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Abstract In previous woks we have introduced a distributed neural
architecture for the generation of complex behaviors in evolutionary
robotics. In this paper we show how this architecture is able to create its
own categories about the sensed world of a robot by direct interaction of
the body with the environment. The distributed elements of the architec-
ture cooperate to express the categories on an inner world that is easily
accessible from the outside. We conclude the paper with an explanation
of how the inner world created by the robot can be used to gain some
insight into the mind-body problem.

1 Introduction

We de�ne categorization as the ability to discriminate between di�erent objects.
Categorization is a very important ability of cognitive systems since it allows the
cognitive system to determine which elements are good or bad for its survival
[6]. When categorizing, an agent immersed in the real world has to be able
to make distinctions between di�erent types of objects from the sensed values.
Traditional approaches to categorization are based on an information processing
approach. However this approach has not solved the problem satisfactorily. This
subject has been studied by others researchers like Pfeifer and Scheier [5] and
Nol� [3]. They proposed sensorimotor coordination as the key to categorization,
and argued that it was necessary to replace the information processing approach
with a sensorimotor approach [8]. This sensorimotor approach has been used
in several studies like [1] where sensorimotor couplings gave a meaning to the
sensor state through sensory-invariance driven action, or [7] where the external
space of the robot was inferred from sensorimotor dependencies. The robot must
create its own categories by interacting with its own body on an environment.

In this paper, we will describe a distributed architecture for robot control
and how it works for the generation of categories. This architecture will allow
us to observe from a di�erent point of view the mind-body problem. Section 2
will brie�y describe the architecture. A complete application example will follow
in section 3, which shows how the architecture is able to automatically generate
the required categories for the resolution of a task. In section 4 we propose a
perspective for the mind-body problem, and describe how the architecture can
help us gain some insight in this problem using that perspective.



2 Brief architecture description
We have created a distributed architecture for the control of autonomous robots,
based on neural networks. It is called Distributed Architecture with Internal Rep-
resentation (DAIR), and a description of its more relevant issues for this paper
are included below. The main goal of this architecture is to allow the genera-
tion of complex behaviors in complex robots within the evolutionary robotics
framework. Because of that, a complete modular distributed architecture was
developed.

In the DAIR architecture, each device of the robot is controlled by a small
neural network module. For a sensor, the network accepts as input the output
of the sensor, and generates as output a processed answer. For an actuator, the
network is in charge of producing as output the command for the actuator. In
order to allow coordination between the elements, the output of all modules are
connected to the inputs of the other elements. Neural networks learn to handle
their associated device and to cooperate with other elements by means of an
evolutionary algorithm.

Figure 1. Connection schematics of the processing element to the associated device
(sensor or actuator).

A complete description and comparison of the architecture against other
evolutionary robotics architectures can be found in [10]. The application of the
architecture to a complex Aibo robot using staged evolution can be found in
[9,10].

3 Application to the garbage collector problem
In order to test how the architecture described in the previous section leads to
category creation, a Khepera robot simulation was used as test bed. Experiments



consisted of the implementation of the DAIR architecture for the control of a
Khepera robot while performing a cleaning task called the garbage collector
[3]. In this task, a khepera robot is placed inside an arena surrounded by walls
and �lled with �ve sticks. The robot should look for any of the sticks randomly
distributed on the space, grasp it, and take it out of the arena. For the resolution
of this task, the robot must learn to di�erentiate between sticks and walls, based
on the infrared sensor lectures.

3.1 Experiment setup

All the experiments reported for the Khepera robot were done on the Webots
simulator [2]. In the simulation we used the six front infrared sensors and the
gripper sensor. As actuators, the robot has two motors (left and right), but it
is also possible to control the position of the gripper arm and the status of the
gripper �ngers (open or close). The control of the gripper is done by means of
two procedures: the �rst procedure, when activated, moves the arm down, closes
the gripper �ngers and moves the arm up again, picking a stick up; the second
procedure moves the arm down, opens the gripper �ngers, and moves the arm
up again, releasing the stick.

The physical setup was composed of a rectangular arena of 60x35 cm, sur-
rounded by walls, and containing �ve garbage cylindric sticks. Each stick had a
diameter of 2.3 cm and was positioned randomly inside the arena at every new
epoch. In the same way, the robot was also randomly positioned on the arena at
the beginning of each epoch.

Experiments consisted of 15 epochs of 200 time steps each, where an evolved
controller was tested over the task. The duration of each time step was of 100
ms. Each epoch ended after the 200 steps or after a stick had been correctly
released out of the arena.

The DAIR architecture implementation was composed of eleven neural mod-
ules: a module for each of the infra-red sensors and the gripper sensor was cre-
ated, two modules for the left and right motors, and other two for the two
gripper procedures. Each module was implemented by a feedforward neural net
with eleven inputs, no hidden units, and one output.

A �tness function was created for the evolutionary process which rewarded
controllers capable of releasing one stick out of the arena. Controllers that were
able to only pick up one stick were also rewarded with a lower �tness.

�tness =





0.1 if pick up stick
1 if stick released outside arena
0 if stick released inside arena

(1)

Each controller was tested for 15 epoch per generation, obtaining the �nal
�tness of the controller as the average �tness of all the 15 epochs. Each evolu-
tionary process lasted for 1000 generations. Due to the stochacity of the method
employed, the whole evolutionary process was performed ten times.



3.2 Results

After 1000 generations, 9 out of the 10 evolutionary runs evolved a maximal
�tness behavior (15 sticks released out of 15 epochs), generating a distributed
controller able to perform the garbage collector behavior1.

3.3 Acquisition of categories

In order to solve the garbage collector problem, the architecture must learn to
classify and categorize sensor states into walls and sticks. This categorization
gives a meaning to the sensory states experienced by the robot. In other words,
the meaning is directly grounded in the robot's experiences.

An analysis of the inner workings of the architecture shows how it also makes
use of the sensorimotor metaphor for categorization purposes. Furthermore, the
categorization made by the architecture can be easily accessed and analyzed
from outside the modules.

When observing the outputs of the sensor modules, we noticed that they pro-
duce similar output patterns in similar situations. The sensor modules provide
the same output values to di�erent sensor values which correspond to the same
conceptual situation. It can be said that sensor modules are all classifying many
di�erent sensor states into the same conceptual category. Given that situation,
a state vector can be constructed by taking the output values of the sensors
modules at each time step. This state vector identi�es the situation of the robot
at that time step. Thus, the state vector is:

state vector = (OS1, OS2, OS3, OS4, OS5, OS6, OS7) (2)

Basically, the state vector can be seen as a categorization of its current situ-
ation, or as the construction of an internal model of the outside world that the
robot is experiencing at that particular moment. This internal representation
at the module level contains the meaning of the situation, and that meaning is
attributed to the sensor activity pattern and similar ones (the degree of similar-
ity between situations is determined by the distributed coordination mechanism
during the evolutionary process). Changes in the values of the sensors do not
produce changes in the state vector until they signal that there is a change in the
situation of the robot which is relevant to the task to be carried out. Changes
between states are not instantaneous, and involve a small transient time where
the modules exchange information with each other before �nally adopting the
new state. All these situations can be easily understood by looking at �gure 3,
where the components of the state vector are plotted for the case when the robot
approaches a wall from a distant place.

The internal representations that map the sensorimotor stimulation to the
category actually being experienced are automatically created by the evolution-
ary process while interacting with the environment. Therefore, the meanings are
grounded in the robot's experiences. This means that the actual states identi�ed
1 Video available at www.ouroboros.org/garbage_collector.html



by the robot have a meaning for the robot. This does not have to correspond to
a human meaning but it must be a meaningful state for the robot.

As will be seen below, the robot categorizes only a few, possible, meaningful
situations required for the solution of the task at hand, allowing it to reduce the
huge number of possible sensorimotor inputs and robot states to a small number
of relevant ones.

For the garbage collector problem, eight di�erent internal states were identi-
�ed, each one corresponding to a meaningful situation for the robot. In order to
identify the states that the robot evolved, some experiments where performed.
Those experiments consisted of allocating the already evolved neural nets to the
robot, in a speci�c situation, and then measuring the values given by the sensor
module modules until the situation changed (as a result of the robot's action).
Speci�c situations included placing the robot in free space, and placing it in front
of a stick or a wall, at di�erent collision angles and distances. All the situations
were tested with and without the robot carrying a stick.

Below is a description of each state identi�ed:
State a: This state is observed when the robot is not carrying a stick and does

not detect anything. The robot is placed in the middle of the arena, with no
obstacles beside it. After an initial transient time, the robot starts moving
forward, assuming a stable state where the values of the module outputs do
not change at all, which makes the robot advance. This behavior ensures
that the robot will eventually detect something, either the wall or a stick.

State b: This state is observed when the robot is carrying a stick and does not
detect anything. This situation is the same as above, except that, now, the
robot has a stick in its gripper.

State c: The state observed when the robot detects something but it does not
know what it is (a wall or a stick). This state arises when the robot detects
something with sensor E but is not capable of classifying what it is. This
state produces a special response pattern in the motor modules that makes
the robot turn itself round in order to allow other sensors detect the object,
and help it to clarify the sensed information.

State d: The state observed when the robot is not carrying a stick and is facing
a wall. In this case, the robot realizes that there is a wall in front of it, so it
starts to move, in order to avoid the wall.

State e: This state occurs when the robot is not carrying a stick and is facing
a stick. Now the robot detects the stick and recognizes it as such. Therefore,
it activates the pick-up procedure in order to pick the stick up.

State f: The state observed when the robot is carrying a stick and detects
another stick. In this situation, the robot changes its behavior to avoid the
stick it has detected.

State g: This state is observed when the robot is carrying a stick and detects
a wall. In this case, the robot categorizes the obstacle as a wall and then
activates the stick-release procedure.

The states observed indicate that tactical modularity does, in fact, use the
sensorimotor coordination metaphor in order to create its categorization. The



most clear example of this is the result obtained in state 'c', where the robot
detects something but it cannot identify what it is. This situation indicates that
the robot is experiencing perceptual aliasing. Its strategy is to move itself into a
more suitable position which provides it with a more accurate sensor input that
allows it to determine what it is facing.

Figure 2. Graphic representation of the evolution of the vector state when the robot
travels without stick and encounters a wall with a 45o angle on his right. At the
beginning, the state of the robot remains unchanged even when the sensor D detects
the wall. At time step 22, the sensors E and F detect too the wall what makes the robot
identify the obstacle as a wall, changing the vector state to that value and activating
an avoidance response (not included here). Transition from the free-space state to the
wall-detected state is performed in several time steps which are used for coordination
between IHUs (interchange of information). After those steps, the new state is adopted.

4 Using internal representation to approach the
mind-body problem

From a control systems point of view we de�ne the inner world of a system as the
part of the control system corresponding to controller-based units. Similarly, the
outer world is de�ned as the part of the control system corresponding to process-
based units, i.e., the physical world in which the autonomous agent is situated.
From a basic control engineering perspective, so that the whole system reaches
the set point (SP), the control elements (inner world) must be designed using a
model as close as possible to the outer world, the so-called process model. Con-
troller design procedures in control engineering are traditionally model-based, so
the performance of the whole system depends on how well the process has been
modeled: the internal model of the outer world used to generate the inner world
must be as close as possible to the outer world.

If we use those concepts in the design of a robot controller, the architecture
can be seen to take control of the robot mind through three elements, which
we call modellers, controllers and translators. These elements must adapt the
relationship between the robot body and the environment.
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Figure 3. Schematics of an agent's mind and body using our architecture.

The modeller is a control element that tries to adapt what the sensor per-
ceives from the outer world to what the a deliberative controller may sees in
its inner world by also considering the actions of the controller. The translator
is a control element that tries to translate the external set point (a behaviour
associated to a task) as an interpretation of the outer world. The controller is
a control element that deals with both, the internal perception of the 'outer
world' (sensor) in the form of the 'inner world' units (modeller), and the task to
be accomplished (external set point) translated to a internal set point, also in
the 'inner world' units (translator); then appropriated commands are sent to its
associated actuator.

Our answer to the mind-body separation problem is shown in �gure 3 using
the module control concept, i.e., mind is based on the sensors and actuators,
which are governed by a learning module that translates external SPs into the
driving of �tness functions.

Broadly speaking, Me depends on the goal (goal-directed training) inter-
preted by the translator, on the environment (outer world) interpreted by the
conditioner, and on the body (mind, sensor and actuator) acting through the
controller. Hence, Me is based on the mind (translator�conditioner�controller).
Information from the environment is mentally presented, instead of mentally
represented : there is no need, as in the traditional approach, to consider any
accurate correspondence between the internal model and the real world via a
process model. The internal model is built from interaction of the body with
the environment; however, in contrast to Parisi [4], it does not try to exactly
imitate the world, but is an interpretation of it. The important point is that the



agent's view of the outer world makes sense to the agent himself. Experience
and information obtained from the world are therefore highly subjective.

Our modular concept represents a new reactive interpretation of the mind
based on internal representations of the real world for its design, i.e., the control
elements, to successfully carry out a task. The translator module, converted in
a teaching module external to the decentralized reactive mind, contains the �t-
ness functions associated with the tasks that drive learning in the modeler and
controller modules. These latter modules that translated from (to) the world
signals to (from) the internal representations are usually neural networks. Ide-
ally, deliberative control, which is outside the scope of this study, must take be
involved in the translator. Hence, �tness functions related to the task in hand
have been assumed to be known to the expert.
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