Skip to main content

Method of Motion Data Processing Based on Manifold Learning

  • Conference paper
  • 2977 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4469))

Abstract

Due to the high-dimensionality of motion captured data which resulted in the complexity in motion analysis, a method of motion data processing based on manifold learning was proposed. Isomap, a classical manifold learning algorithm, was necessary to be improved and extended in this paper. A framework of motion data processing based on manifold learning was built to embed high-dimensionality data into low-dimensionality space. It simplified the motion analysis, and in the same time preserved the original motion features. In order to solve the inefficiency of processing large-scale motion data, Sample Isomap (S-Isomap) algorithm was proposed. Experiments proved that approximate embeddings of motion data computed by S-Isomap were average 10 times faster than by Isomap, while 10% frame samples were selected.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Capin, T.K., Pandiz, I.S., Noser, H., et al.: Virtual Human Representation and Communication in VLNET. IEEE Computer Graphics and Applications 17(2), 42–53 (1997)

    Article  Google Scholar 

  2. Roweis, S., Saul, L., Global, A.: Geometric Framework for Nonlinear Dimension. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  3. Jolliffe, I.: Principal Component Analysis. Springer, New York (1986)

    Google Scholar 

  4. Kruskal, J.B., Wish, M.: Multidimensional Scaling. Sage Publications, Beverly Hills (1978)

    Google Scholar 

  5. Comon, P.: Independent Component Analysis, a New Concept? Signal Processing 36, 287–314 (1994)

    Article  MATH  Google Scholar 

  6. Miks, S., Batsch, G., Weston, J.: Fisher Discriminate Analysis with Kernels. Neural Networks for Signal Processing, 41–48 (1999)

    Google Scholar 

  7. Bishop, C., Svensen, M., Williams, C.: GTM: The Generative Topographic Mapping. Neural Computation 10(1), 203–224 (1998)

    Article  Google Scholar 

  8. Kohonen,: Self Organisation and Associative Memory. Springer, Heidelberg (1989)

    Google Scholar 

  9. Roweis, S., Saul, L.: Nonlinear Dimension Reduction by Locally Linear Embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  10. Belkin, M., Niyogi, P.: Laplacian Eigenmaps for Dimension Reduction and Data Representation. Neural Computation 15, 1373–1396 (2003)

    Article  MATH  Google Scholar 

  11. Zheng, A.: Deconstructing Motion. UC Berkeley (2000)

    Google Scholar 

  12. Tangkuampien, T., Chin, T.J.: Locally Linear Embedding for Markerless Human Motion Capture Using Multiple Cameras. In: Digital Image Computing: Technqiues and Applications (2005)

    Google Scholar 

  13. Li, H., Li, X.: LLE Based Gait Analysis and Recognition. In: Li, S.Z., Lai, J.-H., Tan, T., Feng, G.-C., Wang, Y. (eds.) SINOBIOMETRICS 2004. LNCS, vol. 3338, pp. 671–679. Springer, Heidelberg (2004)

    Google Scholar 

  14. Assa, J., Caspi, Y., Cohen, O.: Action Synopsis: Pose Selection and Illustration. ACM Transactions on Graphics 24, 667–676 (2005)

    Article  Google Scholar 

  15. Sebastian, H.S., Lee, D.D.: The Manifold Ways of Perception. Science 290(12), 2268–2269 (2000)

    Google Scholar 

  16. Jenkins, O.C., Mataric, M.J.: Automated Derivation of Behavior Vocabularies for Autonomous Humanoid Motion. In: Proceeding of the 2nd International Joint Conference on Autonomous Agents and Multi-agent Systems, Australia, pp. 225–232 (2003)

    Google Scholar 

  17. Silva, V., Tenenbaum, J.B.: Global Versus Local Methods in Nonlinear Dimensionality Reduction. In: Advances in Neural Information Processing Systems, Canada (2003)

    Google Scholar 

  18. Wang, J., Bodenheimer, B.: An Evaluation of a Cost Metric for Selecting Transitions Between Motion Segments. In: Symposium on Computer Animation 2003, SIGGRAPH/Eurographics, pp. 232–238 (2003)

    Google Scholar 

  19. Baker, C.: The Numerical Treatment of Integral Equations. Clarendon Press, Oxford (1977)

    MATH  Google Scholar 

  20. Madsen, C.B., Andersen, C.S.: Optimal Landmark Selection for Triangulation of Robot Position. Robotics and Autonomous Systems 23(4), 277–292 (1998)

    Article  Google Scholar 

  21. Johnson, A.: Surface Landmark Selection and Matching in Natural Terrain. Computer Vision and Pattern Recognition 2, 413–420 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Kin-chuen Hui Zhigeng Pan Ronald Chi-kit Chung Charlie C. L. Wang Xiaogang Jin Stefan Göbel Eric C.-L. Li

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Li, F., Huang, T., Li, L. (2007). Method of Motion Data Processing Based on Manifold Learning. In: Hui, Kc., et al. Technologies for E-Learning and Digital Entertainment. Edutainment 2007. Lecture Notes in Computer Science, vol 4469. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73011-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73011-8_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73010-1

  • Online ISBN: 978-3-540-73011-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics