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On Affect and Self-adaptation: Potential
Benefits of Valence-Controlled Action-Selection

Joost Broekens, Walter A. Kosters, and Fons J. Verbeek

Leiden Institute of Advanced Computer Science, Leiden University, P.O. Box 9500,
2300 RA Leiden, The Netherlands

Abstract. Psychological studies have shown that emotion and affect in-
fluence learning. We employ these findings in a machine-learning meta-
parameter context, and dynamically couple an adaptive agent’s artificial
affect to its action-selection mechanism (Boltzmann β). The agent’s per-
formance on two important learning problems is measured. The first con-
sists of learning to cope with two alternating goals. The second consists
of learning to prefer a later larger reward (global optimum) for an ear-
lier smaller one (local optimum). Results show that, compared to several
control conditions, coupling positive affect to exploitation and negative
affect to exploration has several important benefits. In the alternating-
goal task, it significantly reduces the agent’s goal-switch search peak.
The agent finds its new goal faster. In the second task, artificial affect
facilitates convergence to a global instead of a local optimum, while per-
mitting to exploit that local optimum. We conclude that affect-controlled
action-selection has adaptation benefits.

1 Introduction

Affect influences thought and behavior in many ways [1,2,3,4]. While affective
states can be complex and composed of multiple components, in this paper we
use the term affect to refer to valence: the positiveness versus negativeness of an
agent’s affective state (in our case, the agent’s mood: a long term, low intensity
affective state) [3]. Valence can be seen as a further undifferentiated component
of an affective state that defines an agent’s situation as good versus bad [5].

We focus on the influence of affect on learning. Numerous psychological studies
support the idea that enhanced learning is related to positive affect [6], while
others show that enhanced learning is related to negative affect [7], or to both
[8]. Currently it is not yet clear how affect influences learning. Computational
modeling might give insights into the possible underlying mechanisms.

From a machine learning point of view the influence of affect on learning
suggests that adaptive agents can benefit from artificial affect, once we know
how to (1) simulate affect in a way useful for learning, (2) know what parts of
the adaptive agent’s architecture can be influenced by artificial affect, and (3)
know how to connect artificial affect to the appropriate parts of that architecture.

We investigate the relation between affect and learning with a self-adaptive
agent in a simulated gridworld. Our agent autonomously influences its action-
selection mechanism. It uses artificial affect to control its amount of exploration.
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Our agent uses a standard form of model-based reinforcement learning (see
Section 4). We present results based on two different learning tasks. In the first
the agent has to cope with two different alternating goals in a two-armed grid-
world. We call this the ”alternating goal task”. This is an important task to be
able to learn. An agent with a changing set of goals that has to cope with a
dynamic environment has to learn to modify its behavior in order to reflect a
change in the set of goals; it has to be flexible enough to give up on an old goal
and it has to be persistent enough to continue trying an active goal. In other
words the agent has to decide when to explore versus exploit its knowledge, a.k.a.
the exploration-exploitation problem [9].

The second task consists of learning to prefer a later larger reward (global op-
timum) for an earlier smaller one (local optimum). We call this task the ”Candy
task”; candy represents the local optimum being closest to the agents starting
position, while food represents the global optimum being farther away from its
starting position. The ability to learn this task is important as it enables survival
with the knowledge an agent has, while trying to find better alternatives. Failure
to do so results in getting stuck in local optima or slow convergence.

2 The Influence of Affect on Learning

In this section we review some of the evidence that affect influences natural infor-
mation processing and learning. Some studies find that negative affect enhances
learning [7]. Babies aged 7 to 9 months were measured on an attention and learn-
ing task. The main result is that negative affect correlates with faster learning.
Attention was found to mediate this influence. Negative affect related to more
diverse attention, i.e., the babies’ attention was ”exploratory”, and both nega-
tive affect and diverse attention related to faster learning. Positive affect had the
opposite effect as negative affect (i.e., slower learning and ”less exploratory” at-
tention). This relation suggests that positive affect relates to exploitation, while
negative affect relates to exploration.

Other studies suggest an inverse relation [6], and find that mild increases in
positive affect related to more flexible attention but also to more distractible
attention. So it seems that in this study positive affect facilitated a form of
exploration, positive affect removes attention bias towards solving the old task.

Of course, attention is not equivalent to learning. It is, however, strongly
related to exploration: an important precursor to learning. Flexible distribution
of attentional resources favors processing of a wide range of external stimuli. So,
in the study by Dreisbach and Goschke [6] positive affect facilitated exploration,
as it helped to remove bias towards solving the old task thereby enabling the
subject to faster adapt to the new task. In the study by Rose et al. [7] negative
affect facilitated exploration as it related to defocused attention.

Other studies, e.g., [8] show that both negative and positive affect can relate to
faster learning. The authors found that both flow (a positive state characterized
by a learner receiving the right amount of new material at the right speed [10])
and confusion related to better learning.
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Combined, these results suggest that positive and negative affective states can
help learning at different phases in the process, a point explicitly made in [8].
Our paper investigates this in an adaptive agent context.

3 Simulated Affect Influences Action Selection

To model the influence of affect on learning, we simulate affect as follows. Our
agent learns based on reinforcement learning (RL), so at every time step it
receives a reward r. Simulated affect is based on this r:

ep = (rstar − (rltar − fσltar))/2fσltar (1)

Here, ep is the measure for positive affect, where ep ranges from 0 to 1, modeling
negative affect versus positive affect respectively. The short-term running average
reinforcement signal, rstar, has a parameter star defining the window-size (in
steps) of that running average. At every step of the agent, rstar is used as input
to calculate a long-term running average reinforcement signal, rltar, with ltar a
parameter again defining the window-size. The standard deviation of rstar over
that same long-term period is denoted by σltar , and f is a multiplication factor
defining the sensibility of the measure. The standard deviation is included as a
measure to normalize the affect signal based on the natural variance of rstar .
Artificial affect measures ”how well the agent is doing compared to what it is
used to”.

Two issues regarding natural affect are important. First, in studies that mea-
sure the influence of affect on cognition, affect relates more to long-term mood
than to short-term emotion. Affect is usually induced before or during the ex-
periment aiming at a continued, moderate effect instead of short-lived intense
emotion-like effect [6,3,7]. This is reflected by the fact that ep is based on rein-
forcement signal averages, not on r itself.

Second, affect induction (the method used in psychological experiments to
investigate the influence of affect on information processing) is compatible with
the administration of reward in reinforcement learning. Affect is usually induced
by giving subjects small unanticipated rewards [1,11]. The reinforcement signal
in RL only exists if there is a difference between predicted and received reward.
Predicted rewards thus have the same effect as no reward. It seems that both
reward and positive affect follow the same rule: if it’s predicted it isn’t impor-
tant. This is reflected in our measure. It compares a short-term estimate rstar

with a long-term estimate rltar. As the first, short-term average reacts quicker to
changes in the reward signal than the second, long-term average, a comparison
between the two yields a measure for how well the agent is doing compared to
what it is used to. If the environment and the agent’s behavior in that environ-
ment do not change, ep converges to a neutral value of 0.5. This reflects the fact
that anticipated rewards do not influence affect much.

Our agent uses a Boltzmann distribution to select actions:

p(a) =
eVt(s,a)·β

∑n
b=1 eVt(s,b)·β (2)
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Here, p(a) is the probability that a certain action a out of n possible ones is
chosen, and Vt(s, a) is the value of action a in state s at time t. The inverse
temperature parameter β determines the randomness of the distribution. High
β’s result in a greedy selection strategy (low temperature, small randomness).
If β is zero the distribution function results in a random selection strategy,
regardless of the predicted reward values (high temperature, high randomness).

In our experiments artificial affect ep controls an agent’s β parameter and
thereby exploration versus exploitation. This is compatible with Doya’s approach
[12], who proposes that emotion is also a system for meta-learning.

3.1 Type-A: Positive Affect Relates to Exploitation

To investigate the influence of artificial affect on exploration, we study two types
of relations. Type-A models that positive affect increases exploitation [7]:

β = ep · (βmax − βmin) + βmin (3)

If ep increases to 1, β increases towards βmax. As ep decreases to 0, β decreases
towards βmin. So positive affect results in more exploitation, while negative
affect results in more exploration. In essence, our agent is autonomously adapting
how selective its attention process is: ”when happy, be greedy in the actions to
consider, when sad: consider all possible actions equally”.

3.2 Type-B: Negative Affect Relates to Exploitation

Type-B models the inverse of the previous relation (as suggested in [6]):

β = (1 − ep) · (βmax − βmin) + βmin (4)

As affect ep increases to 1, β decreases towards βmin and as ep decreases to
0, β consequently increases towards βmax. So positive affect results in more
exploration, while negative affect results in more exploitation. In this case our
agent uses a different way to adapt attention: ”when sad, be greedy in the actions
to consider, when happy: consider all possible actions equally”.

4 Experiment and Method

Our experiments are performed in two different simulated gridworlds (Fig. 1).
The first is a two-armed maze with a potential goal at the end of each arm.
This maze is used for the Alternating-Goal (AG) task, i.e., coping with two
alternating goals, find food or find water (only one goal is active during an
individual trial, goal reward r = +2.0). The second maze has two active goal
locations. The nearest goal location is the location of the candy (i.e., a location
with a reward r = +0.25), while the farthest goal location is the food location
(r = +1.0). This maze is used for the Candy task. The walls in the mazes are lava
patches, on which the agent can walk, but is discouraged to do so by a negative
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Fig. 1. The task-mazes used. Left maze is the Alternating-Goal task. Right maze is
the Candy task. s denotes agent’s starting position, f is food, c is candy and w is water.

reinforcement (r = −1.0). The agent learns by acting in the maze and perceiving
its direct environment using an 8-neighbor and center metric (i.e., it senses its
eight neighbors and the location it is at). An agent that arrives at a goal location
is replaced to its starting location. Agents start with an empty world model and
construct a Markov Decision Process (MDP) as usual (a perceived stimulus is a
state s in the MDP, and an action a leading from state s1 to s2 is an edge in
the MDP). The agent counts state occurrences, N(s), and uses this count in a
standard weighting mechanism. Values of states are updated using as follows:

R(s) ← R(s) + α · (r − R(s)) (5)

V (s) ← R(s) + γ ·
∑

i

V (sai)
N(sai)∑
j N(saj )

(6)

So, a state s has a learned reward R(s) and a value V (s) that incorporates pre-
dicted future reward. R(s) converges to the reward for state s with a speed pro-
portional to the learning rate α. V (s) is updated based on R(s) and the weighted
values of the next states reachable by action a1...i (with a discount factor of γ).
So, we use a standard model-based RL approach [9]. In the Alternating-Goal
task the learning rate α and discount factor γ are respectively 1.0 and 0.7, and
in the Candy task respectively 1.0 and 0.8. We have fixed the artificial affect
parameters ltar, star and f to 400, 50 and 1, respectively.

4.1 Learning Tasks

To analyze the difference in learning behavior of agents that use affect control
of type-A, B and a control condition using static β values we did the following.
In the Alternating-Goal task agents first have to learn goal one (food). After
200 trials the reinforcement for food is set to r = 0.0, while the reinforcement
for water is set to r = +2.0. The water is now the active goal location (so an
agent is only reset at its starting location if it reaches the water). This reflects a
change in goals, of which the agent is initially unaware. It has to search for the
new goal location. After 200 trails, the situation is set back; i.e., food becomes
the active goal. This is repeated 2 times, resulting in 5 learning phases (phases
0 to 4 referring to learning of food, then water, food, water, and finally food).
This represents 1 run, and we repeated these runs.

The setup of the Candy task is simpler. The agent has to learn to optimize
reward in the Candy maze. The problem for the agent is to (1) exploit the local
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reward (candy), but at the same time (2) explore and then exploit the global
reward (food). This relates to opportunism, an important ability that should be
provided by an action-selection mechanism [13].

All AG task results are based on 800 runs, while Candy task results are based
on 400 runs. We averaged the number of steps needed to get to the goal over
these runs, resulting in an average learning curve. The same was done for β (the
exploration-exploitation curve), and the agent’s quality of life (QOL) (measured
as the sum of the rewards received during 1 trial). In all plots the trials are on
the x-axis, while β, steps or quality of life on the y-axis.

4.2 Experiment 1: Alternating-Goal Task

Our main finding is that type-A (positive affect relates to exploitation, negative
to exploration) has by far the lowest switch cost between different goals, as
measured by the number of steps taken at the trial in which the goal-switch is
made (Fig. 3b). This is an important adaptation benefit. All goal-switch peaks
(phases 1–4) of the 4 variations of type-A (i.e., dotted lines labeled ”AG dyn
3–6, 3–7, 3–9, and 2–8”) are smaller than the peaks of the controls (straight
lines labeled ”AG static 3,4,5,6, and 7”) and type-B (i.e., striped lines labeled
”AG dyn inv 3–6, 3–7, 3–9 and 4–9”). Initial learning (phase 0) is marginally
influenced by affective feedback (peaks at phase 0 in Fig. 3b), as can be expected:
no goal switch occured before the initial learning phase. Closer investigation of
the first goal switch (trial 200, phase 1) shows that the trials just after the goal
switch also benefit considerably from type-A (Fig. 2b). When we computed for
all settings an average peak for trial 200, 201 and 202 together, and compared
these averages statistically, we found that type-A performs significantly better
(p < 0.001 for all comparisons, Mann-Whitney, n = 800). Analysis of the peak
at trial 800 (phase 4), reveals about the same picture. The trial in which the goal
is switched benefits significantly from type-A (p < 0.01) for all comparisons.

All other comparisons between peaks revealed significantly (p < 0.001) smaller
peaks for type-A (Fig. 3b). This effect is most clearly shown for the peaks of
phase 3 and 4, where the relative peak-height difference between type-A peaks
and static peaks ranges between 1.25 and 2. This means that using positive affect
to control action-selection in the way described in type-A can result in up to a
2 fold decrease of search investment needed to find a new goal. As expected, the
smallest difference between control and type-A is when β is small (3 or 4) in the
control condition (small β = exploration = less tied to old goal). However, small
β’s have a classical downside: less convergence due to less exploitation (Fig. 3a).
In contrast, type-A curves in Fig. 3a show that the agent does converge to the
minimum number of steps needed to get to the goal (i.e., 4).

For completeness we show the β curves for the complete phase 1 of the con-
trol group and one type-A and one type-B (Fig. 2a). These curves confirm the
expected β dynamics. For type-A, the goal-switch induces high exploration (β
near βmin) for type-A due to the lack of reinforcement (it is going worse than
expected), after which β quickly moves up to βmax, and then decays to average.
For type-B this is exactly the inverse.
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Fig. 2. (a) AG mean β for phase 1. (b) AG mean steps, detail phase 1.

Fig. 3. (a) AG all phases. (b) AG peaks at phases 0–4 (steps in trial 0, 200, 400, etc.).

Fig. 4. (a) Candy task complete, mean steps. (b) Candy task complete, mean QOL.

Fig. 5. Candy task starts learning, mean QOL
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4.3 Experiment 2: Candy Task

Type-A agents have a considerable adaptation benefit compared to control and
type-B agents. In general, type-A results in the same speed of convergence as a
high β, as shown by the learning curves of the complete task (Fig. 4a). We see
that the learning curves of ”β=6” and ”dyn 2–8” overlap considerably. Interest-
ingly, the quality of life curves show that in the beginning the QOL of the type-A
agent quickly converges to the local optimum (candy, 0.25) comparable to that
of the high β control agent (Fig. 5). At the end of the task (later trials) the
QOL of the type-A agent steadily increases towards the global optimum (food,
+1.0; Fig. 4b). This shows that type-A affective feedback helps to first exploit a
local optimum, while at a later stage explore for and exploit a global optimum.
This is a major adaptation benefit resulting from affective control of β. This is
specifically important for artifical and natural agents in real-world situations.
One wants to exploit something good and search for something better.

The control agent with β = 4 does converge to the global optimum just like
the type-A agent (Fig. 4b). However, due to continuous high randomness in
this agents action-selection mechanism this agent does not converge nicely with
regard to the steps they need to take to get that reward as compared to the
type-A agent (Fig. 4b). Also due to this high randomness this agent does not
learn the local reward consistently enough to quickly exploit it (Fig. 5). For these
smaller βs this results in a major delay in arrival at the same level of QOL as
compared to the larger βs and the type-A agent (compare the curves ”β=5” and
”dyn 2-8” in Fig. 5). The type-B agent does not perform well at converging or
at quickly exploiting the local optimum (Fig. 4a and b, Fig. 5).

5 Discussion of Results

Although our results show that adaptation benefits from affective control of
exploration versus exploitation (and specifically when positive = exploitation),
several issues exist. First, we introduce new, non-trivial, parameters to control
just one, β. Setting βmin to a very small value (i.e., close to 0) results in a problem
for type-A agents: once it explores a very negative environment it cannot easily
get out of exploration mode due to continuously receiving negative rewards that
result in even lower affect and thus in even more exploration. The only way to
get out of this is by getting completely used to the negative environment, which
might take a long time. However, the main benefit of setting meta-parameters
such as ltar, star instead of configuring β is that they can be set for a complete
(set of) learning task(s) potentially eliminating the need to adapt β using other
mechanism (such as simulated annealing) during learning. Therefore, configura-
tion of these values is more efficient. And, as our results show, the β is controlled
in such a way that the agent switches to exploration in the alternating-goal task
when needed, and it ”gets bored” in the Candy task when needed.

Second, if local and global rewards are very similar, even a type-A agent
cannot learn to prefer global reward, as the difference becomes very small. So,
the candy and food reward have to be significantly different, such that the agent
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can exploit this difference once both options have been found. You don’t walk a
long way for a little gain. The discount factor is related to this issue, as a small γ
results in discarding rewards in the future and therefore the agent is more prone
to fall for the nearer local optimum. So γ should be set such that the agent is
at least theoretically able to prefer a larger later reward for a smaller earlier one
(which is γ = 0.8 in the Candy task, as compared to 0.7 in the AG task).

5.1 Related Work

Our work relates to computational modeling of emotion and motivation based
control/action-selection. It explicitly defines a role for emotion in biasing behavior-
selection (e.g, [14]). The main difference is that we have explicitly experimented
with a psychologically plausible model of affect as a way to directly, and continu-
ously, control the randomness of action-selection.

Although affective control of exploration is promising for adaptive behavior,
our learning model is specific, and our claims hard to generalize. Other learning
architectures, such as Soar or ACT-R, should be used to further investigate the
mechanisms introduced here. Belavkin [15] has shown using ACT-R that affect
can be used to control the search through the solution space, which resulted in
better problem-solving performance. He used an information-theoretic approach
towards modeling affect that is related to the rule-state of the ACT-R agent. A
key difference is thus that our measure for affect is based on a comparison of re-
inforcement signal averages. Further we explicitly model affect based on different
theoretical views on the relation between affect and information processing and
compared these views experimentally. The Salt model [16] relates to Belavkin’s
approach in the sense that the agent’s effort to search for a solution in its memory
depends on, among other parameters, the agent’s mood valence.

Schweighofer and Doya [17] used a similar measure for ”how well the agent is
doing compared to what it is used to”; however, they use it differently. Instead
of directly controlling β, affect is used as basis for a search-based method. If a
random change to β results in positive affect (agent is doing better), the new β
is kept, and vice versa. Recently we have extended this work by comparing these
methods on the same tasks in a different learning environment (Soar-RL) [18].

6 Conclusions

We have defined a measure for affect for adaptive agents, and used it to control
action-selection. Based on experimental results with learning agents in simulated
gridworlds, we conclude that coupling positive affect to exploitation and negative
affect to exploration has several important adaptation benefits, at least in the
tasks we have experimented with. First, it significantly reduces the agent’s goal-
switch search peak when the agent learns to adapt to a new goal: the agent
finds this new goal faster. Second, artificial affect facilitates convergence to a
global instead of a local optimum, while exploiting that local optimum. However,
additional experiments are needed to verify the generality of our results, e.g., in
continuous problem spaces, and other learning architectures (see [18]).
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