Skip to main content

Connectivity Compression for Stripified Triangle Meshes

  • Conference paper
Technologies for E-Learning and Digital Entertainment (Edutainment 2007)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4469))

  • 2981 Accesses

Abstract

Modern graphics application systems have to render many 3D triangle mesh models, thereby facing problems of memory and bandwidth. A general significant solution is to compress the static 3D triangle mesh model at the preprocessing phase, especially the topological information. This paper presents a new triangle meshes compression algorithm, which encodes connectivity information between vertex chains in the meshes that are already stripified. The proposed algorithm provides a new representation that is guaranteed to encode any stripified meshes in less than 1.67 bits/T, and 1.05 bits/T on average. Furthermore, the proposed algorithm employs a short compression/decompression time. Hence it will satisfy real-time rendering constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Evans, F., Skiena, S.S., Varshney, A.: Optimizing triangle strips for fast rendering. In: Visualization’96 Conference Proceedings, pp. 319–326 (1996)

    Google Scholar 

  2. Woo, M., Neider, J., Davis, T.: Open GL Programming Guide. Addison-Welsley, Reading, MA (1996)

    Google Scholar 

  3. Speckmann, B., Snoeyink, J.: Easy triangle strips for TIN terrain models. In: Proceedings of 9th Canadian Conference on Computational Geometry, pp. 239–244 (1997)

    Google Scholar 

  4. Xiang, X., Held, M., Mitchell, J.: Fast and efficient stripification of polygonal surface models. In: Proceedings of Interactive 3D Graphics, pp. 71–78 (1999)

    Google Scholar 

  5. Deering, M.: Geometry compression. In: SIGGRAPH ’95 Proc, pp. 13–20 (1995)

    Google Scholar 

  6. Chow, M.: Optimized geometry compression for realtime rendering. In: IEEE Visualization ’97 Proc., pp. 347–354. IEEE Computer Society Press, Los Alamitos (1997)

    Google Scholar 

  7. Taubin, G., Rossignac, J.: Geometric compression through topological surgery. Technical report, Research Report RC-20340, IBM Research Division (1998)

    Google Scholar 

  8. Gumhold, S., Strasser, W.: Real time compression of triangle mesh connectivity. In: SIGGRAPH ’98 Proc., pp. 133-140, July (1998)

    Google Scholar 

  9. Touma, C., Gotsman, C.: Triangle mesh compression. In: Proc. of Graphics Interface ’98, pp. 26-34 (1998)

    Google Scholar 

  10. Rossignac, J.: EdgeBreaker: Connectivity compression for triangle meshes. IEEE Transactions on Visualization and Computer Graphics, pp. 47–61 (1999)

    Google Scholar 

  11. King, D., Rossignac, J.: Guaranteed 3.67 v bit encoding of planar triangle graphs. In: 11th Canadian Conference on Computational Geometry (1999)

    Google Scholar 

  12. Alliez, P., Desbrun,: Valence-driven connectivity encoding for 3D meshes. In: Eurographics’01, pp. 480–489 (2001)

    Google Scholar 

  13. Kubola, K., Chu, H.: Connectivity Compression for Three-dimensional Planar Triangle Meshes. In: Proceeding of the Ninth International Conference on Information Visualization (2005)

    Google Scholar 

  14. Bóo, M., Amor, M., Doggett, M., Hirche, J., Strasser, W.: Hardware Support for Adaptive Subdivision Surface Rendering. In: Proc.of ACM Siggraph/Eurographics Workshop on Graphics Hardware, pp. 33–40 (2001)

    Google Scholar 

  15. Mallon, P.N., Bóo, M., Amor, M., Brugiera, J.D.: Concentric Strips:Algorithms and Architecture for the Compression/Decompression of Triangle Meshes. In: Proceedings of the First International Symposium on 3D Data Processing Visualization and Transmissin (2002)

    Google Scholar 

  16. Park, D.G., Kim, Y.S., Cho, H.G.: Triangle Mesh Compression for Fast Rendering. In: IEEE Proceedings of the 1999 International Conference on Information Visualization (1999)

    Google Scholar 

  17. Isenburg, M.: Triangle fixer: edge-based connectivity compression. In: Proceedings of 16th European Workshop on Computational Geometry, pp. 18–23 (2000)

    Google Scholar 

  18. Isenburg, M.: Triangle strip compression. In: Proceedings of Graphics Interface, pp. 197–204 (2001)

    Google Scholar 

  19. Karni, Z., Gotsman, C.: Spectral compression of mesh geometry. In: SIGGRAPH’00 Conference Proceedings, pp. 279–286 (2000)

    Google Scholar 

  20. Vanecek, P.: Triangle Strips For Fast Rendering.Technical Report No.DCSE/TR-2004-05 (Apirl 2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Kin-chuen Hui Zhigeng Pan Ronald Chi-kit Chung Charlie C. L. Wang Xiaogang Jin Stefan Göbel Eric C.-L. Li

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Huang, H., Zhou, F. (2007). Connectivity Compression for Stripified Triangle Meshes. In: Hui, Kc., et al. Technologies for E-Learning and Digital Entertainment. Edutainment 2007. Lecture Notes in Computer Science, vol 4469. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73011-8_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73011-8_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73010-1

  • Online ISBN: 978-3-540-73011-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics