensemble combination of some other 
topology preserving mapping such as the SOM or the MLSIM. Several methods 
to obtain a meaningful combination of the components of an ensemble are 
presented and tested together with the existing ones in order to identify the best 
performing method in the applications of these models.  

1   Introduction 

Topology Preserving Maps [1], were originally created as a visualization tool; 
enabling the representation of high-dimensional datasets onto two-dimensional maps 
and facilitating the human expert the interpretation of data. Almost effortlessly this 
family of algorithms can be modified to serve as data classifiers, exploiting its inner 
pattern recognition capabilities [2]. This added characteristic can even serve as a 
certain measure of the stability of the trained network and accuracy of the mapping. 

A general way of boosting the classification capabilities of classic classifiers (such 
as decision trees) is the construction of ensembles of classifiers [3], [4]. Following the 
idea of a ‘committee of experts’, the ensemble technique consists of training several 
identical classifiers on slightly different datasets in order to constitute a ‘committee’ 
to classify new instances of data. 

This paper presents an application of the ensemble technique on several topology 
preserving models to improve their classification capabilities as well as their 
visualization performance.  

2   Topology Preserving Mapping 

This name comprises a family of techniques with a common target: to produce a low 
dimensional representation of the training samples while preserving the topological 
properties of the input space. The best known technique among them is the Self-
Organizing Map (SOM) algorithm [5] [6]. It is based on a type of unsupervised 
learning called competitive learning; an adaptive process in which the neurons in a 
neural network gradually become sensitive to different input categories, sets of 
samples in a specific domain of the input space [1]. 
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One interesting extension of this algorithm is the Visualization Induced SOM 
(ViSOM) [7], [8] proposed to directly preserve the local distance information on the 
map, along with the topology. The ViSOM constrains the lateral contraction forces 
between neurons and hence regularises the interneuron distances so that distances 
between neurons in the data space are in proportion to those in the input space.  

The difference between the SOM and the ViSOM hence lies in the update of the 
weights of the neighbours of the winner neuron as can be seen from Eqs (1) and (2).  
Update of neighbourhood neurons in SOM: 
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Update of neighbourhood neurons in ViSOM: 
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where vw  is the winning neuron, α the learning rate of the algorithm, ),,( tkvη  is the 

neighbourhood function where v represents the position of the winning neuron in the 
lattice  and k the positions of the neurons in the neighbourhood of this one, x is  
the input to the network and λ  is a “resolution” parameter, vkd  and vkΔ  are the 

distances between the neurons in the data space and in the map space respectively. 
Another example of a topographic mapping algorithm is the Maximum Likelihood 

Scale Invariant Map (MLSIM) [9], [10]. It is similar to the SOM [5] but in this case 
training is based on the use of a particular Exploratory Projection Pursuit (EPP) model 
called Maximum Likelihood Hebbian Learning (MLHL) Network [12], [13]. The 
competitive learning and a neighbourhood function are then used in a similar way as 
in the SOM. The distinctiveness is that in this case the winner’s activation is then fed 
back through its weights and this is subtracted from the inputs to calculate the error or 
residual. Then the MLHL algorithm is used to update the weights of all nodes in the 
neighbourhood of the winner, which can be expressed as, 
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These three models can be adapted for classification of new samples using a semi-
supervised procedure. Once the network training is completed, the same dataset used 
in the training stage is presented once again to the network, but this time keeping 
record of how many times each neuron responds to each of the classes of the dataset. 
That way, each neuron of the network is labelled with the class it has recognized more 
consistently. When a new sample is presented to the network, it is classified with the 
class associated to the neuron that won the competition at that time. This added 
feature can also serve as a measure of the stability of the trained network. A high 
accuracy in the classification rate implies that the neurons of the network are reacting 
in a more consistent way to the classes of the samples that are presented, As a 
consequence, the map should represent the data distribution more accurately [14]. 



 ViSOM Ensembles for Visualization and Classification 237 

3   Classifiers Combination 

The ultimate goal for designing pattern recognition systems is to achieve the best 
possible classification performance for the task at hand. It has been observed in 
several studies that although one of the classifiers in an ensemble would yield the best 
performance, the sets of patterns misclassified by the different classifiers would not 
necessarily overlap. This suggests that different classifier designs potentially offer 
complementary information about the patterns to be classified and could be harnessed 
to improve the performance of the selected classifier [15]. Competitive learning based 
networks are inherently instable, due to the nature of the statistical learning 
algorithms. The effect of this instability may, however, be minimized again by using 
an ensemble with a voting results scheme [16]. 

The algorithms to combine classifiers can be divided into two broad classes. The 
simpler variety of algorithms merely combines, by averaging in some way, the results 
each of the composing classifiers of the ensemble yields into a final result. More 
complex types of algorithms try to combine not only the results but the whole set of 
classifiers in order to construct a single better one that should outperform its 
individual components. In the case of this paper both of the two approaches have been 
considered, with comparison purposes.   

The second type of classifier combination was originally considered to be applied 
to classical classification trees. Its main advantage is that it combines the 
improvement on the classification quality with the simplicity of the handling of only 
one classifier. In the case of the present work, the emphasis has been equally put in 
the classification accuracy of the model and the visualization capabilities of it. In this 
second perspective, the concept of a single “summary” or “synthesis” of the patterns 
stored within the whole ensemble is essential, to which end different approaches have 
been applied and evaluated in this work. Our overriding aim is to obtain a unique map 
that may be seen to represent all of the features of the maps in the ensemble.   

3.1   Proposed Combinations 

The main thrust of this work is the construction of ensembles of neural topology 
preserving maps in order to boost their visualization and classification performance. 
A number of ensemble techniques are applied to the ViSOM and other topological 
mapping networks such as the SOM [17] or MLSIM [18]. 

The application of those combination methods in the context of the topology 
preserving networks classification capability seems a straightforward implementation 
of the previously described procedures. On the contrary, in the context of the 
visualization some adaptations are necessary to build a meaningful combination of the 
maps they represent. The part of the work developed to deal with this issue has two 
perspectives, which were inspired by SOM bagging [17] in one hand and by SOM 
fusion [19] on the other.  

The procedure is the same for the training of the networks that compose the 
ensembles. All are trained using typical cross-validation, with the dataset divided into 
several folders, leaving one of them out to test the classification accuracy. The 
method obtains n subsets of the training dataset through re-sampling with replacement 
and trains individual classifiers on such re-sampled subsets. This permits to generate n 
trained networks which are used to classify as an ensemble (using bagging) or 
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combined into a final network. In order to obtain the similarity needed to make 
networks comparable to combine them, the networks of the same ensemble are 
initialized to the inter-neural weights obtained in the training of the previous network; 
while is trained on a slightly different portion of the training folds of the dataset to 
ensure the balance between similarity and diversity needed for an ensemble to 
perform correctly. The combination of maps is done once all the networks composing 
the ensemble have finished their training. The different options studied for this are 
described in the following paragraphs, where the last two new methods have been 
developed in this work. 

Bagging: This combination procedure was originally devised to increment the 
classification accuracy of tree-based classifiers [20]. This is the reason why it works 
well for the classification results of the networks, but it has some problems when trying 
to obtain a visualization “summary” of the ensemble, as it is pointed out in [17]. The 
aim of this procedure is to reduce the classification error; especially when the number 
of samples is low in relation with the space of hypothesis. In this paper it is only used 
when comparing classification accuracy. The whole ensemble is trained in a way that 
all the resultant maps are comparable, which means that neurons located in a region of 
a map will be similar to neurons located in the same region of a different map. This is 
done by initializing the networks in the same way. The option for the voting decision 
used in this work is the weighted variant. The vote of a network that has consistently 
recognized a certain class will have more weight than others.  

Fusion: This method involves comparing the networks neuron by neuron in the input 
space. This implies that all the networks in the ensemble must have the same size. 
First, it searches for the neurons that are closer in the input space (selecting only one 
neuron in each network of the ensemble) then it “fuses” them to obtain the final 
neuron in the “fused” map. This process is repeated until all the neurons have been 
fused. To deal with the high computational complexity of the algorithm it was 
implemented using dynamic programming. A more detailed description of this 
procedure can be found in [19]. Here the labelling of the neurons of the fused 
network, employing again the training dataset, is done in order to obtain a clear 
visualization of the map.  

Superposition: In order to obtain a visual illustration (in the form of a 2-dimensional 
map) of the information the whole ensemble contains this procedure has been 
designed during the development of this work. It is a combination of the two 
previously described techniques. It consists of “superposing” the maps formed by the 
networks composing the ensemble into a final map, on a neuron by neuron 
comparison (as is done in fusion). Note that the weights of each network in the 
ensemble are initialized in a way that makes the neurons in the same position of two 
(or more) networks comparables (in the same way as bagging). A description of the 
process could be: 

1. Selection of the neuron in the same position in all maps (1 neuron for each map) 
2. Creation of a neuron in the same position in the final map. Its inter-neuronal 

weights are the average of the inter-neuronal weights of the neurons selected in 1. 
Its frequency in recognizing a class is the addition of the frequency of the neurons 
selected in 1 for each class recognized (This is used in the classification stage). 
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3. Labelling the neuron in that position according to its most frequently recognized 
class (This is used in the representation of the map). 

4. Repeating 1-3 until all the neurons have been processed. 

This way ensures that the resultant “summarized” or “superposed” map represents 
visually what the majority of the maps composing the ensemble represent in a neuron-
by-neuron basis. When using the resultant “superposed” map for classification 
purposes it returns the class represented by the neuron that is activated when the new 
sample is presented to the network. 

Superposition + Re-labelling: This method has two main phases. The first is the 
superposition explained before. The second consists of testing which class actually 
recognizes better each neuron after the superposition, instead of relying on the 
recognition of the neurons in the same position done previously in the individual 
testing of each of the ensemble networks. So, after the superposition, the same dataset 
used for training is presented to the resultant network of the superposition to check 
which class is more consistently recognized by each neuron. Usually little number of 
neurons respond to this re-labelling, giving as a result a more compact map. 

4   Experiments and Results 

To test these ensemble techniques the well-known iris dataset was used. For 
comparison purposes, all the ensemble algorithms have been tested employing the 
SOM and MLSIM models as well as with the ViSOM model for the first time.  

The first experiment was performed using an ensemble of SOMs at first with a size 
of 10x10 and then by increasing the number of neurons to 20x20. The next series of 
experiments repeated those described above, but this time employing an ensemble of 
ViSOMs. Initially a size of (20x20) is used, and then it is increased to (30x30); as 
 

 

Fig. 1. Visualization of the ViSOM (30x30) 
ensemble using the ‘superposition’ method 
on the iris dataset 

 

Fig. 2. Visualization of the ViSOM (30x30) 
ensemble using the ‘superposition + re-
labelling’ method on the iris dataset 
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presented in Fig. 1 and Fig. 2. In all figures, in the code number associated to each 
neuron; the first number identifies the class recognized by it and the second indicates 
the number of times that neuron has responded to that class.  

For comparative purposes the same experiment was performed by employing an 
ensemble of MLSIMs. As the dataset is not disposed in a radial way, the results are 
poorer than the first two experiments. 

The classifying accuracies of the single best classifying network of the ensemble, 
the whole ensemble by combination of its outputs (weighted voting), and the three 
mentioned summaries are showed in Table 1. The experiment was conducted by using 
a 5-fold cross validation method. 

There are some observations worth noting as result of these experiments. The first, 
the greater the number of neurons on the map, the more defined image of the 
distribution of data can be obtained, for the SOM, ViSOM and even MLSIM if  
the neighbouring function is set properly. On the contrary, if attention is paid to the 
classification accuracy; it can be observed that the greater the number of neurons is 
used, the more this accuracy descends. This is even more the case in the SOM than in 
the ViSOM (from a 92% when using only 10x10 neurons to 81% when using 20x20 
in the ensemble of SOMs and from a 92% when using 20x20 neurons to 83% when 
using 30x30 in the ensemble of ViSOM). This may be due to the fact that using a 
square matrix of 10x10 (100 neurons) is more than enough to classify a dataset of 100 
samples. 

Table 1. Accuracy in classification of the different models obtained from a SOM, ViSOM and 
MLSIM ensemble on the iris dataset. The result of the table is the average of the five tests in 
the cross validation (one with a different fold as testing set). 

Type of model 
Best 

Single 
Netwk. 

Ensemble Superposition 
Superp.+ 

Re-
Labelling 

Fusion 

SOM ensemble (10x10) 78% 94% 92% 73% 75% 

SOM ensemble (20x20) 50% 81% 62% 59% 58% 

ViSOM ensemble (20x20) 82% 92% 78% 74% 77% 

ViSOM ensemble (30x30) 74% 83% 82% 70% 71% 

MLSIM ensemble (30x30) 74% 80% 24% 71% 78% 

It is interesting to note that the ensemble of ViSOMs seems more stable than the 
ensembles of SOM; as the latter deteriorates with the increase in the number of 
neurons form 10x10 to 20x20, while the former does only slightly from 20x20 to 
30x30. As might be expected, MLSIM, which responds better to radial-based datasets, 
obtained the worst results. 

The same experiments conducted for the iris dataset were repeated with another 
well known dataset: the Wisconsin Breast Cancer dataset (UCI Repository) [21]. The 
results obtained in the visualization part are displayed in Fig. 3 and Fig 4. The 
classification results are presented in Table 2. 
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Fig. 3. Visualization of the SOM (20x20) en-
semble using the ‘superposition+re-
labelling’ method on the cancer dataset 

 

Fig. 4. Visualization of the ViSOM (30x30) 
ensemble using the ‘superposition+re-
labelling’ method on the cancer dataset 

Table 2. Accuracy in classification of the different models obtained from a SOM, ViSOM and 
MLSIM ensemble. The results are the average of the five tests in the cross validation (one with 
a different fold as testing set). 

Type of model 
Best 

Single 
Netwk. 

Ensemble Superposition 
Superp. 

+ Re-
Labelling 

Fusion 

SOM ensemble (10x10) 92% 96% 95% 93% 93% 

SOM ensemble (20x20) 77% 95% 74% 87% 85% 

SOM ensemble (30x30) 69% 92% 70% 82% 76% 

ViSOM ensemble (20x20) 94% 96% 96% 94% 94% 

ViSOM ensemble (30x30) 94% 97% 94% 95% 95% 

ViSOM ensemble (40x40) 91% 96% 94% 92% 92% 

MLSIM ensemble (30x30) 79% 94% 56% 78% 84% 

Inspecting the results in Table 2, a similar behaviour as in the first series of 
experiments can be seen, especially for the SOM model: when the number of neuron 
increases, the representation capacity increases too but the classification accuracy 
decreases. This time the ViSOM seems to be quite more stable, obtaining results even 
slightly better when increasing from 20x20 networks to 30x30 networks in the 
ensemble. 

5   Conclusions and Future Work 

As it can be seen in the experiments section the ensemble always improves in the 
classification perspective, as in each test it clearly outperforms the single models or 
combinations. For 2-D visualization purposes however, the ensemble is not directly 
displayable. This is why all the different combination procedures were tested. The 
best performing technique turns out to be the “superposition” which can be 
considered the most similar to the ensemble philosophy. This is because it combines 
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the neurons of the ensemble into the “superposed” map by a particular weighted 
voting between the counterpart neurons in all the ensembles. In the re-labelling of the 
superposed map less neurons respond to the training data, as those neurons that were 
previously disposed on different networks and were able to win the competition 
separately (cooperating in the voting process), now compete in the same network. As 
stated before, when fewer neurons respond to the inputs, a worse visualization is 
obtained; but as a counterpart better classification accuracy is achieved. The fact that 
the maps are initialized in a way that same neurons (or very closer ones) in different 
networks win when presented similar inputs helps this technique (with its two 
variants) to outperform the “fusion” which fuses neurons regardless their position in 
the map. 

In this work some novel ensemble combination techniques have been presented. 
The ensembles were applied to the ViSOM and yield good results not only in the 
visualization of multivariate data, but also in classification. The ensemble methods 
were also applied to other topology preserving models such as the SOM or MLSIM in 
order to draw comparisons, proving that these models can benefit these ensemble 
methods as well.  

Future work will focus on application of these techniques to several real datasets to 
measure their performance in real world problems. 
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