Skip to main content

Identification and Evaluation of Functional Modules in Gene Co-expression Networks

  • Conference paper
Systems Biology and Computational Proteomics (RSB 2006, RCP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4532))

Abstract

Identifying gene functional modules is an important step towards elucidating gene functions at a global scale. In this paper, we introduce a simple method to construct gene co-expression networks from microarray data, and then propose an efficient spectral clustering algorithm to identify natural communities, which are relatively densely connected sub-graphs, in the network. To assess the effectiveness of our approach and its advantage over existing methods, we develop a novel method to measure the agreement between the gene communities and the modular structures in other reference networks, including protein-protein interaction networks, transcriptional regulatory networks, and gene networks derived from gene annotations. We evaluate the proposed methods on two large-scale gene expression data in budding yeast and Arabidopsis thaliana. The results show that the clusters identified by our method are functionally more coherent than the clusters from several standard clustering algorithms, such as k-means, self-organizing maps, and spectral clustering, and have high agreement to the modular structures in the reference networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tong, A., Drees, B., Nardelli, G., Bader, G., Brannetti, B., Castagnoli, L., Evangelista, M., Ferracuti, S., Nelson, B., Paoluzi, S., Quondam, M., Zucconi, A., Hogue, C., Fields, S., Boone, C., Cesareni, G.: A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules. Science 295, 321–324 (2002)

    Article  Google Scholar 

  2. Stuart, J., Segal, E., Koller, D., Kim, S.: A gene-coexpression network for global discovery of conserved genetic modules. Science 302, 249–255 (2003)

    Article  Google Scholar 

  3. Jeong, H., Tombor, B., Albert, R., Oltvai, Z., Barabasi, A.: The large-scale organization of metabolic networks. Nature 407, 651–654 (2000)

    Article  Google Scholar 

  4. Lee, T., Rinaldi, N., Robert, F., Odom, D., Bar-Joseph, Z., Gerber, G., Hannett, N., Harbison, C., Thompson, C., Simon, I., Zeitlinger, J., Jennings, E., Murray, H., Gordon, D., Ren, B., Wyrick, J., Tagne, J., Volkert, T., Fraenkel, E., Gifford, D., Young, R.: Transcriptional regulatory networks in saccharomyces cerevisiae. Science 298, 799–804 (2002)

    Article  Google Scholar 

  5. Jeong, H., Mason, S., Barabasi, A., Oltvai, Z.: Lethality and centrality in protein networks. Nature 411, 41–42 (2001)

    Article  Google Scholar 

  6. Ravasz, E., Somera, A., Mongru, D., Oltvai, Z., Barabasi, A.: Hierarchical organization of modularity in metabolic networks. Science 297, 1551–1555 (2002)

    Article  Google Scholar 

  7. Barabasi, A., Oltvai, Z.: Network biology: understanding the cell’s functional organization. Nat. Rev. Genet 5, 101–113 (2004)

    Article  Google Scholar 

  8. Oltvai, Z., Barabasi, A.: Systems biology. life’s complexity pyramid. Science 298, 763–764 (2002)

    Article  Google Scholar 

  9. Armstrong, N., van de Wiel, M.: Microarray data analysis: from hypotheses to conclusions using gene expression data. Cell Oncol. 26, 279–290 (2004)

    Google Scholar 

  10. Eisen, M., Spellman, P., Brown, P., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863–14868 (1998)

    Article  Google Scholar 

  11. Tavazoie, S., Hughes, J., Campbell, M., Cho, R., Church, G.: Systematic determination of genetic network architecture. Nat. Genet. 22, 281–285 (1999)

    Article  Google Scholar 

  12. Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., Lander, E., Golub, T.: Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc. Natl. Acad. Sci. USA 96, 2907–2912 (1999)

    Article  Google Scholar 

  13. Qian, J., Dolled-Filhart, M., Lin, J., Yu, H., Gerstein, M.: Beyond synexpression relationships: local clustering of time-shifted and inverted gene expression profiles identifies new, biologically relevant interactions. J. Mol. Bio. 314, 1053–1066 (2001)

    Article  Google Scholar 

  14. Bolshakova, N., Azuaje, F.: Machaon CVE: cluster validation for gene expression data. Bioinformatics 19, 2494–2495 (2003)

    Article  Google Scholar 

  15. Azuaje, F., Al-Shahrour, F., Dopazo, J.: Ontology-driven approaches to analyzing data in functional genomics. Methods Mol. Biol. 316, 67–86 (2006)

    Google Scholar 

  16. Gibbons, F., Roth, F.: Judging the quality of gene expression-based clustering methods using gene annotation. Genome Res. 12, 1574–1581 (2002)

    Article  Google Scholar 

  17. Ruan, J., Zhang, W.: Identification and evaluation of weak community structures in networks. In: Proc. National Conf. on AI, (AAAI-06), pp. 470–475 (2006)

    Google Scholar 

  18. Ruan, J., Zhang, W.: Discovering weak community structures in large biological networks. Technical Report cse-2006-20, Washington University in St Louis (2006)

    Google Scholar 

  19. Stark, C., Breitkreutz, B., Reguly, T., Boucher, L., Breitkreutz, A., Tyers, M.: Biogrid: a general repository for interaction datasets. Nucleic Acids Res. 34, D535–539 (2006)

    Article  Google Scholar 

  20. The Gene Ontology Consortium: The gene ontology (GO) database and informatics resource. Nucleic Acids Res. 32 (2004)

    Google Scholar 

  21. Harbison, C., Gordon, D., Lee, T., Rinaldi, N., Macisaac, K., Danford, T., Hannett, N., Tagne, J., Reynolds, D., Yoo, J., Jennings, E., Zeitlinger, J., Pokholok, D., Kellis, M., Rolfe, P., Takusagawa, K., Lander, E., Gifford, D., Fraenkel, E., Young, R.: Transcriptional regulatory code of a eukaryotic genome. Nature. 431, 99–104 (2004)

    Article  Google Scholar 

  22. Zhou, X., Kao, M., Wong, W.: Transitive functional annotation by shortest-path analysis of gene expression data. Proc Natl. Acad. Sci. USA 99, 12783–12788 (2002)

    Article  Google Scholar 

  23. Carter, S., Brechbuhler, C., Griffin, M., Bond, A.: Gene co-expression network topology provides a framework for molecular characterization of cellular state. Bioinformatics 20, 2242–2250 (2004)

    Article  Google Scholar 

  24. Zhu, D., Hero, A., Cheng, H., Khanna, R., Swaroop, A.: Network constrained clustering for gene microarray data. Bioinformatics 21, 4014–4020 (2005)

    Article  Google Scholar 

  25. Aggarwal, A., Guo, D., Hoshida, Y., Yuen, S., Chu, K., So, S., Boussioutas, A., Chen, X., Bowtell, D., Aburatani, H., Leung, S., Tan, P.: Topological and functional discovery in a gene coexpression meta-network of gastric cancer. Cancer Res. 66, 232–241 (2006)

    Article  Google Scholar 

  26. Fjallstrom, P.: Algorithms for graph partitioning: A survey. Linkoping Electron. Atricles in Comput. and Inform. Sci. (1998)

    Google Scholar 

  27. Newman, M., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E Stat Nonlin Soft Matter Phys. 69, 26113 (2004)

    Google Scholar 

  28. Newman, M.: The structure and function of complex networks. SIAM Review 45, 167–256 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  29. Danon, L., Duch, J., Diaz-Guilera, A., Arenas, A.: Comparing community structure identification. J. Stat. Mech, p. P09008 (2005)

    Google Scholar 

  30. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-completeness. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  31. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an algorithm. In: NIPS. pp. 849–856 (2001)

    Google Scholar 

  32. White, S., Smyth, P.: A spectral clustering approach to finding communities in graph. In: SIAM Data Mining (2005)

    Google Scholar 

  33. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22, 888–905 (2000)

    Article  Google Scholar 

  34. Altman, D.: Practical Statistics for Medical Research. Chapman & Hall/CRC (1991)

    Google Scholar 

  35. Boyle, E., Weng, S., Gollub, J., Jin, H., Botstein, D., Cherry, J., Sherlock, G.: Go:termfinder - open source software for accessing gene ontology information and finding significantly enriched gene ontology terms associated with a list of genes. Bioinformatics 20, 3710–3715 (2004)

    Article  Google Scholar 

  36. Jones, K.S.: Idf term weighting and ir research lessons. Journal of Documentation 60, 521–523 (2004)

    Article  Google Scholar 

  37. Gasch, A., Spellman, P., Kao, C., Carmel-Harel, O., Eisen, M., Storz, G., Botstein, D., Brown, P.: Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11, 4241–4257 (2000)

    Google Scholar 

  38. Albert, R., Barabasi, A.: Statistical mechanics of complex networks. Reviews of Modern Physics 74, 47 (2002)

    Article  MathSciNet  Google Scholar 

  39. Saccharomyces genome database, http://www.yeastgenome.org/

  40. Wallace, D.L.: Comment. Journal of the American Statistical Assocation 78, 569–576 (1983)

    Article  Google Scholar 

  41. Friedman, N., Linial, M., Nachman, I., Peer, D.: Using bayesian networks to analyze expression data. J. Comput Biol. 7, 601–620 (2000)

    Article  Google Scholar 

  42. Kauffman, S.: A proposal for using the ensemble approach to understand genetic regulatory networks. J. Theor Biol. 230, 581–590 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Trey Ideker Vineet Bafna

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ruan, J., Zhang, W. (2007). Identification and Evaluation of Functional Modules in Gene Co-expression Networks. In: Ideker, T., Bafna, V. (eds) Systems Biology and Computational Proteomics. RSB RCP 2006 2006. Lecture Notes in Computer Science(), vol 4532. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73060-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73060-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73059-0

  • Online ISBN: 978-3-540-73060-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics