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Abstract. Toom-Cook strategy is a well-known method for building
algorithms to efficiently multiply dense univariate polynomials. Efficiency
of the algorithm depends on the choice of interpolation points and on the
exact sequence of operations for evaluation and interpolation. If carefully
tuned, it gives the fastest algorithm for a wide range of inputs.
This work smoothly extends the Toom strategy to polynomial rings, with
a focus on GF2[x]. Moreover a method is proposed to find the faster Toom
multiplication algorithm for any given splitting order. New results found
with it, for polynomials in characteristic 2, are presented.
A new extension for multivariate polynomials is also introduced; through
a new definition of density leading Toom strategy to be efficient.
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1 Introduction

Starting with the works of Karatsuba [9] and Toom [13], who found methods
to lower asymptotic complexity for polynomial multiplication from O(n2) to
O(n1+ε) with 0 < ε < 1, many efforts have been done in finding optimised
implementations in arithmetic software packages [5,6,12].

The family of so-called Toom-Cook methods is an infinite set of algorithms.
Each of them requires polynomial evaluation of the two operands and a polyno-
mial interpolation problem, with base points not specified a priori, giving rise
to many possible Toom-k algorithms, even for a fixed size of the operands.

Moreover, to implement one of them, we will need a sequence of many ba-
sic operations, which typically are additions and subtractions of arbitrary long
operands, multiplication and exact division of a long operand by a small one,
optimised by bitshifts where possible.

The exact sequence is important because it determines the real efficiency of
the algorithm. It is well known [10] that the recursive application of a single
Toom-k algorithm to multiply two polynomials of degree n gives an asymptotic
complexity of O(nlogk(2k−1)). There is even the well known Schönhage-Strassen
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method [14,15], whose complexity is asymptotically better than any Toom-k:
O(n log n log log n). But the O-notation hides a constant factor which is very
important in practice.

All the advanced software libraries actually implement more than one method
because the asymptotically better ones are not optimal for small operand sizess.
So there can be a wide range of operand sizes where Toom-Cook methods can be
the preferred ones. The widely known GMP library [5] uses Toom-2 from around
250 decimal digits, then Toom-3, and finally uses FFT based multiplication with
more than 35,000 digits. Hence the interest for improvement in Toom-k.

On the multivariate side, the problem is much more complex. Even if the
combination of Kronecker’s trick [11] with FFT multiplication can give asymp-
totically fast methods, the overhead is often too big to have algorithms useful
in practice. The constraint for the polynomials to be dense is most of the time
false, for real world multivariate problems. A more flexible definition for density
can help.

1.1 Representation of GF2[x] and Notation

All the algorithms in this paper work smoothly with elements of GF2[x] stored
in compact dense binary form, where each bit represents a coefficient and any
degree 7 polynomial fits in one byte.

For compactness and simpler reading, we will sometimes use hexadecimal
notation. Every hexadecimal number h corresponds to the element p ∈ GF2[x]
such that p(2) = h(overZ). For example p ∈ GF2[x] ↔ hex, 1 ↔ 1, x ↔ 2, x +
1↔ 3, . . . , x3 + x2 + x+ 1↔ F, . . . , x8 + x7 + x6 ↔ 1C0, . . ..

We will also use the symbols� and� for bit-shifts. Meaning multiplication
and division by power of x, in GF2[x], or by power of 2 in Z [x].

2 Toom-Cook Algorithm for Polynomials, Revisited

A general description of the Toom algorithm follows. Starting from two polyno-
mials u, v ∈ R[x], on some integral domain R, we want to compute the product
R[x] 3 w = u · v. The whole algorithm can be described in five steps.

Splitting : Choose some base Y = xb, and represent u and v by means of two
polynomials u(y, z) =

∑n−1
i=0 uiz

n−1−iyi, v(y, z) =
∑m−1
i=0 viz

m−1−iyi, both
homogeneous, with respectively n and m coefficients and degrees deg(u) =
n − 1,deg(v) = m − 1. Such that u(xb, 1) = u, v(xb, 1) = v. The coefficients
ui, vi ∈ R[x] are themselves polynomials and can be chosen to have degree
∀i,deg(ui) < b,deg(vi) < b.
Traditionally the Toom-n algorithm requires balanced operands so that m =
n, but we can easily generalise to unbalanced ones. We assume commutativ-
ity, hence we also assume n ≥ m > 1.

Evaluation : We want to compute w = u·v whose degree is d = n+m−2, so we
need d+ 1 = n+m−1 evaluation points Pd = {(α0, β0), . . . , (αd, βd)} where
αi, βi ∈ R[x] can be polynomials. We define c = maxi(deg(αi),deg(βi)).
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The evaluation of a single polynomial (for example u) on the points (αi, βi),
can be computed with a matrix by vector multiplication. The matrix Ed,n
is a (d+ 1)× n Vandermonde-like matrix. u(α, β) = Ed,nu =⇒

u(α0, β0)
u(α1, β1)

...
u(αd, βd)

 =


βn−1

0 α0 · βn−2
0 · · · αn−2

0 · β0 αn−1
1

βn−1
1 α1 · βn−2

1 · · · αn−2
1 · β1 αn−1

2
...

...
...

...
βn−1
d αd · βn−2

d · · · αn−2
d · βd αn−1

d




u0

u1

...
un−1

 (1)

Recursive multiplication : We compute ∀i,w(αi, βi) = u(αi, βi) · v(αi, βi),
with d+1 multiplications of polynomials whose degree is paragonable to that
of Y = xb. We have deg(u(αi, βi)) ≤ c(n−1)+b, deg(v(αi, βi)) ≤ c(m−1)+b,
and the results deg(w(αi, βi)) ≤ c(n+m− 2) + 2b = cd+ 2b. We note that
c, d,m, n are fixed numbers for a chosen implementation, b instead will grow
as the operands grow.

Interpolation : This step depends only on the expected degree of the result
d, and on the d+1 chosen points (αi, βi), no more on n and m separately.
We now need the coefficients of the polynomial w(y, z) =

∑d
i=0 wiz

d−iyi.
We know the values of w evaluated at d+1 points, so we face a classical
interpolation problem. We need to apply the inverse of Ad, a (d+1)× (d+1)
Vandermonde-like matrix. w(α, β) = Adw =⇒

w0

w1

...
wd

 =


βd0 α0 · βd−1

0 · · · αd−1
0 · β0 αd0

βd1 α1 · βd−1
1 · · · αd−1

1 · β1 αd1
...

...
...

...
βdd αd · βd−1

d · · · αd−1
k · βd αdd


−1

w(α0, β0)
w(α1, β1)

...
w(αd, βd)

 (2)

Recomposition : The desired result can be simply computed with one more
evaluation: w = w(xb, 1). This step requires at most d shifts and sums.

The two critical phases are evaluation and interpolation. As stated by formu-
las (1) and (2), both require a matrix by vector multiplication. This two phases
can require many sums and subtractions, shifts, and even small multiplications
or exact divisions (interpolation only) by small elements in R[x]. The goal of this
paper is to find some optimal Evaluation Sequences of operations (called ES from
now on) as well as Interpolation Sequences (IS), leading to optimal algorithms.

2.1 References on Collected Ideas

After the first proposals [13,4], many small improvements where introduced for
the Toom-Cook splitting schemes. Winograd [17] proposed ∞ and fractions for
the evaluation points; same results are obtained here with homogenisation. Zim-
mermann and Quercia [18] proposed to evaluate also on positive and negative
powers of x ∈ GF2[x]; this idea is extended here using any coprime couple
αi, βi ∈ R[x] in the polynomial ring. Bodrato and Zanoni [2], underlined the
need to consider unbalanced operands; this idea was inherited by this paper.

http://bodrato.it/papers/#WAIFI2007
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3 The Matrices

Two kind of matrices are involved in any Toom-k algorithm, the square invert-
ible matrix Ad and the two, possibly equal, matrices Ed,n, Ed,m with the same
number d + 1 = 2k − 1 of rows, but fewer (respectively. n ≤ d and m ≤ d)
columns.

3.1 Matrices for the Interpolation Sequence

Since the matrices from equation 2 must be invertible, we are interested in the
determinant. Which can be computed from the points in Pd.

Theorem 1. For the Vandermonde-like matrix Ad generated from the d + 1
points in Pd = {(α0, β0), . . . , (αd, βd)}, the determinant can be computed with:

det(Ad) =
∏

0≤i<j≤d

(αiβj − αjβi)

Proof. It can be easily seen that a matrix with two points with βi = βj = 0 is
not invertible, and the above formula correctly gives 0.

If one point, suppose (α0, β0), has β0 = 0, the matrix will start with the line
(0, . . . , 0, αd0). Computing the determinant starting from this row, we will have
αdi det(Ãd) where Ãd is the complementary minor. Ãd is a Vandermonde d × d
matrix for the points αi/βi, where the i-th line was multiplied by βdi .

Using the classical formula for Vandermonde matrices, we obtain:

det(Ad) = αd0 det(Ãd) = αd0
∏

0<i≤d

βdi
∏

0<i<j≤d

(αi/βi−αj/βj) =
∏

0≤i<j≤d

(αiβj−αjβi)

3.2 The Choice of Evaluation Points

The choice of the evaluation points Pd is one of the most important steps
to reach an optimal implementation, and completely determines the matrices
Ad, Ed,2, . . . , Ed,d.

We will consider two of them as being automatically chosen (0, 1), (1, 0),
representing respectively 0 and ∞, and immediately giving w0 = u0 · v0, wd =
un−1 · vm−1, and the rows (1, 0, . . .), (. . . , 0, 1). An other good choice is the point
(1, 1), and (if characteristic 6= 2) (−1, 1). We need an invertible matrix Ad, so
if we use any point (αi, βi), no other multiple point (λαi, λβi) can be added, or
the factor (αiλβi − λαiβi) will nullify the determinant.

Since the dimension of the extra space needed for the carries depends on the
parameter c = maxi(deg(αi),deg(βi)), we try to keep it as small as possible.
That’s why in GF2[x] we consider only the polynomials with degree at most 1.
So we will have α, β ∈ {0, 1, x, x+ 1}, and only 9 possible couples:

PGF2[x] = {(0, 1), (1, 0), (1, 1), (x, 1), (1, x), (x+1, 1), (1, x+1), (x+1, x), (x, x+1)}

With this restriction we will be able to analyse Toom-k algorithms up to Toom-
5. For any choice of the points the following theorem tells us that any Toom-k
in GF2[x]with k > 2 requires at least one division.
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Theorem 2. Suppose d > 2, and the two points (0, 1), (1, 0) ∈ Pd. Then, for
any choice of the other points d−1 points in Pd, the determinant of the invertible
matrix Ad for a Toom algorithm in GF2[x] is not a power of x.

Proof. From theorem 1 we have:

det(Ad) =
∏

0<i<d

αiβi
∏

0<i<j<d

(αiβj − αjβi)

By contradiction, if the determinant is a power of x, then any factor of the
above formula must be a power of x. Then all the αi and βi are power of x. Any
factor (αiβj−αjβi) is then a difference of powers of x, giving 0 (a non invertible
matrix) or a non-power of x.

3.3 Matrices for the Evaluation Sequence

The matrices Ed,n are non-square, so we can not compute the determinant. But
we can compute the rank.

Theorem 3. If the points Pd give an invertible Ad, then the rank of any Ed,n
matrix is n.

Proof. Since the Ed,n are sub-matrices of the matrix Ad, modulo some multipli-
cation of rows by non-zero constants, all the n columns are linearly independent,
so the rank is n.

4 Optimising Through Graph Search

To study ES and IS, we need at first to fix the operations we admit. We consider
4 basic operations, giving a name for their cost in time:

- add or subtract two elements (cost: add)
- multiply an element by a small constant (cost: Smul)
- exact division by a small constant (cost: Sdiv)
- bit-shift by a small amount (cost: shift)
By small constant, we mean an element which fits in a few bytes, hopefully

in a register of the target CPU. All the resulting algorithms in this paper use
small constants needing at most two bytes.

We assume that additions and subtractions do cost the same, right and left
shift do cost the same, multiplication cost and exact division cost do not depend
on the constant. Moreover we require some relations on the costs:

- shift < add: it should be faster to compute a = b� 1 than a = b+ b
- shift < Smul: it should be faster to compute a = b� 3 than a = b · x3

In the experiments we also used the empirical relations shift < Smul <
add < Sdiv, but we did not assume those to be true in general.

We also assume that any linear combination li ← ±cj · lj/dj ± ck · lk/dk is
possible without using temporary variables, for any cj , dj , ck, dk ∈ R[x] small
constants, even if i = j. The cost of this linear combination will be simply
computed adding up the cost of single operations, converted to bit-shift whenever
possible or skipped when the coefficient is trivial.

http://bodrato.it/papers/#WAIFI2007
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4.1 Searching for Evaluation Sequences

The sequences ES and IS will be searched working on their respective matrices.
IS can be seen as a sequence of operations on the lines of a matrix, starting from
the matrix Ad and reaching the identity matrix. A method to determine the
optimal IS with no use of temporaries was already given in [2]; except theorem 2
already shown, all the results from that paper can be directly applied to GF2[x];
the same strategy was used to find optimal IS for this paper.

Here we focus on ES. Also ES can be searched working only on the matrix.
Again we require the algorithm not to use any temporary variable.

Any evaluation u(αi, βi) =
∑n−1
j=0 uj · (α

n−1−j
i ·βji ) can be directly computed

with a cost at most equal to (n− 1) · sum+n · Smul, without any division. So we
search for the best ES without divisions.

We will search a sequence of elementary operations on lines starting from
the zero matrix and leading to the goal matrix Ed,n. Computing the evaluations
u(αi, βi) we can always use the coefficients of the polynomial u, the vector u =
(. . . , uj , . . .). These values can not be modified. So we use a block matrix, where
one block is the identity, and the other is the goal Ed,n. Moreover, since we
always use the two points (0, 1), (1, 0), and they give two rows already present in
the identity matrix, we will cut off two lines and use a smaller Ẽd,n as the goal.


u

u(αi,βi)

=


I

E

·u;


In

Ed,n

=



1 0 · · ·
...

. . .
...

· · · 0 1

1 0 · · ·

eEd,n

· · · 0 1


; examine



l−1 : 1 0 · · ·
...

...
. . .

...
l−n : · · · 0 1

l1 :
... eEd,n

ld−2 :


Lines coming from the identity matrix must be left untouched, and are noted
with a negative index. Allowed operations are

li ← cj · lj + ck · lk, where i > 0, k 6= i, cj , ck are null or small constants (3)

Then we look for a sequence starting from the empty matrix M0 = (0), reaching
the goal matrix Ẽd,n. Every single step changes only one line in the M matrix
with a linear combination of lines as formula (3) shows.0BBBBBBBBB@

l−1 : 1 0 · · ·
...

...
. . .

...
l−n : · · · 0 1

l1 : 0 · · · 0
...

... 0
...

ld−2 : 0 · · · 0

1CCCCCCCCCA
l1←l−1+l−2
 

0BBBBBBBBB@

1 0 · · ·
...

. . .
...

· · · 0 1

1 1 0 · · ·
... 0

...
0 · · · 0

1CCCCCCCCCA
· · ·

0BBBBBB@
I

M

1CCCCCCA· · · 

0BBBBBBBBB@

l−1 : 1 0 · · ·
...

...
. . .

...
l−n : · · · 0 1

l1 :
... eEd,n

ld−2 :

1CCCCCCCCCA
(4)
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4.2 The Graph

Now we have all the ingredients to build a graph, and search for the shortest

path. The nodes in the graph are all the possible matrices of the form
(
I
M

)
as in

(4), and will be labelled by M . From every node, directed arcs represent possible
operations as in (3), we only need a limit for the possible coefficients. For the
result in this paper we explored combinations with coefficients limited by the
biggest coefficient in the goal matrix Ed,n. In Z [x] the limit being the absolute
value, in GF2[x] the degree. The weight of an arc M → M̃ is the minimal cost
of the operations of the form (3) that lead M to M̃ .

The graphs mentioned above have an infinite number of nodes, so it’s essential
to use a clever algorithm for the shortest path search. Two possibilities were
explored: the Travel Through algorithm described in the previous work [2] on
IS and the more standard A* algorithm [7]. The first being slower, but with a
smaller memory footprint. While the second is faster but needs too much memory
for big matrices.

4.3 Estimate for Evaluation Sequences

Both A* and the Travel Through algorithm need a function to estimate the
remaining cost of a path, the estimated cost for a given node M must be smaller
or equal to the actual cost of the shortest path from M to the goal G = Ẽd,n.

To build this function we need some preliminary definitions and observations.

Definition 1 (Insertion). A given arc li ← cj · lj + ck · lk is an insertion if
and only if j < 0 ∧ cj 6= 0 or k < 0 ∧ ck 6= 0.

Theorem 4. If there exist a path of non-insertion arcs from node M to M̃ ,
then rank(M) ≥ rank(M̃).

Proof. A non-insertion arc, operates inside the matrix M . The resulting line is
a linear combination of lines in M , so the rank can not grow.

Theorem 5 (Rank estimate). The cost of the path from any node M to the
goal G is at least (rank(G)− rank(M)) · add.

Proof. By theorem 3, the rank(G) is maximal and rank(G)−rank(M) ≥ 0. Each
step modifies only one line, so the rank will be increased one by one.

Definition 2 (Needed insertions). Given a matrix M , and a line Gi of the
goal matrix, we define Ni(Gi,M) the minimal number of insertions needed to
obtain the line Gi from the matrix M .

If we fix a line Mj of the matrix M , and we note Mjk, Gik the k-th elements
of the two lines we can compute the minimal number of needed insertions for a
path from Mj to Gi with

Ñi(Gi,Mj) = n− max
λ∈GF2[x]\{0}

(#{k : Gik = λMjk}, 2).

Then we can compute the global Ni(Gi,M) = minj(Ñi(Gi,Mj)).

http://bodrato.it/papers/#WAIFI2007
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Theorem 6 (Line estimate). The cost of the path from any node M to the
goal G is at least (#{i : Ni(Gi,M) 6= 0}) · add.

Proof. The function Ni(Gi,M) for a given line Gi gives zero iff Gi is already in
M . A combination is needed to change each line which is not yet in the goal.

Theorem 7 (Combined estimate). To estimate the cost of the path from a
node M to the goal G; let r = rank(G) − rank(M), a = #{i : Ni(Gi,M) = 1}
and b = #{i : Ni(Gi,M) > 1}, then

if r ≤ a the cost is at least (a+ b) · sum
if r > a the cost is at least (r + b− b(r − a)/2c) · sum

Proof. If r ≤ a the cost is that of theorem 6.
If r > a we proceed by induction. For the base case, we note that the formula

f(r, a, b) = (r + b − b(r − a)/2c), when r = a, gives f(a, a, b) = a + b which is
correct.

Then we study how the values a, b, r are modified following an arc from
M to an other matrix M ′. We can have the new r′ < r only if the arc is an
insertion, when this happens we have r′ = r − 1. An insertion can decrease by
one the lines counted by a, or move a line from the set counted by b to the set
counted by a. If the first condition applies, b′ = b, a′ = a − 1 ⇒ f(r′, a′, b′) =
r − 1 + b − b(r − 1 − a + 1)/2c) = f(r, a, b) − 1, if the second applies, b′ =
b− 1, a′ = a+ 1⇒ f(r′, a′, b′) = r− 1 + b− 1− b(r− a− 2)/2c) = f(r, a, b)− 1.
Otherwise, if r′ = r, the arc can be a non-insertion, so it can change more than
one element, but on a single line, and possibly decrease a or b by 1. In both cases
f(r′, a′, b′) ≥ f(r, a, b)− 1.

The last combined estimate is stronger than the others and is good enough to
allow the complete analysis for Toom-4 matrices in GF2[x].

5 Results and Algorithms in Characteristic 2

The algorithm described in the following sections were studied to work in GF2[x],
but can be applied in general for characteristic 2. We skip Toom-2 because it
coincides with the well known Karatsuba.

5.1 Toom-2.5 in GF2[x]

The Toom-2.5 algorithm can be used to multiply two operands whose size is not
the same. In particular, one will be divided in 3 parts, the other in 2 parts.

There are many possible choices for the set of points P3, once inserted the
canonical points (1, 0), (0, 1), there is a couple of free points left.

Many pairs of points give a total cost of both ES for E3,2 and E3,3 equal to
6 · add+ 3 · shift and the evaluation always require 4 multiplications. But only
two pairs1, (1, 1), (x, 1) and (1, 1), (x+ 1, 1), reach the minimum cost for the IS:
6 · add + 2 · shift + 1 · Sdiv.
1 Also their reciprocal (1, 1), (1, x) and (1, 1), (1, x+ 1).
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We show here both algorithms, they are very similar. The author prefers the
first one, involving x+ 1, because of a slightly better locality.
P x+1

3 = {(0, 1), (1, 1), (x+ 1, 1), (1, 0)} P x3 = {(0, 1), (1, 1), (x, 1), (1, 0)}

Ex+1
3,2 =

0BB@
1 0

1 1
1 3

0 1

1CCA;Ex+1
3,3 =

0BB@
1 0 0

1 1 1
1 3 5

0 0 1

1CCA;Ax+1
3 =

0BB@
1 0 0 0
1 1 1 1
1 3 5 F
0 0 0 1

1CCAEx
3,2=

0BB@
1 0

1 1
1 2

0 1

1CCA;Ex
3,3=

0BB@
1 0 0

1 1 1
1 2 4

0 0 1

1CCA;Ax
3=

0BB@
1 0 0 0
1 1 1 1
1 2 4 8
0 0 0 1

1CCA
U = U2*Y^2 + U1*Y + U0

V = V1*Y + V0

\\ Evaluation:6 add,3 shift;4 mul

W3 = U2 + U1 + U0; W0 = V1 + V0

W1 = W3 * W0

W3 = W3 +(U1 + U2*(x))*(x)

W0 = W0 + V1*(x)

W2 = W3 * W0

W3 = U2 * V1 ; W0 = U0 * V0

\\ Interpolate:6 add,2 shift,1 Sdiv

W2 =(W2 + W1)/(x)

W1 = W1 + W0

W2 =(W2 + W1)/(x+1)

W2 = W2 + W3*(x)

W1 = W1 + W2 + W3

\\ Recomposition

W = W3*Y^3+ W2*Y^2+ W1*Y + W0

W == U*V

U = U2*Y^2 + U1*Y + U0

V = V1*Y + V0

\\ Evaluation:6 add,3 shift,4 mul

W3 = U2 + U1 + U0; W0 = V1 + V0

W1 = W3 * W0

W3 = U0 +(U1 + U2*(x))*(x)

W0 = V0 + V1*(x)

W2 = W3 * W0

W3 = U2 * V1 ; W0 = U0 * V0

\\ Interpolate:6 add,2 shift,1 Sdiv

W2 =(W2 + W1)/(x+1)

W1 = W1 + W0

W2 =(W2 + W1)/(x)

W2 = W2 + W3*(x)

W1 = W1 + W2

W2 = W2 + W3

\\ Recomposition

W = W3*Y^3+ W2*Y^2+ W1*Y + W0

W == U*V

5.2 Toom-3 in GF2[x]

Toom-3 is by far the best known and widely used variant of Toom-Cook algo-
rithms. But usually only in characteristic 0, for the multiplication in Z or Z [x].
While writing this paper, only one implementation of balanced Toom-3 in GF2[x]
was found on the net, by Zimmermann [18], based on the NTL library [12] and
carefully optimised. It uses the points PZ4 = {(0, 1), (1, x), (1, 1), (x, 1), (1, 0)},
an ES requiring 6 · add + 4 · shift for each operand, and an IS with cost
11 · add + 5 · shift + 2 · Sdiv.

We tested all the triplets of points in PGF2[x] \ (1, 0), (0, 1), and the combi-
nation (1, 1), (1, x), (1, x + 1) together with its reciprocal (1, 1), (x, 1), (x + 1, 1)
gave the best results.

Toom-3 has two variants, the balanced one, which is the most interesting,
because it can be used recursively; and the unbalanced, good when one operand
is about twice as big as the other. The two variants share the same IS but have
different evaluation matrices. The balanced version uses twice E4,3, while the
unbalanced uses E4,2 for the smallest operand and E4,4 for the bigger one.

The set of points used is P4 = {(0, 1), (1, 1), (1, x), (1, x+ 1), (1, 0)}.
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E4,3 =


1 0 0
1 1 1
1 2 4
1 3 5
0 0 1

 ; A4 =


1 0 0 0 0
1 1 1 1 1
1 2 4 8 10
1 3 5 F 11
0 0 0 0 1

 E4,2 =


1 0
1 1
1 2
1 3
0 1

 ; E4,4 =


1 0 0 0
1 1 1 1
1 2 4 8
1 3 5 F
0 0 0 1


U = U2*Y^2 + U1*Y + U0

V = V2*Y^2 + V1*Y + V0

\\ Evaluation:10 add,4 shift;5 mul

W3 = U2+U1+U0 ; W2 = V2+V1+V0

W1 = W3 * W2

W0 = U2*x^2+U1*x ; W4 = V2*x^2+V1*x

W3 = W3 + W0 ; W2 = W2 + W4

W0 = W0 + U0 ; W4 = W4 + V0

W3 = W3 * W2 ; W2 = W0 * W4

W4 = U2 * V2 ; W0 = U0 * V0

U = U3*Y^3 + U2*Y^2 + U1*Y + U0

V = V1*Y + V0

\\Eval:11 add,4 shift,1 Smul;5 mul

W3 = U3+U2+U1+U0 ;W2 = V1 + V0

W1 = W2 * W3

W0 = U3*(x^3)+U2*(x^2)+U1*(x)

W3 = W3 + W0 + (x^2+x)*U3

W2 = W2 + V1*(x)

W0 = W0 + U0 ;W4 = W2 + V1

W3 = W3 * W2 ;W2 = W0 * W4

W4 = U3 * V1 ;W0 = U0 * V0

\\ Interpolation:9 add,1 shift,1 Smul,2 Sdiv

W3 = W3 + W2

W2 =((W2+ W0)/(x)+ W3 + W4*(x^3+1)) / (x+1)

W1 = W1 + W0

W3 =(W3 + W1)/(x*(x+1))

W1 = W1 + W4 + W2

W2 = W2 + W3

\\ Recomposition:

W = W4*Y^4+ W3*Y^3+ W2*Y^2+ W1*Y + W0

W == U*V \\ check

The IS needs two exact divisions, one by the small constant element x + 1 and
one by x ·(x+1). Since we know these divisions are exact by very small constant,
they can be performed in linear time [8]. For a test implementation in NTL on a
32-bit CPU, the following C code for exact division by x+1 was implemented. It
is inspired by an analogous function by Michel Quercia [18]. Division by x2 + x
was actually implemented by one shift and the same function.

static void ExactDivOnePlusX (_ntl_ulong *c, long n) {

_ntl_ulong t = 0; long i;

for (i = 0; i < n; i++) {

t ^= c[i] ; t ^= t << 1; t ^= t << 2;

t ^= t << 4; t ^= t << 8; t ^= t << 16;

c[i] = t; t >>= 32-1;

}}

The main idea for this function is to multiply each word by the inverse of
x+1 modulo x2b

, where 2b is the number of coefficients stored in one word. This
requires b+ 1 shifts and sums for each word. Similar functions can be developed
for any exact division needed in Toom-3,4,5 IS.

With this function, the new algorithm is about 5% faster than Zimmer-
mann’s, and beats the NTL mul starting from 8 words, meaning degree 256. It
is also faster than Karatsuba for operands above 11 words, or degree 352.
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5.3 Toom-4 in GF2[x]

The complete analysis of the Toom-4 candidate algorithms requires too much
resources. So here we tested only the most promising choice for the 7 points:
P6 = {(0, 1), (1, x + 1), (1, x), (1, 1), (x, 1), (x + 1, 1), (1, 0)}. Here we show only
the balanced algorithm, used when the two operands have about the same size,
and the matrices.

U = U3*Y^3 + U2*Y^2 + U1*Y + U0

V = V3*Y^3 + V2*Y^2 + V1*Y + V0

\\ Evaluation: 13*2 add, 7*2 shift, 2*2 Smul, 7 mul

W1 = U3 + U2 + U1 + U0 ; W2 = V3 + V2 + V1 + V0

W3 = W1 * W2

W0 = U1 + x*(U2 + x*U3) ; W6 = V1+ x*(V2 + x*V3)

W4 =(W0 + U3*(x+1))*x+W1 ; W5 =(W6 + V3*(x+1))*x+W2

W0 = W0*x + U0 ; W6 = W6*x + V0

W5 = W5 * W4 ; W4 = W0 * W6

W0 = U0*x^3+U1*x^2+U2*x ; W6 = V0*x^3+V1*x^2+V2*x

W1 = W1 + W0 + U0*(x^2+x) ; W2 = W2 + W6 + V0*(x^2+x)

W0 = W0 + U3 ; W6 = W6 + V3

W1 = W1 * W2 ; W2 = W0 * W6

W6 = U3 * V3 ; W0 = U0 * V0

E6,4 =



1 0 0 0
F 5 3 1
8 4 2 1
1 1 1 1
1 2 4 8
1 3 5 F
0 0 0 1



\\ Interpolation: 22 add, 4 shift, 4 Sdiv, 5mul

W1 = W1 + W2 + W0*(x^4+x^2+1)

W5 =(W5 + W4 + W6*(x^4+x^2+1) + W1)/(x^4+x)

W2 = W2 + W6 + W0*x^6

W4 = W4 + W2 + W6*x^6 + W0

W4 =(W4 + W5*(x^5+x))/(x^4+x^2)

W3 = W3 + W0 + W6

W1 = W1 + W3

W2 = W2 + W1*x + W3*x^2

W3 = W3 + W4 + W5

W1 =(W1 + W3*(x^2+x))/(x^4+x)

W5 = W5 + W1

W2 =(W2 + W5*(x^2+x))/(x^4+x^2)

W4 = W4 + W2

\\ Recomposition:

W = W6*Y^6 + W5*Y^5 + W4*Y^4+ W3*Y^3+ W2*Y^2+ W1*Y + W0

W == U*V \\ check

A6 =



1 0 0 0 0 0 0
55 33 11 F 5 3 1
40 20 10 8 4 2 1
1 1 1 1 1 1 1
1 2 4 8 10 20 40
1 3 5 F 11 33 55
0 0 0 0 0 0 1



5.4 Toom-5 in GF2[x]

The complete analysis of Toom-5 is even harder. There is only one possible choice
for the evaluating points with minimal degree:

PGF2[x] = {(0, 1), (x+1, x), (x+1, 1), (x, 1), (1, 1), (1, x), (1, x+1), (x, x+1), (1, 0)}.

The resulting algorithms are too big to be transcribed here, the found cost being:
ES: 2× (19 · add + 6 · shift + 4 · Smul)
IS: 36 · add + 9 · shift + 5 · Smul + 6 · Sdiv
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Only 3 different denominators for exact division are needed: x3 · (x + 1)3,
x · (x+ 1) · (x2 + x+ 1)2 and x2 · (x+ 1)2 · (x2 + x+ 1). The two matrices are

E8,5 =



1 0 0 0 0

11 1E 14 18 10
11 F 5 3 1
10 8 4 2 1
1 1 1 1 1
1 2 4 8 10
1 3 5 F 11
10 18 14 1E 11

0 0 0 0 1


A8 =



1 0 0 0 0 0 0 0 0
101 1FE 154 198 110 1E0 140 180 100
101 FF 55 33 11 F 5 3 1
100 80 40 20 10 8 4 2 1
1 1 1 1 1 1 1 1 1
1 2 4 8 10 20 40 80 100
1 3 5 F 11 33 55 FF 101

100 180 140 1E0 110 198 154 1FE 101
0 0 0 0 0 0 0 0 1


6 Bivariate and Multivariate

The same strategy described in section 2 can be extended to multivariate polyno-
mials. In particular it fits perfectly for those polynomials whose homogenisation
is dense: polynomials dense with respect to total degree.

On the opposite side there is the Kronecker substitution [11] which is very
efficient for polynomials dense with respect to maximal degree.

Definition 3. We call triangular polynomial a polynomial dense with respect to
total degree. We mean a polynomial where coefficients for all the possible terms
with sum of exponents limited by a constant d are mostly non-zero. We will call
square polynomial, those which are dense with respect to maximal degree.

A couple of examples, 1 +x+ y+x2 + y2 +xy will be called triangular, while
1 + x+ y + x2 + y2 + xy + x2y + xy2 + x2y2 is a square polynomial.

6.1 Multivariate Toom-2

Karatsuba’s idea was generalised in many ways, one of them can be the extension
to multivariate polynomials. If we start from two triangular polynomials, u, v,
and we want to compute the product w = u · v, we can proceed as in section 2.

If we call X0 the homogenising variable and Xi the other ones, we will have
the canonical splitting u =

∑
i ui ·Xi. Then we have many smaller polynomials

ui, where u0 is a square, and the others are triangular.
All the evaluations and interpolations can be condensed in a one-line formula,

valid in any characteristic:u =
∑
i uiXi ∧ v =

∑
i viXi ⇒

w = u · v =
∑
i

(ui · vi)X2
i +

∑
i<j

((ui − uj) · (vj − vi) + uivi + ujvj)XiXj

where any product uivi is computed only once, and recycled for all the XiXj

coefficients.
Recurrence is not very easy in this algorithm, because all the products in-

volving u0 and v0 are square product, where the same algorithm can not be used.
On squares we can fall back to the Kronecker’s trick or use univariate algorithms
recursively on any variable.
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Another possible formula for the product, is the nearly equivalent

w = u · v =
∑
i

(ui · vi)X2
i +

∑
i<j

((ui + uj) · (vi + vj)− uivi − ujvj)XiXj

which is interesting for one reason: if we use this formula for an univariate poly-
nomial, with the identification Xi = xi, we obtain the Karatsuba generalisation
by Weimerskirch and Paar [16].

6.2 Bivariate Toom-2.5 in GF2[x]

The smallest interesting example of multivariate Toom, which is not a general-
isation of Karatsuba, is the algorithm to multiply a polynomial of degree 2 by
one of degree 1. Both with 2 variables. The product has degree 3, so it will have(
3+2
2

)
= 10 coefficients, and we need 10 points.

After homogenising, we have 3 variables and evaluation points need 3 values.
With the points P 2

3 = {(1, 0, 0), (1, 1, 0), (1, x+1, 0), (0, 1, 0), (0, 1, 1), (0, 1, x+1),
(0, 0, 1), (1, 0, 1), (x+ 1, 0, 1), (1, 1, 1)} we obtain the block-like matrices:

A2
3 =



1 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
F 5 3 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0 0
0 0 0 F 5 3 1 0 0 0
0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 1 1 1 0
1 0 0 0 0 0 F 5 3 0

1 1 1 1 1 1 1 1 1 1


; E2

3,2 =



1 0 0

1 1 0
3 1 0

0 1 0

0 1 1
0 3 1

0 0 1

1 0 1
1 0 3

1 1 1


;E2

3,3 =



1 0 0 0 0 0

1 1 1 0 0 0
5 3 1 0 0 0

0 0 1 0 0 0

0 0 1 1 1 0
0 0 5 3 1 0

0 0 0 0 1 0

1 0 0 0 1 1
1 0 0 0 5 3

1 1 1 1 1 1


We can observe that the square invertible matrix An2k−2 used for the n-variate
Toom-k, is not a Vandermonde matrix when n > 1, and it has

(
2k−2+n

n

)
lines (and

columns). Also the En2k−2,d are somehow sparse
(
2k−2+n

n

)
×
(
d−1+n
n

)
matrices.

Theorems proved in this paper can not be directly extended to those new
Vandermonde-blocks matrices, anyway algorithms developed for the univariate
case still works. Sparse matrix give graphs much smaller than expected and can
be fully analysed. The best bivariate triangular Toom-2.5 found by our software
follows.

U = U00*Z^2 + U10*Z*X + U20*X^2 \

+ U01*Z*Y + U11*Y*X \

+ U02*Y^2

V = V00*Z + V10*X \

+ V01*Y

\\ Evaluation: 22 add, 9 shift; 10 mul

W3 = U20+ U10+ U00 ; W0 = V10+ V00 ; W1 = W0 * W3

W3 = W3 +(U10+U20*(x))*(x) ; W0 = W0 + V10*(x) ; W2 = W0 * W3

W3 = U20+ U11+ U02 ; W0 = V10+ V01 ; W4 = W0 * W3
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W3 = W3 +(U11+U02*(x))*(x) ; W0 = W0 + V01*(x) ; W5 = W0 * W3

W3 = U02+ U01+ U00 ; W0 = V00+ V01 ; W7 = W0 * W3

W9 = W3 +(U01+U00*(x))*(x) ; W6 = W0 + V00*(x) ; W8 = W6 * W9

W3 = W3 + U20+ U11+ U10 ; W0 = W0 + V10

W9 = W3 * W0; W6 = U02* V01; W0 = U00* V00; W3 = U20* V10

\\ Interpolation: 21 add, 6 shift; 3 Sdiv

W2 =(W2 + W1)/(x) ; W5 =(W5 + W4)/(x) ; W8 =(W8 + W7)/(x)

W1 = W1 + W0 ; W4 = W4 + W3 ; W7 = W7 + W6

W9 = W9 + W7 + W4 + W1

W2 =(W2 + W1)/(x+1) ; W5 =(W5 + W4)/(x+1) ; W8 =(W8 + W7)/(x+1)

W2 = W2 + W3*(x) ; W5 = W5 + W6*(x) ; W8 = W8 + W0*(x)

W1 = W1 + W2 + W3 ; W4 = W4 + W5 + W6 ; W7 = W7 + W8 + W0

\\ Recomposition

W = W0*Z^3 + W1*Z^2*X + W2*Z*X^2 + W3*X^3 \

+ W8*Z^2*Y + W9*Z*Y*X + W4*Y*X^2 \

+ W7*Z*Y^2 + W5*Y^2*X \

+ W6* Y^3

W==U*V

Three instances of the x+1 version of univariate Toom-2.5 can be recognised
in the code, the same trick could be applied using the x version. Only the point
(1, 1, 1) requires some extra operations.

6.3 Bivariate Toom-3 in GF2[x]

The first non-Karatsuba multivariate Toom which can be used for recursion is the
bivariate triangular Toom-3, with this algorithm we can multiply two triangular
bivariate polynomials with degree 2 to obtain a triangular result with degree 4.
This time we need

(
4+2
2

)
= 15

interpolation points. The choice
P 2

4 = { (1, 0, 0), (1, x+ 1, 0), (1, x, 0),
(1, 1, 0), (0, 1, 0), (0, 1, 1),
(0, 1, x), (0, 1, x+ 1), (0, 0, 1),
(x, 0, 1), (1, 0, 1), (1, 0, x),
(1, 1, x), (1, 1, 1), (x, 1, 1)}

gives again block-like matrices. The
algorithm requires 15 smaller mul-
tiplication, 5 involving triangular
polynomials, and 10 requiring some
squared polynomial algorithm. We
choosed three different sub-matrices,
so it’s more difficult to recover sub-IS.

A2
4 =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 F 5 3 1 0 0 0 0 0 0 0 0 0 0
10 8 4 2 1 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 1 2 4 8 10 0 0 0 0 0 0
0 0 0 0 1 3 5 F 11 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 10 8 4 2 0 0 0
1 0 0 0 0 0 0 0 1 1 1 1 0 0 0
10 0 0 0 0 0 0 0 1 2 4 8 0 0 0

10 8 4 2 1 1 1 1 1 2 4 8 4 2 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 2 4 8 10 8 4 2 2 2 4


U = U00*Z^2+U10*Z*X+U20*X^2+U01*Z*Y+U11*X*Y+U02*Y^2

V = V00*Z^2+V10*Z*X+V20*X^2+V01*Z*Y+V11*X*Y+V02*Y^2

\\ Evaluation: 23*2 add, 6*2 shift; 15 mul

W0 = U00+ U10+ U20 ; W4 = V00+ V10+ V20
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W12=(U10+ U00*(x))*(x) ; W10=(V10+ V00*(x))*(x)

W2 = W0 + W12 ; W8 = W4 + W10

W3 = W12+ U20 ; W5 = W10+ V20

W1 = W2 * W8 ; W2 = W3 * W5 ; W3 = W0 * W4

W6 = U20+ U11+ U02 ; W7 = V20+ V11+ V02

W8 = U01*(x) ; W13= V01*(x)

W11= W6 + W12+ W8 ; W10= W10+ W7 + W13

W12= W11* W10; W5 = W6 * W7

W10= U02*(x^2) ; W11= V02*(x^2)

W9 = W10+ U11*(x) ; W14= W11 +V11*(x)

W6 = W6 + W9 ; W7 = W7 +W14

W0 = W0 + W9 +W8 ; W4 = W4 +W14+W13

W9 = W9 + U20 ; W14= W14 +V20

W10= W10+ W8 +U00 ; W11= W11 + W13+V00

W8 = W8 + U02+U00*(x^2); W13= W13 + V02+V00*(x^2)

W7 = W6 * W7 ; W6 = W9 * W14; W14= W0 * W4

W0 = U02+U01+U00 ; W4 = V02+V01+V00

W9 = W10* W11; W11= W8 * W13; W10= W0 * W4

W0 = W0+U20+U11+U10 ; W4 = W4+V20+V11+V10

W13= W0 * W4 ; W8 = U02*V02 ; W0 = U00*V00 ; W4 = U20*V20

E2
4,3 =



1 0 0 0 0 0
5 3 1 0 0 0
4 2 1 0 0 0
1 1 1 0 0 0
0 0 1 0 0 0
0 0 1 1 1 0
0 0 1 2 4 0
0 0 1 3 5 0
0 0 0 0 1 0
1 0 0 0 4 2
1 0 0 0 1 1
4 0 0 0 1 2
4 2 1 1 1 2
1 1 1 1 1 1
1 1 1 2 4 2


\\ Interpolation: 42 add, 8 shift, 2 Smul, 8 Sdiv

W12= W12+W2 ;W14= W14+W6 ;W13= W13+ W5

W1 = W1 +W2 ;W7 = W7 +W6 ;W9 = W9 + W0 + W8*(x^4)

W2 =(W2 +W4 )/(x) + W1 ;W6 =(W6 +W4 )/(x) + W7 ;W11= W11+ W8 + W0*(x^4)

W2=(W2+W0*(x^3+1))/(x+1);W6=(W6+W8*(x^3+1))/(x+1);W10= W10+ W8 + W0

W3 = W3 +W4 ;W5 = W5 +W4 ; W13= W13+ W10

W13 = W13+W3 ; W12 = W12+W5 ; W12=((W12+W11)/x+W13)/(x+1)

W14 = W14+W3 ; W14=((W14+W9 )/x+W13)/(x+1)

W1 =(W1 +W3)/(x*(x+1)) ;W7 =(W7 +W5)/(x*(x+1)) ;W9 =(W9+W11)/(x*(x^2+1))

W3 = W3 +W0 + W2 ;W5 = W5 +W8 + W6 ;W10= W10+ W9

W2 = W2 +W1 ;W6 = W6 +W7 ;W11=(W11/x+W9+W10*x)/(x^2+1)

W13 = W13+W12+W14 ;W9 = W9 +W11

\\ Recomposition

W = W0 *Z^4 + W1 *Z^3 *X+ W2 *Z^2*X^2 + W3*Z*X^3 + W4*X^4 \

+ W11*Z^3*Y + W12*Z^2*Y*X+ W13*Z*Y*X^2 + W5*Y*X^3 \

+ W10*Z^2*Y^2+ W14*Z*Y^2*X+ W6 *Y^2*X^2 \

+ W9 *Z *Y^3+ W7 *Y^3*X \

+ W8 *Y^4

W ==U*V

7 Conclusions

The paper presented a method to determine an optimal evaluation sequence of
basic operations to be used in Toom multiplications. Joined with the previous
work on inversion sequences [2], this gives a complete framework for the search
of optimal Toom-Cook algorithms. This method shows his immediate effective-
ness giving new algorithms to be used in GF2[x], and the best known Toom-3
algorithm for Z [x] and Z.

http://bodrato.it/papers/#WAIFI2007
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New generalisation of Toom described in section 2 open the possibility to
easily generate simple Toom multiplication algorithms for polynomials on other
integral domains [1]. Moreover section 6 generalise to multivariate polynomi-
als, with a natural definition of density. Further work is needed to find general
implementations working with any number of variables and any degree.

Note on Algorithms

Algorithms in this paper uses PARI/GP syntax [6], which should be simple
enough to translate to any other language, and allow a fast checking within
a GP shell. Some more definitions should be typed to have correct results for
algorithms in characteristic 2.

U0 = u0 * Mod(1,2) ; U1 = u1 * Mod(1,2) ; U2 = u2 * Mod(1,2)

U3 = u3 * Mod(1,2) ; U4 = u4 * Mod(1,2) ; U5 = u5 * Mod(1,2)

V0 = v0 * Mod(1,2) ; V1 = v1 * Mod(1,2) ; V2 = v2 * Mod(1,2)

V3 = v3 * Mod(1,2) ; V4 = v4 * Mod(1,2) ; V5 = v5 * Mod(1,2)
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Z Appendix Z: Results in Z [x]

Z.1 Toom-3 in Z [x]
The IS for Toom-3 in Z was fully examined in the previous work with Zanoni. We
give here the ES for the balanced and unbalanced (4x2) flavour. Both saves at
least one shift if compared to the currently used ES. Both were tested against
the GMP library, giving a small speedup.

U = U2*x^2 + U1*x + U0

V = V2*x^2 + V1*x + V0

\\ Evaluation: 5*2 add, 2 shift; 5mul

W0 = U2 + U0 ; W4 = V2 + V0

W2 = W0 - U1 ; W1 = W4 - V1

W0 = W0 + U1 ; W4 = W4 + V1

W3 = W2 * W1 ; W1 = W0 * W4

W0 =(W0 + U2)<<1-U0; W4 =(W4 + V2)<<1-V0

W2 = W0 * W4

W0 = U0 * V0 ; W4 = U2 * V2

U = U3*x^3 + U2*x^2 + U1*x + U0

V = V1*x + V0

\\ Eval: 7+3 add, 3 shift; 5mul

W0 = U1 + U3 ; W4 = U0 + U2

W3 = W4 + W0 ; W4 = W4 - W0

W0 = V0 + V1 ; W2 = V0 - V1

W1 = W3 * W0 ; W3 = W4 * W2

W4 =((U3<<1+U2)<<1+U1)<<1+U0

W0 = W0 + V1 ; W2 = W4 * W0

W0 = U0 * V0 ; W4 = U3 * V1

\\ Interpolation: 8 add, 3 shift, 1 Sdiv

W2 =(W2 - W3)/3

W3 =(W1 - W3)>>1

W1 = W1 - W0

W2 =(W2 - W1)>>1 - W4<<1

W1 = W1 - W3 - W4

W3 = W3 - W2

\\ Recomposition:

W = W4*x^4+ W2*x^3+ W1*x^2+ W3*x + W0

W == U*V

Z.2 Asymmetric Squaring in Z [x]
Chung and Anwar Hasan proposed new linear systems useful for integer squaring;
refer to their report [3] for the details. Here we only show results found by our
software starting from their matrices, although not optimised for this case.
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The report proposed an evaluation sequence and an inversion algorithm for
the 5-way squaring using temporary variables, with cost respectively 14 ·add+4 ·
shift and 18 ·add+ 7 ·shift. We where able to find shorter sequences, whitout
temporaries, reaching 12 · add + 5 · shift and 16 · add + 3 · shift.

U = U4*Y^4 + U3*Y^3 + U2*Y^2 + U1*Y + U0

\\ Evaluation: 12 add, 5 shift; 5 mul, 4 sqr

W0 = U0 - U3 ; W1 = U3 - U1 ; W6 = U1 - U2

W4 = U1 + U2 ; W5 = W6 - U4 ; W3 = W5 + W0<<1

W0 = W0 - W5 ; W6 = W0 + W6<<1; W7 = W6 + W1

W5 = W7 + W1 ; W8 = W5 + W4<<1; W4 = W4 - U4

W2 = W4 * W3; W4 = W6 * W5; W3 = W7 * W1

W1 = U0 * U1 * 2 ; W7 = U3 * U4 * 2

W5 = W8^2 ; W6 = W0^2 ; W0 = U0^2 ; W8 = U4^2

\\ Interpolation: 16 add, 3 shift.

W6 =(W6 + W5)>>1 ; W5 = W5 - W6

W4 =(W4 + W6)>>1 ; W6 = W6 - W4; W3 = W3 +W5>>1

W5 = W5 - W3 - W1; W4 = W4 - W8 - W0

W2 = W2 - W8 - W1 - W7 + W4 + W5

W3 = W3 - W7 ; W6 = W6 - W2

\\ Recomposition:

W = W8*Y^8 + W7*Y^7 + W6*Y^6 + W5*Y^5 \

+ W4*Y^4 + W3*Y^3 + W2*Y^2 + W1*Y + W0

W == U^2

Ẽ =



1 1 1 1 1
1 −1 1 −1 1
1 0 −1 0 1
0 1 0 −1 0
1 1 −1 −1 1
1 −1 −1 1 1
0 1 1 0 −1
2 1 −1 −2 −1



As=



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 1 1 0 −1−1 0 1 1
0−1 0 1 0 −1 0 1 0
1 0 −1 0 1 0 −1 0 1
1 1 1 1 1 1 1 1 1
1−1 1 −1 1 −1 1 −11
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1



T Appendix T: Toom Three Timing Tests

We include at last some raw graphs of multiplication timings for balanced n bits
long univariate operands. Both show relative timings for different operand sizes.

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0  1000 2000 3000 4000 5000 6000 7000

Bodrato
Karatsuba

Zimmermann

 0.96

 0.97

 0.98

 0.99

 1

 1.01

 5000  10000 15000 20000 25000 30000

Bodrato
Bodrato-Zanoni

GMP-4.2.1

NTL implementations, GF2[x] Toom-3,

normalised to Zimmermann’s irred-ntl

code. Up to degree 7,500.

GMP implementations, Z Toom-3,

normalised to GMP-4.2.1 timings. Up to

30,000 bits operands.



THIS PAGE IS NOT PART OF THE ARTICLE2

BibTEX entry

@InProceedings{Bodrato:WAIFI2007,
author = {Marco Bodrato},
title = {Towards Optimal {Toom-Cook} Multiplication for

Univariate and Multivariate Polynomials in
Characteristic 2 and 0},

pages = {116--133},
note = {\url{http://bodrato.it/papers/\#WAIFI2007}},
crossref = {WAIFI2007},

year = {2007},
booktitle = {{WAIFI 2007} proceedings},
editor = {Claude Carlet and Berk Sunar},
volume = {4547},
series = {LNCS},
month = {June},
publisher = {Springer}

}

@Proceedings{WAIFI2007,
title = {{WAIFI} 2007 - {I}nternational {W}orkshop

on the {A}rithmetic of {F}inite Fields,
{M}adrid, {S}pain, {J}une 21-22, 2007},

year = {2007},
location = {Madrid, Spain},
booktitle = {{WAIFI 2007} proceedings},
editor = {Claude Carlet and Berk Sunar},
volume = {4547},
series = {Lecture {N}otes in {C}omputer {S}cience},
month = {June},
publisher = {Springer}

}

Thanks

Jörg Arndt3 helped the author in proofreading this on-line version of the paper.

2 Paper edited with Emacs-21 and LATEX-3.0 on a Debian GNU/Linux box.
3 http://jjj.de/

http://jjj.de/

	Towards Optimal Toom-Cook Multiplication for Univariate and Multivariate Polynomials in Characteristic 2 and 0
	Marco Bodrato

