
Imperfect Requirements in Software Development

Joost Noppen, Pim van den Broek & Mehmet Aksit

TRESE Software Engineering

Dept. of Computer Science

University of Twente

P.O. Box 217, 7500 AE Enschede

The Netherlands

{ noppen | pimvdb | aksit }@cs.utwente.nl

Abstract. Requirement Specifications are very difficult to define. Due to lack

of information and differences in interpretation, software engineers are faced

with the necessity to redesign and iterate. This imperfection in software re-

quirement specifications is commonly addressed by incremental design. In this

paper, we advocate an approach where the imperfect requirements in require-

ment specifications are modeled by fuzzy sets. By supporting this approach

with a requirement tracing and an optimization approach, the necessity for de-

sign iteration can be reduced.

Keywords: requirements, design optimization, decision support, fuzzy

1 Introduction

During the last decades, a considerable amount of design methods have been intro-

duced, such as Structural design [17] and the Rational Unified Process [6]. Although

there are differences among the methods, the general structure of methods is quite

similar. They all require a well-defined requirement specification, which is trans-

formed into a system design. According to [11], one major problem with software

design methods is the existence of incomplete information during the design process.

While modern software design methods acknowledge the difficulty of defining per-

fect requirements, they depend on their perfection to ensure that the resulting software

system precisely reflects the requirements. When at a later stage the requirements

change or are refined, additional iteration is needed. The task of defining requirement

specifications that are perfect enough is the responsibility of the stakeholders and

software engineers and to support this activity various approaches have been proposed

and applied. In particular, in the field of formal specification the aim is to define re-

quirement specifications in such a manner, that it becomes possible to verify the cor-

rectness of the designed system with respect to these requirements. Other approaches

try to improve requirement specifications by exhaustive descriptions and abstractions

to represent the concepts. Nonetheless, software development still suffers from imper-

fect and changing requirements.

We conclude that imperfect information is inherently present in all requirement

specifications. By application of requirements analysis, the imperfection can be re-

solved in parts of the requirements, but not completely removed from the require-

ments specification. If imperfection in requirement specifications is recognized and

taken into account during the design process, it is possible to minimize the amount of

incremental design steps that are needed to stabilize the software design.

The remainder of this paper consists of the following parts: in the next section an

example case will be presented and the problems will be identified. Section 3 de-

scribes the approach for tracing intermediate design artifacts and the approach for

dealing with imperfection in software requirements. In Section 4 we analyze the ex-

ample case using the results of section three. Related work is described in Section 5.

In Section 6 we conclude the paper.

2 Problem Statement

2.1 An Example: Traffic Management System

Consider a Traffic Management System (TMS), designed to monitor and regulate the

traffic flow on a national scale. The system is supposed to provide the necessary tech-

nical support for monitoring, controlling, managing, securing and optimizing the traf-

fic flow effectively. We will focus on the section, which handles task allocations

based on scenarios and available traffic information and has the following description.

“The TMS should provide assistance when the traffic flow is limited. It is the job of

the TMS to support operators to coordinate the activities that should reset the traffic

flow to its normal state. To achieve this, the TMS must support the action coordina-

tion for traffic flow normalization. The normalization is done by allocating tasks and

scenarios to system operators. The Task Allocation part must gather and store infor-

mation about traffic in its direct and indirect geographical vicinity. To communicate

the tasks and actions, the TMS must be able to access its connected roadside systems.

In addition, the TMS must support systems operators in identifying tasks and actions

that will normalize traffic flow as fast as possible.”

We summarize the functional requirements for the TMS as follows:

1. The TMS must support displaying relevant information to the users of the TMS

2. There should be an explicit, convenient model of tasks and scenarios

3. The system must support action coordination for optimal normalization of traf-

fic flow

4. The system should support task allocation

5. Contextual Information should be accessible

6. The TMS should be able to communicate with the roadside system

Obviously, for a system that is responsible for regulating traffic flow, it is very im-

portant that the system adheres to the described requirements to ensure traffic safety.

2.2 Imperfect Software Requirements as Input of the Software Design Process

The requirements of the TMS, at first glance, quite accurately describe what is ex-

pected from the system. However, upon closer inspection, the requirements contain

ambiguity in several definitions. For example, in the second requirement prescribes

that there should be an explicit and convenient model of tasks and scenarios. How-

ever, the term convenient can imply completely different solutions from the operator

point-of-view and the software designer point-of-view..

The cause of the imperfection in requirement specifications is two-fold. Firstly, the

initial requirements are defined at an early phase of the design process. At this point,

it is very difficult for both the stake-holders and the software engineers to precisely

visualize the system upon completion. This partial view is exemplified by changes

that are made to the requirements along the design process, and the occurrence of new

requirements. Secondly, requirements are normally described in natural language,

which typically suffers from imperfection. Many terms in natural language have mul-

tiple meanings, are ambiguous or vague. The consequence is that the system designers

should either clarify the requirements with the stakeholders, or interpret the imperfect

requirements. However, neither approach guarantees a satisfactory result, since stake-

holders might be unable to clarify the requirements, and designers can interpret im-

perfect requirements differently from stakeholders. Formal methods, for example, can

only be used if the information you are using is perfect, which makes it impossible to

resolve all imperfect information in this manner.

As a result of the problems identified above it becomes increasingly more difficult

to balance the design and implementation of the software system with budgetary re-

strictions and time constraints. Software engineers select the system design from sev-

eral design alternatives, and try to re-use existing system parts to minimize costs and

development time. In the case of a crisp and concise requirements specification, it is

already a very challenging task, but it becomes even more difficult when the software

engineer is faced with imperfect requirements. The added difficulty is caused by the

fact that costs and development time largely depend on the components that need to

be implemented, while it is at the same time unclear which requirements are being

implemented by the respective components. The lack of a formal trace from the re-

quirements to the components that implement them, makes it impossible to systemati-

cally explore the alternative component sets that can be used to implement the system.

What is needed is an explicit relationship between the requirement and the compo-

nents that implement this particular requirement. Due to the fact that imperfect re-

quirements can become perfect at the latter stages of the design process, it becomes

imperative to be able to determine which components are no longer needed.

3 Software Design with Imperfect Information

3.2 A Trace Model for Artifacts and Relations

To resolve the problems identified in Section 2, we extend the software design such

that it is possible to capture the imperfection in the requirements accurately. The first

part of our approach extends the tracing capacities of modern design processes, such

that it becomes possible to assess individual system designs. To achieve this goal, we

present the Artifact Trace Model (ATM). The ATM captures the relationships be-

tween design artifacts of subsequent design steps. This tracing model is based on de-

sign processes that follow the analysis-synthesis approach, as for instance exemplified

in [14], known as Synbad. In an analysis-synthesis based approach, user requirements

lead to the definition of a relevant set of interrelated problems that should be solved.

Based on this problem decomposition, the relevant domains of expertise are identi-

fied, which are commonly named solution domains. From these domains the solution

concepts are extracted that make up the system design.

In each step in Synbad, an intermediate design artifact, such as a requirement, is

transformed into new intermediate design artifacts like the problems that should be

solved to implement this requirement. In the ATM, we represent intermediate design

artifacts by circles and the activity of transforming by arrows. From a set of initial

requirements, a sequence of transformations needs to be made, until an implementable

solution is found. In order to make a complete trace model that represents design

processes, it should contain the essential building blocks that can occur. The follow-

ing building blocks can be identified: Requirement, Problem, Solution Domain, Solu-

tion, Component/Class. By connecting these building blocks, a trace of the design

process can made.

Generally, in a software design process it takes several of these sequences to com-

pletely solve a particular problem. By transforming components/classes into new

lower-level requirements, and continuing the design process in the same manner the

requirements are fulfilled. The structure of the artifact trace model allows the designer

to determine which requirements are implemented with a particular selection of com-

ponents. From a set of requirements, the components can be traced down in the ATM.

When we examine the Artifact Trace Model in Figure 2, without going into too much

detail at this point, we can trace for instance requirement R3 to the components C3.1

and C3.2. Complementary we can also see that the set C2.1.2, C2.3.1 and C2.3.2 im-

plement requirement R2.

3.3 The Fuzzy Requirement Concept

By considering imperfect information in the design process, the software design is

less vulnerable for its alternative interpretations. Therefore, instead of intuitively as-

suming one interpretation that hopefully corresponds to the stakeholder’s intentions,

we propose to include a range of possible interpretations. To accommodate the inter-

pretations, we define the concept of a fuzzy requirement.

We assume that a crisp or perfect requirement is an element of a universe U, where U

is the set of all possible requirements. For instance, specification of the set {A, B, C}

corresponds to the requirement specification: “I need requirement A, B and C to be

fulfilled and no other from the universe U”. In the case that one or more requirements

in this set are imperfect, they can be replaced by a fuzzy requirement. We define a

fuzzy requirement to consist of the specification of a fuzzy set FS on U. The degree of

membership for each element in the fuzzy set describes the degree to which this par-

ticular element is considered as the correct interpretation of the imperfect requirement

at the current point in time.

For example, suppose a stakeholder asks for I. a convenient model in the require-

ment specification. The requirement set representing this specification then is { I

}.Suppose this requirement is considered an imperfect requirement, since it is not

clear what convenient exactly means. We can interpret this requirement in a number

of ways, such as:

1. An easily understandable model (0.4)

2. An easily modifiable model (0.6)

3. An easily portable model (0.8)

Each of these interpretations is evaluated by the stakeholders, with respect to how

well they think the respective interpretation reflects the imperfect requirement. Be-

tween parentheses, we have indicated the degree of membership, which represents

this feedback from the stakeholder. From this point, the imperfect requirement is re-

placed with the fuzzy requirement. The requirement specification thus becomes

{{1/0.4, 2/0.6, 3/0.8}}. While the definition of the member-ship values for require-

ments interpretations is far from trivial, their definition can be facilitated by offering

standardized ratings or variations and values. This part is still subject to future re-

search, however.

When imperfect requirements are replaced with fuzzy requirements, the design

process can be continued since the alternative interpretations are treated as normal

requirements. However, the resulting software system will likely exceed to stake-

holder requirements, since the fuzzy requirements introduce interpretations that, at

later stages, can turn out to be irrelevant. When the superfluous interpretations are

included in the design process for too long, they can lead to added workload and

overcomplete systems. To analyze the correlation that exists between the interpreta-

tions and implementation effort, the optimization capabilities of the Artifact Trace

Model can be used.

In the Artifact Trace Model, requirements are modeled by rootnodes in a graph.

Logically, a fuzzy requirement, like a perfect requirement, is represented by such a

root node. To accommodate the identified interpretations of the fuzzy requirement,

each interpretation is attached to the fuzzy requirement node as a child node. To each

interpretation the degree of membership is attributed. By treating the interpretations

of this fuzzy requirement as perfect requirements, the software engineer can design

the software system as he normally would. However, since not every interpretation is

necessary to fulfill the fuzzy requirement, a multitude of possible system configura-

tions can be derived from the included interpretations.

For example, in Figure 2 the rightmost fuzzy requirement has three interpretations

R6.1, R6.2 and R6.3. This fuzzy requirement can now be partially implemented by

implementing any subset of these interpretations. As a result, eight possible imple-

mentations can be identified: {}, {R6.1}, {R6.2}, {R6.3}, {R6.1, R6.2}, {R6.1,

R6.3}, {R6.2, R6.3} and {R6.1, R6.2, R6.3}. Obviously, implementing all interpreta-

tions takes more time and therefore will be more expensive, while implementing a

limited set of interpretations will result in a system with lower relevance but also

lower costs.

To compare the possible options for a particular fuzzy requirement, we use the

membership values that are given to its interpretations. For the relevancy value of

fuzzy requirements we can choose any function that reflects the combination of inter-

pretations. Here, we define the relevancy to be the algebraic sum of the membership

values of all implemented childnodes. The algebraic sum of two numbers A and B is

defined as A+B-AB. Since we have the membership value of the interpretation in the

requirement set are values between zero and one, the algebraic sum ensures that fuzzy

requirements does not have a relevancy larger than one. In addition, the relevancy is

always larger than or equal to the largest implemented membership value. For exam-

ple, if we would implement the components for R6.1 and R6.2 of the fuzzy require-

ment in Figure 2, the relevancy of this fuzzy requirement would become 0.3+0.6-

(0.3*0.6) = 0.72. For perfect requirements we define the relevancy to be one if they

are implemented, and zero if they are not.

With the approach described above, we can now calculate the relevancy value of

each individual requirement, both perfect and fuzzy. We define the value of the over-

all relevance of the system to be equal to the product of all requirement values. Obvi-

ously, it is possible to attribute multiple membership degrees to one interpretation,

such as one for relevance, one for urgency, etcetera. We define the over-all value of

the system as a result of these multiple attribute values to be the weighted average of

these values.

3.5 Optimization of the System Functionality Trade-off

We can now define optimization goals and systematically search for systems that ad-

here to these goals. We can distinguish between two configurations of optimization

goals. The first configuration is aimed at the maximization of one or more attribute

values. Typically, while looking for an optimum value, a number of constraints must

be fulfilled for the other attributes. For costs, typically an upper boundary is defined,

and other system attributes mostly restricted by means of a lower bound. The second

configuration is aimed at minimization of costs for the system that is being developed.

Both configurations search for a particular optimal system among all possible systems

that can be de-rived from the Artifact Trace Model. The amount of systems that needs

to be evaluated grows exponentially with the amount of interpretations for fuzzy re-

quirements. The amount of systems with n fuzzy requirements equals, ∏
=

n

i

i

1

#
2 , where

#i is the amount of interpretations for fuzzy requirement i.

To reduce this complexity, we propose the use of a heuristic approach when opti-

mizing the system design. The starting point for the heuristic approach is the system

for which all interpretations are implemented. For each system, we determine the at-

tribute values and the optimization criterion value, and we calculate the value ∆ crite-

rion value / ∆ attribute values. We then choose the system for which this value is the

smallest, and repeat this process for this new system. The stopping criterion for the

minimization of costs is when none of the new systems adhere to all the restrictions

on the attribute values. For the maximization of attribute values, the stopping criterion

is the system for which the costs restriction fulfilled. In a worst case scenario this heu-

ristic approach will be faced with a quadratic complexity.

4 Analysis of the approach using the example case

To demonstrate our approach, we apply it to our TMS example. We first trace the

design process while assuming that the requirements are perfect. First, the require-

ments are transformed into a set of problems that need to be solved. Second, for each

of these problems a solution domain and a solution is identified. Finally, from these

solutions an overall architecture is defined. In Table 1, the first step is described.

Table 1. From Requirements to Problems

In this table, a number of problems are identified for each requirement. For exam-

ple, for requirement 1 the first problem P1 is to decide on the interaction mechanism,

and the second problem P6 is how this interaction will be supported by the model.

Note that a number of problems are reused for multiple requirements. For example

P2.1.2 is a problem that must be solved for both requirement 2 and requirement 3.

This reuse means that when P2.1.2 is solved, a part of requirement 2 and requirement

3 is resolved.

The next step in the design process, is to identify solutions for the problems that

have been found. In order to solve the problems, available knowledge sources on the

specific areas are used, which are part of the applicable solution domains. By choos-

ing solutions that can resolve multiple problems at the same time, the amount of effort

needed to complete the system can be reduced. For example, a uniform communica-

tion interface is a useful solution, which is used to solve P1.2.1 and P4.1.2. For prob-

lem P2.1.2, there is emphasis on the extensibility of the task and scenario model, and

for P1.2.2 there is an emphasis on genericity of the model. By capturing the models in

XML and reusing the communication facilities, these considerations can be addressed

while minimizing implementation effort. The complete set of solutions can be found

in Appendix Table 3.

As the final step, the selected solution is mapped to a component model, which lo-

calizes the functionality that is needed to implement the system. Since the decomposi-

tion of the system into solution parts, the structure is largely known. However, since a

number of solutions are too large to fit into one component and other functionality

can be provided by commercial components, the component form a more refined

model of the TMS system. The way in which the components are related to the solu-

tions is described in Appendix Table 4. In addition, in this table the time is estimated

Requirement Problems to be solved

1 P1 How do we display information?

P6.1

2 P2.1 How do we express Tasks and Scenarios in an extensible manner?

P2.2 How do we capture Tasks and Scenarios in a portable and exportable manner?

3 P3.1 How do we normalize traffic flow with actions?

P3.2 How do we rate normalizations with respect to each other?

4 P4.1 How do we support a generic Task Allocation Support Model?

P4.2 How do we offer this information?

P2.1

5 P5.1 How do we support interaction with the system?

P5.2 How do we define a generic model that captures contextual information

for external usage?

6 P6.1 How do we make the internal data available?

P6.2 How do we realize a constant and stable communication stream?

that is expected for the implementation or adaptation of these components for the

TMS. These estimations are expressed in person-months.

The implementation of the components that are needed for the TMS sums up to

33.1 person-months. We can make a graphical depiction of the design steps that are

described in this paragraph. This depiction is achieved by explicitly linking the arti-

facts, such as for instance requirement 1, which is decomposed into P1.1 and P1.2. In

Figure 1 the Artifact Trace Model for the TMS is depicted.

In this picture, all the relationships between the intermediate design artifacts are

depicted. In case of shared relationships, the node representing the shared artifact is

also shared by its parents. The resulting architecture is an implementation of the re-

quirements specification at the beginning of the paragraph. However, it is only ac-

ceptable if the chosen interpretations of the requirements, either chosen implicitly or

not, reflect the stakeholder desires. In the next paragraph we use fuzzy requirements

to see whether the architecture consisting of these components is the best solution.

Note that some components appear multiple times in the picture to indicate that these

components are used at multiple places in the system.

4.1 Analysis with Fuzzy Requirements

For our example, let us consider the design of a system where requirements 2, 4, 5

and 6 are identified as imperfect requirements. These four requirements are replaced

by fuzzy requirements, and for each of these requirements three possible interpreta-

tions are identified. In addition, in accordance with the stakeholders, a number be-

tween 0 and 1 is attached to each interpretation, indicating the degree to which this

interpretation is applicable, which is its membership value. In the following require-

ment specification, the interpretations are described as follows:
Requirement 1: The TMS must support displaying relevant information to the users of the

TMS

Requirement 2 Interpretations:

2.1 There must be an easily extensible model of tasks and scenarios (0.8)

R

5.2

R

2.3

R

4.1

R

6.3

R

3

R

1

P

5.2.1

P

5.2.2

P

3.1

P

3.2

P

1.1

Over

all

P

2.1.2

P

2.3.1

P

4.1.1

P

4.1.2

P

6.1.2

P

6.3.1

S

5.1.1

S

5.1.2

S

5.2.1

S

5.2.1

S

5.2.2

S

2.1.2

S

2.3.1

S

2.3.1

S

4.1.1

S

6.1.1

S

6.1.2

S

6.3.1

S

3.1

S

3.2

S

1.1

C

5.1.1

C

5.1.1

C

5.1.2

C

5.2.1

C

5.2.1

C

5.2.2

C

2.1.2

C

2.3.1

C

2.3.1

C

4.1.1

C

6.1.1

C

6.1.2

C

6.2.1

C

6.3.1

C

3.1

C

3.2

C

1.1

VIII

0.5

IX

4

X

0.5

XI

1

XII

0.1

XIII

0.5

II

3

III

1

IV

3.5

VII

1

XIV

4

XV

3

XVI

2

XVII

2

V

2

VI

2

I

3
Fig. 1. Artifact Trace Model with Crisp Requirements

2.2 There must be an easily understandable model of tasks and scenarios (0.9)

2.3 There must be an easily exportable and portable model of tasks and scenarios (0.6)

Requirement 3: The system must support action coordination for optimal normalization of

traffic flow

Requirement 4 Interpretations

4.1 The system must support user extensible task allocation profiles (0.6)

4.2 The system must support task allocation as individual task blocks (0.2)

4.3 The system must support task allocation with automated decision support (0.9)

Requirement 5 Interpretations

5.1 Contextual Information must be accessible internally in a generic format (0.7)

5.2 Contextual Information must be accessible externally at an interface in a generic format

(0.5)

5.3 Contextual Information must be accessible both internally and externally at an interface

in a generic format (0.3)

Requirement 6 Interpretations

6.1 The TMS must be able to communicate with the roadside system unidirectionally (0.3)

6.2 The TMS must be able to communicate with the roadside system with flexible support for

separate data formats (0.6)

6.3 The TMS must be able to communicate with the roadside system for realtime video (0.8)

In the same manner as before, the software engineers identify the problems for these

requirements.

Table 2. From Requirements to Problems

Requirement Problems to be solved

1 P1.1 How do we display information?, P6.1.2

2.1 P2.1.1 How do we support a generic model that captures tasks and scenarios?

P2.1.2 How do we express Tasks and Scenarios in an extensible manner?

2.2 P2.2.1 How do we capture tasks and scenarios in an easily understandable manner?

P2.2.2 How do we support Tasks and Scenarios while maintaining system performance?

2.3 P2.3.1 How do we capture Tasks and Scenarios in a portable and exportable manner?,

P2.1.2

3 P3.1 How do we normalize traffic flow with actions?

P3.2 How do we rate normalizations with respect to each other?

4.1 P4.1.1 How do we support a generic Task Allocation Support Model?

P4.1.2 How do we offer this information?, P2.1.2

4.2 P4.2.1 How do we offer a highly composable Task Allocation Support Model?

P4.2.2 How do we extract the information from the model?, P4.1.2

4.3 P4.3.1 How do we provide reasoning support for Task Allocation?

P4.3.2 How do we extract this information from the Reasoning System?, P4.1.2

5.1 P5.1.1 How do we define a generic model that captures contextual information for inter-

nal usage?

P5.1.2 How do we make this generic model available inside the system?

5.2 P5.2.1 How do we support interaction with the system?

P5.2.2 How do we define a generic model that captures contextual information for ex-

ternal usage?

5,3 P5.3.1 How do we define a generic model that captures contextual information for inter-

nal and external usage?, P5.1.2, P5.2.1

6.1 P6.1.1 How do we realize the unidirectional communication?

P6.1.2 How do we make the internal data available

6.2 P6.2.1 How do we achieve dynamic switching of communication protocols?, P6.1.2

6.3 P6.3.1 How do we realize a constant and stable communication stream?, P6.1.2

In Table 2, the problems are defined, which should be resolved to implement the

requirements. Note, that the interpretations replace the actual fuzzy requirements in

this design step. At this point, also the membership degrees are not considered during

the design step. These will be use during the optimization of the Artifact Trace

Model. The subsequent steps where the problems are refined to solutions, and the

solutions to components can be found in Appendix Table 5 and 6 respectively. When

we depict this design process in an Artifact Trace Model, this results in the following

picture:

In Figure 2 the Artifact Trace Model is depicted for the design of the TMS with

imperfect requirements. The nodes labeled OR depict the imperfect requirements, and

the fact that at least one of their respective child nodes should be implemented. For all

the components the implementation time is estimated in person-months. As indicated

in Section 3.4, only one interpretation needs to be implemented for each fuzzy re-

quirement, which means that multiple systems can be derived from the Artifact Trace

Model. To analyze how the crisp architecture compares to the possible systems that

can be derived from this Artifact Trace Model, we will optimize the system design

both for cost and relevance in the next section.

When we take as a reference point the system from Section 4.1, we see that the re-

quirements that are implemented by these components is { R1.1, R2.3, R3.1, R4.3, R5,

R6 }. When we determine the overall relevance according to our method, this results

in a relevance of 0.114. In addition, the cost for implementing all the components for

this system is 33.1 man-months. In this paragraph, we examine whether it is possible

to derive systems from the fuzzy requirement design, which either offer lower costs or

higher relevance. First, we identify the system with minimal costs, while having a

relevance of at least 0.114 , which is equal to the relevance of the system resulting

from the crisp requirements. The system that is the result of this optimization consists

of the following components: { I, II, VII, VIII, IX, XIV, XV, XVI, XVII, XVIII, XIX, XX,

XXII, XXIII }. With these components, the following requirements are implemented: {

Fig. 2. Artifact Trace Model of the TMS with Fuzzy Requirements

R

5.1

R

5.2

R

5.3

R

2.1

R

2.2

R

2.3

R

4.1

R

4.2

R

4.3

R

6.1

R

6.2

R

6.3

R

3

R

1

P

5.1.1

P

5.1.2

P

5.2.1

P

5.2.2

P

3.1

P

3.2

P

1.1

OROR OR OR

Over

all

0.7 0.5 0.30.8 0.9 0.6 0.6 0.2 0.9 0.3 0.6 0.8

P

5.3.1

P

2.1.1

P

2.1.2

P

2.2.1

P

2.2.2

P

2.3.1

P

4.1.1

P

4.1.2

P

4.2.1

P

4.3.1

P

6.1.1

P

6.1.2

P

6.2.1

P

6.3.1

P

4.2.2

P

4.3.2

S

5.1.1

S

5.1.1

S

5.1.2

S

5.3.1

S

5.2.1

S

5.2.1

S

5.2.2

S

2.1.2

S

2.2.1

S

2.2.2

S

2.3.1

S

2.3.1

S

4.1.1

S

4.2.1

S

4.2.2

S

4.3.1

S

4.3.2

S

6.1.1

S

6.1.2

S

6.2.1

S

6.3.1

S

3.1

S

3.2

S

1.1

C

5.1.1

C

5.1.1

C

5.1.1

C

5.1.2

C

5.2.1

C

5.2.1

C

5.2.2

C

5.3.1

C

2.1.2

C

2.2.1

C

2.2.2

C

2.3.1

C

2.3.1

C

4.1.1

C

4.2.1

C

4.2.2

C

4.3.1

C

4.3.2

C

6.1.1

C

6.1.2

C

6.2.1

C

6.3.1

C

3.1

C

3.2

C

1.1

XIV

2

XV

0.5

XVI

4

XVII

0.5

XVIII

1

XIX

0.1

XX

0.5

XXI

1

II

3

III

1

IV

4

V

1

VI

3.5

IX

1

X

2

XI

3

XII

2

XIII

3

XXII

4

XXIII

3

XXIV

2

XXV

2

VII

2

VIII

2

I

3

R

5.1

R

5.2

R

5.3

R

2.1

R

2.2

R

2.3

R

4.1

R

4.2

R

4.3

R

6.1

R

6.2

R

6.3

R

3

R

1

P

5.1.1

P

5.1.2

P

5.2.1

P

5.2.2

P

3.1

P

3.2

P

1.1

OROR OR OR

Over

all

0.7 0.5 0.30.8 0.9 0.6 0.6 0.2 0.9 0.3 0.6 0.8

P

5.3.1

P

2.1.1

P

2.1.2

P

2.2.1

P

2.2.2

P

2.3.1

P

4.1.1

P

4.1.2

P

4.2.1

P

4.3.1

P

6.1.1

P

6.1.2

P

6.2.1

P

6.3.1

P

4.2.2

P

4.3.2

S

5.1.1

S

5.1.1

S

5.1.2

S

5.3.1

S

5.2.1

S

5.2.1

S

5.2.2

S

2.1.2

S

2.2.1

S

2.2.2

S

2.3.1

S

2.3.1

S

4.1.1

S

4.2.1

S

4.2.2

S

4.3.1

S

4.3.2

S

6.1.1

S

6.1.2

S

6.2.1

S

6.3.1

S

3.1

S

3.2

S

1.1

C

5.1.1

C

5.1.1

C

5.1.1

C

5.1.2

C

5.2.1

C

5.2.1

C

5.2.2

C

5.3.1

C

2.1.2

C

2.2.1

C

2.2.2

C

2.3.1

C

2.3.1

C

4.1.1

C

4.2.1

C

4.2.2

C

4.3.1

C

4.3.2

C

6.1.1

C

6.1.2

C

6.2.1

C

6.3.1

C

3.1

C

3.2

C

1.1

XIV

2

XV

0.5

XVI

4

XVII

0.5

XVIII

1

XIX

0.1

XX

0.5

XXI

1

II

3

III

1

IV

4

V

1

VI

3.5

IX

1

X

2

XI

3

XII

2

XIII

3

XXII

4

XXIII

3

XXIV

2

XXV

2

VII

2

VIII

2

I

3

R1, R2.1, R3, R4.1, R5.1, R5.2, R6.1 }. The resulting architecture has a relevance of

0.122, which adheres to our constraint of minimally 0.114. Our optimization criterion,

cost, for this system is equal to 26.6, which is considerably lower than the 33.1 for the

crisp system. We can conclude that the optimal system that can be found using the

Artifact Trace Model, not only exhibits lower costs than the crisp system, but also has

a better relevance.

Second, we maximize relevance, while not exceeding the amount of 33.1 person-

months. Our approach comes up with a system consisting of the following compo-

nents: { I, II, VII, VIII, XII, XIII, XIV, XV, XVI, XVII, XXII, XXIII, XXIV, XXV }. With

these components the following requirements are implemented { R1, R2.1, R3, R4.3,

R5.1, R6.1, R6.2, R6.3 }. This architecture differs considerably from the system that

was designed based on perfect requirements. Especially for requirement 4 multiple

interpretations have been included, which considerably boasts the relevance of this

system. This system has a relevancy of 0.476 and the cost of implementing the com-

ponents is 33.0. For this optimization we can conclude that the resulting system has a

considerably higher relevance, and still the costs are lower than for the perfect re-

quirements system.

5 Related Work

5.1 Decision Models and Imperfection Support of Software Processes

During the last 20 years, a considerable number of design methods have been intro-

duced, such as Structural design [17] and Rational Unified Process [6]. These ap-

proaches generally differ from each other with re-spect to the adopted models, such as

functional, data-oriented, object-oriented, etcetera. These methods propose a process

which is guided by a large set of explicit and implicit heuristics rules. A method may

distinguish itself from the others by introducing and emphasizing its own design heu-

ristics. In [15], based on their heuristics, architecture design methods are classified as

artifact-driven, use-case driven and do-main-driven. In the artifact-driven approaches,

software is designed from the perspective of the available software artifacts.

An extensive number of software engineering environments have been proposed to

support software engineering methods. Most environments provide model editing,

consistency checking, version management and code generation facilities. There is a

considerable amount of research on process modeling [8][5], as well as research in the

field of assisting software designers with automated reasoning mechanisms. How-

ever, formalizing design heuristics and providing some sort of expert system support

during the design process is not exploited well. As a result, most approaches can not

deal with imperfect information in the design process. In [11], a design heuristics

support approach based on fuzzy logic is proposed. However, this work does not ad-

dress the same problem of imperfect information as defined in this paper.

Modeling imperfection in the inputs of design processes is not new. However it is

seldomly applied in the field of software design. In [1] fuzzy logic is applied to sup-

port the partial applicability of design heuristics in the OMT development process. By

applying fuzzy reasoning techniques, the inconsistency can be con-trolled and main-

tained to a point where it can be resolved by new design input. In [16], a fuzzy logic

framework is defined that can be used to model imprecise functional requirements.

After each design step the proposed solution can be compared with the requirement,

similar to proving an invariant over a piece of code. The resulting value then indicates

to which degree the requirement holds.

In [9], an extension to decision trees (see next paragraph) is proposed. The impre-

cise attitude of the decision maker with respect to risks is modeled using techniques

from fuzzy logic, and combined with the decision optimization algorithms of prob-

abilistic decision trees. In [10], an approach is proposed to model imprecision in de-

sign inputs. This imprecision is captured using fuzzy set theory, and the imprecision is

then used to explore the possible design alternatives based on this model. In addition,

the method defines means to evaluate design alternatives based on these modeled im-

precision using fuzzy set theory. In [12], the uncertainty of market demands for soft-

ware products is captured using probabilistic models. These models are then used by a

Markov decision model to determine the implementation order of the components of

the system, in order to optimize the expected profit.

5.2 Traceability of Intermediate Design Artifacts in Software Engineering

In our approach we define a tracing model specifically aimed at capturing relation-

ships between intermediate design artifacts. Requirements tracing is a well-defined

area and has resulted in numerous techniques for tracing software design processes.

Each of these approaches is aimed at different uses, and is specifically suited to

achieve this purpose. For instance, a tracing approach based on hypertext [7] is pri-

marily aimed at easily browsing to documentation by use of hyperlinks. Other ap-

proaches are aimed at specifically linking elements together to determine coverage

and balance of intermediate design steps, such as trace matrices [4] and matrix se-

quences [3]. Another use of trace models is to analyze the fulfillment of requirements

based on the structure of the requirement trace. Examples of such approaches are as-

sumption-based truth maintenance networks [13] and constraint networks [2]. While

all these approaches have specific uses, it is not possible to apply these approaches to

work with imperfect inputs and optimize system de-signs. This limitation is caused by

in the need for specific attributes that are needed in the trace model, which are mostly

only in part captured by these tracing models.

6 Conclusions

In Section 2, imperfect information in software requirements and trading off system

functionality systematically are identified as two important problems in the design of

software systems. The first problem can lead to the development of software systems

that do not reflect the stakeholder’s intentions, since the imperfect requirements can

be interpreted differently by software engineers. The second problem is caused by the

lack of a tracing model that explicitly models the relationships between requirements

and the components that implement them. This lack makes it impossible to analyze

alternative systems based on the components that are implemented, while simultane-

ously considering cost or implementation time.

We have shown that imperfect information can be managed by describing the im-

perfect information with fuzzy sets and treat the extended requirements in the same

way as normal requirements. By adding annotations to the imperfect requirements, we

can model particular interests of stakeholders, such as desirability or applicability. In

addition, we have shown that the design process can be supported by tracing the trans-

formation steps that are taken from the initial requirements to the final components.

The relationship between the design elements is captured by a tree structure, which

can be used to trade off system functionality.

Our approach was demonstrated by applying the approach to an example case. In

the traditional evaluation method, one interpretation for each requirement was used.

When this system was compared to the results of our approach, it turned out to be

considerably more expensive and less adequate. To support the software engineer in

the application of this approach, a prototype tool has been implemented.

7 References

1. Aksit, M. & Marcelloni, F.: Leaving Inconsistency Using Fuzzy Logic, Information and

Software Technology 43(10), (2001), pp. 725-741.

2. Bowen, J., O'Grady, P. & Smith, L.: A Constraint Programming Language for Life-Cycle

Engineering, Artificial Intelligence in Engineering, Vol. 5, No. 4, (1990), pp. 206-220.

3. Brown, P.G.: QFD: Echoing the Voice of the Customer, AT&T Technical Journal,

March/April, (1991), pp. 21-31.

4. Davis, A.M.: Software Requirements: Analysis and Specification’, Prentice-Hall, Inc.,

(1990)

5. Finkelstein, A, Kramer, J. & Nuseibeh, B.: Software process modelling and technology,

Research Studies Press Ltd., (1994)

6. Jacobson, I., Booch, G. & Rumbaugh, J.: The Unified Software Development Process,

Addison Wesley, ISBN 0-201-57169-2, (1999)

7. Kaindl, H.: The Missing Link in Requirements Engineering, ACM SIGSOFT Software

Engineering Notes, Vol. 18, No. 2, (1993), pp. 30-39.

8. Kaiser, G.E., Popovich, S. & Ben-Shaul, I.Z.: A Bi-Level Language for Software Process

Modeling, In: Walter Tichy (Eds.), Configuration Management, John Wiley and Sons,

Ltd.Baffins Lane, Chichester, West Sussex PO19 1UD, England, (1994), pp. 39-72.

9. Liu, X. & Da, Q.: A Decision Tree Solution Considering the Decision Maker's Attitude,

in Fuzzy Sets and Systems, Elsevier, (2005), pp. 437-454.

10. Law, W.S. & Antonsson, E.K.: Optimization Methods for Calculating Design Imprecision,

in Advances in Design Automation, ASME, (1995), pp. 471-476.

11. Marcelloni, F. & Aksit, M.: Reducing Quantization Error and Contextual Bias Problems in

Software Development Processes by Applying Fuzzy Logic, Proceedings 18th Int. Con-

ference of NAFIPS, IEEE, ISBN 0-7803-5211-4, (1999)

12. Noppen, J. Aksit, M. Nicola, V. & Tekinerdogan, B.: Market-Driven Approach Based on

Markov Decision Theory for Optimal Use of Resources in Software Development, IEE

Proceedings Software 151(2), (2004), pp. 85-94.

13. Smithers, T., Tang, M.X. & Tomes, N.: The Maintenance of Design History in AI-Based

Design, In Proceedings of the Colloquium by the Institution of Electrical Engineers Pro-

fessional Group C1 (Software Engineers), London, (1991), pp. 8/1- 8/3.

14. Tekinerdogan, B.: Synthesis-Based Software Architecture Design, Ph. D. Thesis, Print

Partners Ipskamp, Enschede, ISBN 90-365-1430-4, Also available through

http://www.cs.bilkent.edu.tr/~bedir/PhDThesis/index.htm., (2000)

15. Tekinerdogan, B. & Aksit, M.: Classifying and evaluating architecture design methods In:

Mehmet Aksit (Eds.) Software Architecture and Component Technology, Kluwer Aca-

demic Publishers, (2002), pp. 3-28.

16. Yen, J. & Lee, J.: Fuzzy Logic as a Basis for Specifying Imprecise Requirements, in Pro-

ceedings of 2nd IEEE International Conference on Fuzzy Systems (FUZZ-IEEE'93), IEEE

Computer Society, (1993), pp. 745-749

17. Yourdon, E. & Constantine, L.L.: Structured Design: Fundamentals of a Discipline of

Computer Program and Systems Design, Prentice-Hall, (1979)

8 Appendix

Table 3. From Problems to Solutions

Table 4. From Solutions to Components

Problem Solution

P1 S1 Displaying by interpretation and formatting for the affected user

P2.1 S2.1 XML Schema for Tasks and Scenarios

P2.2 S2.2.1 State and Scenario Models based on Language Constructs

S2.2.2 XML based Language Parser

P3.1 S3.1 Determine and execute traffic relocation strategies

P3.2 S3.2 Compare strategies based on completion time and congestion reduction

P4.1 S4.1 Task Allocation based on XML models

P4.2 S4.2.1 Open Source XML Parser

S4.2.2 XML Communication Component

P5.1 S5.1.1 Corba based Middleware

S5.1.2 SQL Query Component

P5.2 S5.2 Database + Standardized Database Content Output

P6.1 S6.1 Uniform Communication Interface

P6.2 S6.2.1 Video Streaming Support

S6.2.2 Corba Based Communication, S6.1

Solution Components Cost

S1 I Definable views on Traffic Data Component 3

S2.1 II XML Schema for Tasks and Scenarios

III Common File Format Definition

3

0.5

S2.2.1 IV State and Scenario Models in Specific Language 1

S2.2.2 V Custom Language Parser Component, III 3.5

S3.1 VI Relocation Strategy Component 2

S3.2 VII Strategies Comparison and Selection Component 2

S4.1 VIII XML Schema for Task Allocation 1

S4.2.1 IX Open Source XML Parser Component 4

S4.2.2 X XML Communication Component 0.5

S5.1.1 XI Corba Communication Components 1

S5.1.2 XII SQL Query Component 0.1

S5.2 XIII Database + Database Serializer Component 0.5

S6.1 XIV Uniform Communication Interface 3

S6.2.1 XV Dynamic Protocol Support Component

XVI Video Streaming Support Component

2

2

S6.2.2 XVII Corba Based Communication Component 4

Table 5. From Problems to Solutions

Table 6. From Solutions to Components
Solution Components Cost

S1.1 I Definable Views on Traffic Data Component 3

S2.1.2 II XML Schema for Tasks and Scenarios, XV 3

S2.2.1 III State and Scenario Models based on State Machines, XV 1

S2.2.2 IV State Machine Interpreter Component 4

S2.3.11 V State and Scenario Models in Specific Language 1

S2.3.12 VI Custom Language Parser Component, XV 1

S3.1 VII Relocation Strategy Component 2

S3.2 VIII Strategies Comparison and Selection Component 2

S4.1.1 IX XML Schema for Task Allocation 3.5

S4.2.1 X Object Oriented Task Allocation Model 2

S4.2.2 XI COM+ Component 3

S4.3.1 XII Task Allocation Expert System 2

S4.3.2 XIII Text Based Allocation Report Extractor and Interface, XV 3

S5.1.11 XIV XML Model Schema

XV Common File Format Definition

2

0.5

S5.1.12 XVI Open Source XML Parser Component 4

S5.1.2 XVII XML Communication Component 0.5

S5.2.11 XVIII Corba Communication Components 1

S5.2.12 XIX SQL Query Component 0.1

S5.2.2 XX Database + Database Serializer Component 0.5

S5.3.1 XXI XML Schema and ER Diagram 1

S6.1.1 XXII Corba Based Communication Component 4

S6.1.2 XXIII Uniform Communication Interface 3

S6.2.1 XXIV Dynamic Protocol Support Component 2

S6.3.1 XXV Video Streaming Support Component, XXIV 2

Problem Solution

P1.1 S1.1 Displaying by interpretation and formatting for the affected user

P2.1.1 S5.1.1

P2.1.2 S2.1.2 XML Schema for Tasks and Scenarios

P2.2.1 S2.2.1 State and Scenario Models based on StateMachines

P2.2.2 S2.2.2 State Machine Interpreter

P2.3.1 S2.3.11 State and Scenario Models based on Language Constructs

S2.3.12 XML based Language Parser

P3.1 S3.1 Determine and execute traffic relocation strategies

P3.2 S3.2 Compare strategies based on completion time and congestion reduction

P4.1.1 S4.1.1 Task Allocation based on XML Models

P4.1.2 S5.1.2, S5.1.12

P4.2.1 S4.2.1 Task Allocation based on Object Oriented Models

P4.2.2 S4.2.2 COM+ Component, S5.2.1

P4.3.1 S4.3.1 Task Allocation based Expert System

P4.3.2 S4.3.2 Text based Allocation Report

P5.1.1 S5.1.11 XML-based Model for capturing contextual information

S5.1.12 Open Source XML Parser

P5.1.2 S5.1.2 XML Communication Component

P5.2.1 S5.2.11 Corba based Middleware, S5.2.12 SQL Query Component

P5.2.2 S5.2.2 Database + Standardized Databse Content Output

P5.3.1 S5.3.1 XML Model + Database Representation, S5.1.1, S5.2.1, S5.2.2

P6.1.1 S6.1.1 Corba based Communication

P6.1.2 S6.1.2 Uniform Communication Interface

P6.2.1 S6.2.1 Dynamic Protocol Support, S6.1.1, S6.1.2

P6.3.1 S6.3.1 Video Streaming Support, S6.1.1, S6.1.2

