
Efficient multiplication using

type 2 optimal normal bases

Joachim von zur Gathen1, Amin Shokrollahi2, and Jamshid Shokrollahi3⋆

1 B-IT, Dahlmannstr. 2, Universität Bonn, 53113 Bonn, Germany
gathen@bit.uni-bonn.de

2 ALGO, Station 14, Batiment BC, EPFL, 1015 Lausanne, Switzerland
amin.shokrollahi@epfl.ch

3 B-IT, Dahlmannstr. 2, Universität Bonn, 53113 Bonn, Germany
jamshid@bit.uni-bonn.de

Abstract. In this paper we propose a new structure for multiplication
using optimal normal bases of type 2. The multiplier uses an efficient
linear transformation to convert the normal basis representations of ele-
ments of Fqn to suitable polynomials of degree at most n over Fq. These
polynomials are multiplied using any method which is suitable for the
implementation platform, then the product is converted back to the nor-
mal basis using the inverse of the above transformation. The efficiency of
the transformation arises from a special factorization of its matrix into
sparse matrices. This factorization — which resembles the FFT factoriza-
tion of the DFT matrix — allows to compute the transformation and its
inverse using O(n log n) operations in Fq, rather than O(n2) operations
needed for a general change of basis. Using this technique we can reduce
the asymptotic cost of multiplication in optimal normal bases of type 2
from 2M(n) + O(n) reported by Gao et al. (2000) to M(n) + O(n log n)
operations in Fq, where M(n) is the number of Fq-operations to multiply
two polynomials of degree n − 1 over Fq. We show that this cost is also
smaller than other proposed multipliers for n > 160, values which are
used in elliptic curve cryptography.

Keywords: Finite field arithmetic, optimal normal bases, asymptotically
fast algorithms.

1 Introduction

The normal basis representation of finite fields enables easy computation of the
qth power of elements. Assuming q to be a prime power, a basis of the form
(α, αq , · · · , αqn−1

) for Fqn , as a vector space over Fq, is called a normal basis
generated by the normal element α ∈ Fqn . In this basis the qth power of an
element can be computed by means of a single cyclic shift. This property makes
such bases attractive for parallel exponentiation in finite fields (see Nöcker 2001).

⋆ Partially funded by the German Research Foundation (DFG) under project RU
477/8
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Naive multiplication in these bases is more expensive than in polynomial
bases, especially when using linear algebra (cf. Mullin et al. (1989)). Hence sub-
stantial effort has gone into reducing the multiplication cost. In this paper a new
method for multiplication in normal bases of type 2 is suggested. It uses an area
efficient circuit to convert the normal basis representation to polynomials and
vice versa. Any method can be used to multiply the resulting polynomials. Al-
though this structure has small area, its propagation delay is longer than other
methods and, when used in cryptography, is mostly suitable for applications
where the area is limited, like in RFIDs.

One popular normal basis multiplier is the Massey-Omura multiplier pre-
sented by Omura & Massey. The space and time costs of this multiplier increase
with the number of nonzero coefficients in the matrix representation of the en-
domorphism x → αx over Fqn , where α generates the normal basis. Mullin et
al. (1989) show that this number is at least 2n − 1 which can be achieved for
optimal normal bases. Gao & Lenstra (1992) specify exactly the finite fields for
which optimal normal bases exist. They are related to Gauss periods, and can
be grouped into optimal normal bases of type 1 and 2.

For security reasons only prime extension degrees are used in cryptography,
whereas the extension degrees of the finite fields containing an optimal normal
basis of type 1 are always composite numbers. Cryptography standards often sug-
gest finite fields for which the type of normal bases are small (see for example the
Digital Signature Standard (2000)) to enable designers to deploy normal bases.
Applications in cryptography have stimulated research about efficient multiplica-
tion using optimal normal bases of type 2. The best space complexity results for
the type 2 multipliers are n2 and 3n(n−1)/2 gates of types AND and XOR, respec-
tively reported by Sunar & Koç (2001) and Reyhani-Masoleh & Hasan (2002).
Their suggested circuits are obtained by suitably modifying the Massey-Omura
multiplier. A classical polynomial basis multiplier, however, requires only n2 and
(n− 1)2 gates of types AND and XOR respectively for the polynomial multiplica-
tion, followed by a modular reduction. The latter is done using a small circuit of
size of (r− 1)n, where r is the number of nonzero coefficients in the polynomial
which is used to create the polynomial basis. It is conjectured by von zur Gathen
& Nöcker (2004) that there are usually irreducible trinomials or pentanomials
of degree n. The above costs and the fact that there are asymptotically fast
methods for polynomial arithmetic suggest the use of polynomial multipliers for
normal bases to make good use of both representations. The proposed multiplier
in this paper works for normal bases but its space complexity is similar to that
of polynomial multipliers. Using classical polynomial multiplication methods, it
requires 2n2 + 16n log2 n gates in F2n . With the Karatsuba algorithm, we can
decrease the space asymptotically even further down to O(nlog2 3). The useful-
ness of this approach in hardware has first been demonstrated in Grabbe et
al. (2003). The proposed structure can be employed to compute of Tate-pairing
in characteristic three, for example. Applications of optimal normal bases of type
2 for pairing-based cryptography have been proposed by Granger et al. (2005).
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The connection between polynomial and normal bases, together with its ap-
plication in achieving high performance multiplication in normal bases, has been
investigated by Gao et al. (1995, 2000). The present work can be viewed as a
conceptual continuation of the approach in those papers. They describe how
multiplication in normal basis representation by Gauss periods for Fqn can be
reduced to multiplication of two 2n-coefficient polynomials, which because of the
existing symmetries can be done by two multiplications of n-coefficient polyno-
mials: here any method, including asymptotically fast ones, can be deployed.

The multiplier of this work is based on a similar approach. For optimal normal
bases of type 2 we present an efficient transformation which changes the repre-
sentations from the normal basis to suitable polynomials. These polynomials are
multiplied using any method, such as the classical or the Karatsuba multiplier.
Using the inverse transformation circuit and an additional small circuit the result
is converted back into the normal basis representation. The heart of this method
is a factorization of the transformation matrix between the two representations
into a small product of sparse matrices. The circuit requires roughly O(n log n)
operations in Fq and resembles the circuit used for computing the Fast Fourier
Transformation (FFT). The analogy to the FFT circuit goes even further: as
with the FFT, the inverse of the transformation has a very similar circuit. It
should be noted that a general basis conversion requires O(n2) operations, as
also reported by Kaliski & Liskov (1999). Recently Fan & Hasan (2006) found
a new multiplier for normal bases with asymptotically low cost of O(nlog2 3),
which uses fast multiplication methods by Toeplitz matrices. One advantage of
our multiplier is the ability of working with any polynomial multiplication. Hence
using the Cantor multiplier, we can achieve a cost of O(n(log n)2(log logn)3).

This paper begins with a review of Gauss periods and normal bases of type 2.
Then the structure of the multiplier is introduced and the costs of each part of
the multiplier are computed. The last section compares the results with the
literature.

In this Extended Abstract most of the proofs and also some possible im-
provements for fields of characteristic 2 are omitted for lack of space. The only
exception is Lemma 1 which is a central part of this paper. But we have tried
to intuitively describe why the theorems are correct. The proofs can be found in
the full paper, or the work of Shokrollahi (2006).

2 Permuted normal basis

It is well known (see Wassermann (1990), Gao et al. (2000), Sunar & Koç (2001))
that a type 2 optimal normal basis for Fqn over Fq is of the form

N = (β + β−1, βq + β−q, · · · , βqn−1

+ β−qn−1

), (1)

where β is a 2n+ 1st primitive root of unity in Fq2n , and that the basis

N ′ = (β + β−1, β2 + β−2, · · · , βn + β−n),
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which we call the permuted normal basis, is a permutation of N . Hence the

normal basis representation of an element a =
∑n−1

k=0 a
(N )
k (βqk

+ β−qk

) ∈ Fqn

can be written as

a =

n
∑

l=1

a
(N ′)
l (βl + β−l), (2)

where (a
(N ′)
l )1≤l≤n is a permutation of (a

(N )
k )0≤k<n, called the permuted normal

representation of a. The a
(N )
k and a

(N
′
)

l are elements of Fq.

3 Multiplier Structure

The structure of the multiplier is described in Figure 1. To multiply two elements
a, b ∈ Fqn given in the basis (1) we first convert their representations to the
permuted form as

a =

n
∑

i=1

a
(N ′)
i (βi + β−i), and b =

n
∑

i=1

b
(N ′)
i (βi + β−i).

By inserting a zero at the beginning of the representation vectors and apply-
ing a linear mapping πn+1, which we define in Section 4, from F

n+1
q to Fq[x]

≤n,
the vectors of these representations are converted to polynomials φa and φb of
degree at most n, such that their values at β + β−1 are a and b, respectively.
Then φa and φb are multiplied using an appropriate method with respect to the
polynomial degrees and implementation platform. Obviously, the value of the
resulting polynomial φc at β+β−1 is the product c = a ·b. The degree of φc is at
most 2n, and the evaluation is a linear combination of (β+β−1)i for 0 ≤ i ≤ 2n.
Using another linear mapping ν2n+1 from Fq[x]

≤2n to F
2n+1
q , namely the inverse

of π2n+1, φc is converted to a linear combination of the vectors 1 and βi+β−i for
1 ≤ i ≤ 2n. This is then converted to the permuted normal basis using another
linear mapping τn.

The linear mapping ν2n+1 takes a polynomial in Fq[x]
≤2n, evaluates it at

β + β−1, and represents the result as a linear combination of 1 and βi + β−i,
for 1 ≤ i ≤ 2n. Since the above vectors are linearly dependent there are several
choices for ν2n+1. One way to compute the resulting linear combination is to
expand (β + β−1)j , for 1 ≤ j ≤ 2n, as a linear combination of βi + β−i, for 1 ≤
i ≤ 2n. The coefficients of these expansions are closely connected to the binomial
coefficients, that is, the entries of the Pascal triangle. The matrix representation
of ν2n+1 has a structure similar to the Pascal triangle reduced modulo p, the
characteristic of Fq. This infinite triangle has a fractal structure, which has
attracted a lot of attention and has been given various names in the literature,
among them “Sierpinski triangle” or “Sierpinski gasket” (see Wikipedia) for
p = 2. The central result of this paper is in Section 5, where we find a special
factorization for the matrix representation of ν2n+1 in an appropriate basis which
allows the mapping to be computed in O(n log n) operations. This cost is also
sufficient for πn+1.
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(a
(N)
i )1≤i≤n (b

(N)
i )1≤i≤n

(a
(N′)
i

)1≤i≤n (b
(N′)
i

)1≤i≤n

(ã
(N′)
i

)0≤i≤n (b̃
(N′)
i

)0≤i≤n

φa φb(β + β−1) = bφa(β + β−1) = a φb

φc = φa · φb

polynomial multiplication

(c̃i)0≤i≤2n

c = a · b = c̃0 +
∑ 2n

i=1 c̃i(β
i + β−i)

extended permuted representation

(c
(N′)
i

)1≤i≤n

(c
(N)
i

)1≤i≤n

permutation permutation

zero insertion zero insertion

linear map πn+1linear map πn+1 linear map πn+1

linear map ν2n+1

linear map τn

permutation

Fig. 1. Overview of our multiplier structure to multiply two elements a, b ∈ Fqn in the

representation (∗
(N )
i )1≤i≤n with respect to the normal basis N

4 Polynomials from Normal Bases

In this paper we always represent the characteristic of Fq by p.
The most important parts of our multiplier are the converters between poly-

nomial and permuted normal representations. Since the elements (β+β−1)i, for
0 ≤ i ≤ n, and also 1 and βi + β−i, for 1 ≤ i ≤ 2n, are linearly dependent, there
are different possibilities for the maps πn+1 and ν2n+1 from Section 3. We define

our selection via matrices Pn+1 ∈ F
(n+1)×(n+1)
p and L2n+1 ∈ F

(2n+1)×(2n+1)
p .

These matrices have special factorizations which allow to multiply them by vec-
tors of appropriate length using O(n log n) operations in Fq.

To construct the polynomial representation for a and b, their permuted repre-
sentations are preceded by zero and Pn+1 is multiplied by the resulting vectors.
The structure of the inverse of Pn+1, which we denote by Ln+1, is easier to
describe. Hence we define a candidate for Ln+1. This matrix can be used to
convert from polynomial to the extended permuted normal representation, i.e.,
it satisfies

(1, β + β−1, β2 + β−2, · · · , βn + β−n)Ln+1 =
(1, β + β−1, (β + β−1)2, · · · , (β + β−1)n).

Furthermore Ln+1 is invertible. Then we study its structure and exhibit a factor-
ization into sparse factors in Section 5, which is also used to find a factorization
for Pn.

Definition 1. For integers i, j let li,j ∈ Fp be such that (x+x−1)j =
∑

i∈Z
li,jx

i

in Fp[x], and Ln = (li,j)0≤i,j<n ∈ F
n×n
p .



6

Obviously li,j = 0 for |i| > |j|.

Example 1. Let q = 9, i.e., p = 3. For 0 ≤ j < 9, the powers (x + x−1)j and
hence the matrix L9 are:

j (x + x−1)j

0 1

1 x + x−1

2 x2 + 2 + x−2

3 x3 + x−3

4 x4 + x2 + x−2 + x−4

5 x5 + 2x3 + x + x−1 + 2x−3 + x−5

6 x6 + 2 + x−6

7 x7 + x5 + 2x + 2x−1 + x−5 + x−7

8 x8 + 2x6 + x4 + 2x2 + 1 + 2x−2 + x−4 + 2x−6 + x−8

L9 =

























1 0 2 0 0 0 2 0 1
0 1 0 0 0 1 0 2 0
0 0 1 0 1 0 0 0 2
0 0 0 1 0 2 0 0 0
0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 1 0 2
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

























Theorem 1. The matrix Ln of Definition 1 satisfies

(1, β + β−1, β2 + β−2, · · · , βn−1 + β−n+1)Ln =
(1, β + β−1, (β + β−1)2, · · · , (β + β−1)n−1),

(3)

is upper triangular with 1 on the diagonal, hence nonsingular, and its entries

satisfy the relation:

(Ln)i,j =

{

0 if i > j or j − i is odd, and
(

j
(j−i)/2

)

otherwise.

Definition 2. We denote the inverse of Ln by Pn = (pi,j)0≤i,j<n ∈ F
n×n
p .

5 Factorizations of the Conversion Matrices

The cost of computing the isomorphisms πn and νn of Section 3 depends on the
structure of the corresponding matrices. As in the last section, it is easier to
initially study the structure of Ln and use this information to analyze Pn. The
former study will be simplified by assuming n to be a power of p, say n = pr, and
extending the results to general n later. This simplification enables a recursive
representation of Lpr which is exhibited in Lemma 1. This recursive structure
is then used in Theorem 3 to find a factorization of Lpr into sparse matrices.
To describe the recursive structure of Lpr we define three matrices of reflection,
shifting, and factorization denoted by Θn, Ψn, and Br, respectively.

Definition 3. The entries of the reflection and shifting matrices Θn = (θi,j)0≤i,j<n ∈
F

n×n
p and Ψn = (ψi,j)0≤i,j<n ∈ F

n×n
p , respectively, are defined by the relations:

θi,j =

{

1 if i+ j = n,
0 otherwise,

ψi,j =

{

1 if j − i = 1,
0 otherwise.
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a b

Fig. 2. (a) The matrix Θ5 and (b) the matrix Ψ5.

As an example, Θ5 and Ψ5, are shown in Figure 2, where the coefficients equal
to 0 and 1 are represented by empty and filled boxes, respectively. Left multi-
plication by Θn reflects a matrix horizontally and shifts the result by one row
downwards. Right multiplication by Ψn shifts a matrix by one position upwards.

Definition 4. The factorization matrix Br is:

Br = Lp ⊗ Ipr−1 + (ΨpLp) ⊗Θpr−1 ∈ F
pr×pr

p ,

where ⊗ is the Kronecker or tensor product operator.

Using Definitions 1 and 4 it is easy to prove the following theorem which gives
more information about the structure of Br and can be helpful for constructing
this matrix. The matrices B3 and L27 are shown in Figure 3.

Theorem 2. The matrix Br can be split into p× p blocks B(i1,j1) ∈ F
pr−1×pr−1

p

such that Br = (B(i1,j1))0≤i1,j1<p and

B(i1,j1) =











the zero block if i1 > j1,
(

j1
(j1−i1)/2

)

Ipr−1 if i1 ≤ j1 and j1 − i1 is even, and
(

j1
(j1−i1−1)/2

)

Θpr−1 otherwise.

Lemma 1. For r ≥ 1, we have

Lpr = Br(Ip ⊗ Lpr−1). (4)

Proof. For 0 ≤ i, j < pr we compute (Lpr)i,j by writing

i = i1p
r−1 + i0, j = j1p

r−1 + j0, (5)

with 0 ≤ i1, j1 < p and 0 ≤ i0, j0 < pr−1. Since p · x = 0, we have

(x+ x−1)j = (x+ x−1)j1pr−1

(x+ x−1)j0 = (xpr−1

+ x−pr−1

)j1(x + x−1)j0 =

(
∑

k1∈Z

lk1,j1x
k1pr−1

)(
∑

k0∈Z

lk0,j0x
k0 ) =

∑

k0,k1∈Z

lk1,j1 lk0,j0x
k1pr−1+k0 (6)
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0 1 2

a b

Fig. 3. (a) the matrix B3 and (b) the matrix L27 for p = 3

where lk,j is as Definition 1 and is zero for |k| > |j|. For the coefficient of

xi = xi1pr−1+i0 , which is (Lpr)i,j , we have:

k1p
r−1 + k0 = i1p

r−1 + i0 =⇒ k0 ≡ i0 mod pr−1 =⇒
k0 = i0 + tpr−1 and k1 = i1 − t for some t ∈ Z.

(7)

In the above equation except for t = −1, 0 we have |i0 + tpr−1| ≥ |pr−1| > |j0|
which means li0+tpr−1,j0 = 0, and hence

(Lpr)i,j = li1,j1 li0,j0 + li1+1,j1 li0−pr−1,j0 , (8)

in which li1,j1 = (Lp)i1,j1 , li0,j0 = (Lpr−1)i0,j0 , and li1+1,j1 = (ΨpLp)i1,j1 accord-
ing to the definition of Ψp. The value of li0−pr−1,j0 can be replaced by lpr−1−i0,j0

because of the symmetry of the binomial coefficients. The latter can again be
replaced by (Θpr−1Lpr−1)i0,j0 , since for 0 < i0 < pr−1 the only nonzero entry in
the i0th row of Θpr−1 is in the (pr−1 − i0)th column and hence (Θpr−1Lpr−1)i0,j0

is the entry in the (pr−1 − i0)th row and j0th column of Lpr−1 . For i0 = 0 the
entry (Θpr−1Lpr−1)i0,j0 is zero since there is no nonzero entry in the i0th row of
Θpr−1 , and lpr−1,j0 is also zero since j0 < pr−1. Substituting all of these into (8)
we have

(Lpr)i,j = (Lp)i1,j1(Lpr−1)i0,j0 + (ΨpLp)i1,j1(Θpr−1Lpr−1)i0,j0 (9)

which together with (5) shows that:

Lpr = Lp ⊗ Lpr−1 + (ΨpLp) ⊗ (Θpr−1Lpr−1). (10)

It is straightforward, using Definition 4, to show that (10) is equivalent to (4).
⊓⊔

This recursive relation resembles that for the DFT matrix in Chapter 1 of van
Loan (1992) and enables us to find a matrix factorization for Lpr in Theorem 3.
Using this factorization the map of a vector under the isomorphism νn can be
computed using O(n log n) operations as will be shown later in Section 6.



9

Theorem 3. For r ≥ 1, we have

Lpr = (I1 ⊗Br)(Ip ⊗Br−1) · · · (Ipr−2 ⊗B2)(Ipr−1 ⊗B1). (11)

In order to multiply Lpr by a vector, we successively multiply the matrices
in the factorization (11) by that vector. In the next section we count the number
of operations required for the computations of the mappings πn and νn

6 Cost of computing νn and πn

Multiplication by Lpr consists of several multiplications by Bk for different values
of k. Hence it is better to start the study by counting the required operations

for multiplying Bk by a vector in F
pk

q . The number of nonzero entries in the

matrices Lp, ψpLp, Ipk−1 , and Θpk−1 are dominated by p2/4, p2/4, pk−1, and
pk−1, respectively. Hence using Definition 4, we expect the number of operations

to multiply Bk by a vector in F
pk

q be a polynomial in p, dominated by pk+1/2.
A more accurate expression for this cost is given in Lemma 2.

Definition 5. We define µadd(k) and µmult(k) to be the number of additions

and multiplications, respectively, in Fq to multiply Bk by a vector in F
pk

q . We

define further δ by the relation

δ =

{

1 if p = 2,
0 otherwise.

Lemma 2. For k ≥ 1, we have

µadd(k) ≤ (p− 1)(2pk − p− 1)/4 − δ/4,

µmult(k) ≤ (1 − δ) · µadd(k).

For this estimate we use information about the structural zeros in Bk−1

according to Theorem 2, but ignore the fact that some binomial coefficients
might vanish modulo p. As an example since B1, for p = 2, is the identity
matrix both µadd(1) and µmult(1) are zero.

Using Lemma 2 and Theorem 3 we are now in the position to estimate the
cost of multiplication by Lpr .

Lemma 3. Multiplying Lpr by a vector in F
pr

q for r ≥ 1 requires at most η(r)
additions, where

η(r) = r(p− 1)pr/2 − (p+ 1)(pr − 1)/4 − δ(2r − 1)/4.

The number of multiplications is not larger than the number of additions.



10

(a)

·

(b)

(c)

· ·

(d)

Fig. 4. (a) The matrices P6 (black) and P8 (gray), (b) their factorizations, (c) the
matrices L11 (black) and L16 (gray), and (d) their factorizations for p = 2.

The following theorem is an application of Lemma 3, using r = ⌈logp(n+1)⌉.

Theorem 4. Multiplication of Ln by a vector in F
n
q can be done using O(n log n)

operations in Fq.

We observe that each Br is nonsingular since it is upper triangular and all
of the entries on the main diagonal are 1. Using (11), the matrix Ppr can be
factored as:

Ppr = L−1
pr = (Ipr−1 ⊗B−1

1 )(Ipr−2 ⊗B−1
2 ) · · · (Ip ⊗B−1

r−1)(I1 ⊗B−1
r ). (12)

Studying the structure of B−1
r in terms of Θpr−1 and Ipr−1 reveals that B−1

r

does not have more nonzero entries than Br. We omit the complete proof here
for sake of brevity and refer the reader to the full paper or Section 4.6 of Shokrol-
lahi (2006).

Theorem 5. Multiplication of Pn from Definition 2 by a vector in F
n
q can be

done using O(n log n) operations in Fq.

The matrices L11 and P6 when p = 2 and their factorizations are shown
in Figure 4. We conclude this section with the following theorem. Although its
result is not concerned with normal basis multiplication directly, it emphasizes
the most important property of our multiplier. Namely a specific change of basis
in Fqn which can be done using O(n log n) instead of O(n2) operations, which is
the cost of general basis conversion in Fqn .

Theorem 6. Let N be a type 2 normal basis of Fqn over Fq generated by the

normal element β + β−1 and

P = (1, β + β−1, · · · , (β + β−1)n−1)

be the polynomial basis generated by the minimal polynomial of β + β−1. Then

the change of representation between the two bases N and P can be done using

O(n log n) operations in Fq.
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7 Other Costs

There are two other operations in our multiplier, namely polynomial multiplica-
tion and conversion from the extended permuted representation to the normal
basis representation.

The polynomial multiplication method can be selected arbitrarily among all
available methods depending on the polynomial lengths and the implementa-
tion environments. Another cost is the number of bit operations to convert from
extended permuted to the permuted representation. By multiplying the polyno-
mials of length n + 1, the product which is of length 2n + 1 is converted to a
linear combination of βi + β−i for 0 ≤ i ≤ 2n. These values should be converted
to the permuted representation, i.e., βi + β−i for 1 ≤ i ≤ n. This conversion is
done using the fact that β is a 2n + 1st root of unity. The cost for the case of
odd prime numbers is given in the next theorem.

Theorem 7. Let q be odd. Conversion from the extended permuted representa-

tion of the product in Figure 1 into the permuted basis can be done using at most

2n additions and n scalar multiplications in Fq.

When p = 2, the constant term vanishes because of Lucas’ theorem, and the
above task requires only n additions. Using the material presented herein we
can summarize the costs of our multiplier in the following theorem. Since we
can use any suitable polynomial multiplier, the cost depends on the polynomial
multiplication method used.

Theorem 8. Let Fqn be a finite field of characteristic p, which contains an

optimal normal basis of type 2 over Fq. Multiplication in this normal basis can

be done using at most

n+ 2(1 − δ)n+ 2η(r1) + η(r2) + M(n+ 1)

operations in Fq, where δ is defined in Definition 5, η in Lemma 3, M(n)
is the number of Fq-operations to multiply two polynomials of degree n − 1,
r1 = ⌈logp(n + 1)⌉, and r2 = ⌈logp(2n + 1)⌉. For sufficiently large n the above

expression is at most

M(n+ 1) + 3n+ 2(2n+ 1)p2 logp(2n+ 1).

8 Comparison

Our multiplier is especially efficient when the extension degree n is much larger
than the size of the ground field q. One practical application of this kind is cryp-
tography in fields of characteristic 2. In this section we compare this multiplier
with some other structures from the literature for this task. The field extensions
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which are discussed here are prime numbers n such that F2n contains an optimal
normal basis of type 2.

The first structures which we study here are the circuits of Sunar & Koç (2001)
and Reyhani-Masoleh & Hasan (2002). Both of these circuits require n(5n−1)/2
gates and we group them together as classical. The second circuit is from Gao
et al. (2000). The idea behind this multiplier is to consider the representation

a1(β + β−1) + · · · + an(βn + β−n)

as the sum of two polynomials

a1β + · · · + anβ
n and anβ

−n + · · · + a1β
−1.

To multiply two elements four polynomials of degree n should be multiplied
together. However, because of the symmetry only two multiplications are neces-
sary which also yield the other two products by mirroring the coefficients. The
cost of a multiplication using this circuit is 2M(n) + 2n, where M(n) is the cost
of multiplying two polynomials of length n. We may use for M(n) the cost of
the multiplier by von zur Gathen & Shokrollahi (2005) which is not larger than
⌈7.6nlog2 3⌉ in our range.

To have a rough measure of hardware cost, we compare the circuits with
respect to both area and area-time (AT). By time we mean the depth of the
circuit implementation of a parallel multiplier in terms of the number of AND and
XOR gates. The propagation delay of the classical multiplier is 1+ ⌈log2 n⌉ gates.
The propagation delay of the multiplier of this chapter consists of two parts: the
first one belongs to the conversion circuits which is 2 + 2⌈log2 n⌉ and the other
part corresponds to the polynomial multiplier. We compute the propagation
delay of each polynomial multiplier for that special case. The propagation delay
of the multiplier of Gao et al. (2000) is two plus the delay of each polynomial
multiplier which must again be calculated for each special case.

The area and AT parameters of these three circuits are compared with each
other and the results are shown in Figure 5. Please note that the costs of our
designs are exact values from Theorem 8. In these diagrams polynomial multipli-
cation is done using the methods of von zur Gathen and Shokrollahi (2005). As
it can be seen the area of the proposed multiplier is always better than the other
two structures. But the AT parameter is larger for small finite fields. This shows
that, as we have mentioned, this method is appropriate for applications where
only small area is available, or where the finite fields are large. Economical appli-
cations where small FPGAs should be used or RFID technology, are situations of
this sort. The AT parameter of the proposed multiplier is O(n log3 n(log logn)3),
whereas that of the classical multiplier is O(n2 logn).

Another method which should be compared to ours is the method of Fan &
Hasan (2006). This work has been introduced to us by one of the referees and
we did not have enough time for an exact comparison. This method requires
roughly 13n1.6 gates, whereas the Karatsuba method for polynomials of length
n needs 9n1.6 gates. Hence we approximate the number of operations for this
method to be 13/9M(n) for the Karatsuba method. The delay of this method
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equals the delay of the Karatsuba method. We guess the number of operations
for this method to be larger than ours for the given bound, but the area-time
parameter must be better. We again emphasize that their methods is comparable
to the Karatsuba method, whereas ours can use any asymptotically fast method
like that of Cantor with a cost of O(n log3 n(log logn)2).

The classical multiplier
The multiplier of Gao et al. (2000)

The proposed multiplier
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Fig. 5. Comparing the (a) area (as the number of two-input gates) and (b) the AT
parameter (as the product of the number of two-input gates and the delay of a single
gate) of three multipliers for binary finite fields F2n such that n is a prime smaller than
5000 and F2n contains an optimal normal basis of type 2.

9 Conclusion

This work presents a new algorithm for multiplication in finite fields using opti-
mal normal bases of type 2 which reduces the asymptotic number of operations
from 2M(n) + O(n) reported by Gao et al. (2000) to M(n) + O(n log n). The
efficiency of this multiplier arises from a fast transformation between normal
bases and suitable polynomial representation. This transformation can be done
by O(n log n) operations instead of generic O(n2) operations for the general case.
This algorithm is especially attractive for hardware implementations where area
resources are limited as also shown in comparisons with other methods from the
literature.
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