Skip to main content

ANF Stochastic Low Rate Stimulation

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4527))

Abstract

Science has been researching on the physiology of the human hearing, and in the last decades, on the mechanism of the neural stimulus generation towards the nervous system. The objective of this research is to develop an algorithm that generalizes the stochastic spike pattern of the auditory nerve fibers (ANF) formulated by Meddis, which fulfils the Volley principle (principle that better describes the operation of the auditory system). The operating principle of the peripheral auditory system together with the models chosen to stimulate the auditory system and the characteristics of the implemented computational model are herein described. The implementation and analysis of the stochastic spike of a simple ANF and the spatial and spatial–temporal stochastic stimulation models demonstrate the superiority of the latter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Landy, M.S.: Course of Perception. WEB (2004)

    Google Scholar 

  2. Hearing and Balance. WEB (22-3-1996)

    Google Scholar 

  3. Fundamentals of Hearing & Speech Science. WEB (2004)

    Google Scholar 

  4. Martínez Rams, E.A., Cano Ortiz, S.D., Garcerán Hernández, V.: Implantes Cocleares: Desarrollo y Perspectivas. Revista Mexicana de Ingeniería Biomédica XXVII(1), 45–54 (2006)

    Google Scholar 

  5. Martínez Rams, E.A., Cano Ortiz, S.D., Garcerán Hernández, V.: Diseño de banco de filtros para modelar la membrana basilar en una prótesis coclear. In: Conferencia Internacional FIE, Universidad de Oriente, Cuba, 1–6 (2006)

    Google Scholar 

  6. Ghitza, O.: Auditory models and human performance in task related to speech coding and speech recognition. IEEE Transaction on Speech and Audio Processing, 115–132 (Jan. 1994)

    Google Scholar 

  7. Meyer-Bäse, U., Meyer-Bäse, A., Scheich, H.: An Auditory Neuron Models for Cochlea Implants. Aerosense 97, Orlando. SPIE, 582–593 (1997)

    Google Scholar 

  8. Meddis, R.: Simulation of mechanical to neural transduction in the auditory recepter. Journal Acoustic Society of America 79(3), 702–711 (1986)

    Article  Google Scholar 

  9. Hewitt, M.J., Meddis, R.: An evaluation of eight computer models of mammalian inner hair-cell function. Journal Acoustic Society of America, 904–917 (1991)

    Google Scholar 

  10. Meyer-Bäse, U.: A Interspike Interval Method to Compute Speech Signal from Neural Firing, 1–12 (2004)

    Google Scholar 

  11. Van Immerseel, L.M., Martens, J.P.: Pitch and voiced/unvoice determination with an auditory model. J. Acoust. Soc. Am. 91(6), 3511–3526 (1992)

    Article  Google Scholar 

  12. Martens, J.P., Van Immerseel, L.: An auditory model based on the analysis of envelope patterns. In: Acoustics, Speech, and Signal Processing, ICASSP-90, vol. 1, pp. 401–404 (1990)

    Google Scholar 

  13. Lopez-Poveda, E.A., Meddis, R.: A human nonlinear cochlear filterbank. J. Acoust. Soc. Am. 110(6), 3107–3118 (2001)

    Article  Google Scholar 

  14. Schatzer, R., Wilson, B., Wolford, R., Lawson, D.: Speech Processors for Auditory Prostheses. Sixth Quarterly Progress Report. WEB, 1–30 (2003)

    Google Scholar 

  15. Meddis, R., O’Mard, L.P., Lopez-Poveda, E.A.: A computational algorithm for computing nonlinear auditory frequency selectivity. Journal Acoustic Society of America 109(6), 2852–2861 (2001)

    Article  Google Scholar 

  16. McEwan, A., Van Schaik, A.: A Silicon Representation of the Meddis Inner Hair Cell Model. In: Proceedings of the ICSC Symposia on Intelligent Systems & Application (2000)

    Google Scholar 

  17. Johnson, D.H.: The relationship of post-stimulus time and interval histograms to the timing characteristics of spike trains. Biophysical Journal 22, 413–430 (1978)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Mira José R. Álvarez

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Martínez–Rams, E.A., Garcerán–Hernández, V. (2007). ANF Stochastic Low Rate Stimulation. In: Mira, J., Álvarez, J.R. (eds) Bio-inspired Modeling of Cognitive Tasks. IWINAC 2007. Lecture Notes in Computer Science, vol 4527. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73053-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73053-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73052-1

  • Online ISBN: 978-3-540-73053-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics