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Abstract. Many functions in classical mathematics are largely defined
in terms of their derivatives, so Bessel’s function is “the” solution of
Bessel’s equation, etc. For definiteness, we need to add other properties,
such as initial values, branch cuts, etc. What actually makes up “the
definition” of a function in computer algebra? The answer turns out to
be a combination of arithmetic and analytic properties.

1 Introduction

The claim is often made (these days generally informally) that a given computer
algebra system “understands” tan, or some other function, generally a function
defined through some analytic process. Here we ask three questions.

1. What does this mean?
2. What might it mean?
3. How should a system “understand” such a new function?

More generally, to what extent does such an analytic process, or a built-in func-
tion, define a function, and what properties does such a function have?

Notation: throughout this paper, the term ‘function’ means a total1 function
from R to R or C to C. The principles apply to functions Rn to R or Cn to C,
but we shall not consider such functions here. C will denote an arbitrary field of
constants (of characteristic zero). From the point of view of differential algebra,
x will be the variable of differentiation/integration, i.e. x′ = 1. From the point of
view of functions, x is the variable being evaluated. Functions such as log have
the meaning given in [1], as refined by [9].

We remind the reader of a couple of definitions from differential algebra.

Definition 1. θ is said to be elementary over a differential field K if one of the
following is true:

(a) θ is algebraic over K;
(b) θ′ = η′/η for some η ∈ K (we write θ = log η);
(c) θ′ = η′θ for some η ∈ K (we write θ = exp η).
� The author is grateful to the referees, whose thoughtful comments significantly im-

proved the paper. He is also grateful to Dr. Bradford for his comments.
1 Or at least “total with singularities”. We then define equality f = g to mean that, at

all x where f and g are both defined, f(x) = g(x) [12]. A full exposition of removable
singularities would be a paper in itself.
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The object f is said to be elementary over K if it can be expressed in some
K(θ1, . . . θn) with each θi elementary over K(θi . . . θi−1). If K is omitted, C(x)
is assumed.

Much of the theory of integration [5] is cast in terms of elementary functions.
We can generalise the concept as follows.

Definition 2. θ is said to be Liouvillian over a differential field K if one of the
following is true:

(a) θ is algebraic over K;
(b) θ′ = η for some η ∈ K (we write θ =

∫
η);

(c) θ′ = η′θ for some η ∈ K (we write θ = exp η).

The object f is said to be Liouvillian over K if it can be expressed in some
K(θ1, . . . θn) with each θi Liouvillian over K(θi . . . θi−1). If K is omitted, C(x)
is assumed.

Note that, even if K is a field of functions embedded in R → R (or C → C),
there is no requirement that f should be such a function: we have merely stated
a property of the abstract derivative of f . In practice, we also want each θi to be
an elementary (resp. Liouvillian) function as well, i.e. that its numerical values,
as well as its differential properties, be specified.

Definition 3. Let K be a field of functions in R → R (or C → C). f(x), a
function from R → R (or C → C) is said to be an elementary (resp. Liouvillian)
function if it lies in some elementary (resp. Liouvillian) extension K(θ1, . . . θn)
of K.

However, even this is not enough.

Definition 4. Let K be a field of functions in R → R (or C → C). f(x), a
function from R → R (or C → C) is said to be a proper elementary (resp.
Liouvillian) function if it lies in some elementary (resp. Liouvillian) extension
K(θ1, . . . θn) of K, where each is θi proper elementary (resp. Liouvillian) over
K(θi . . . θi−1), and, for each x where both are defined,

(f ′)(x) = lim
ε→0

f(x + ε) − f(x)
ε

. (1)

Furthermore, we require that the right-hand side of (1) be defined almost every-
where.

As examples of the various pathologies that can occur, we give the following
examples, where K is the field Q(x) of rational functions C → C equipped with
the derivation induced by x′ = 1.

1. K(θ) where θ′ = 1
x . Here θ is merely an abstract symbol, not a function at

all.
2. K(θ) where θ′ = 1

x and θ : x �→ 0. Here θ is elementary, and a function, but
not a proper elementary function since equation (1) is violated.
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3. K(θ) where θ′ = 1
x and θ : x �→

{
1 x ∈ Q
0 x /∈ Q . Here equation (1) is satisfied,

but only because the right-hand side is nowhere defined, and therefore this
falls foul of the last clause in definition 4.

4. K(θ = log(x)+42) where θ′ = 1
x . This is indeed a proper elementary function

in the sense of definition 4, even though it is not “what we all mean by” log x.
5. K(θ) where θ′ = 1

x and θ : x �→ log x+
{ 0 x > 0

−iπ x < 0
. As a function R → R

this is log |x|, and is a proper elementary function in our sense. Whether it
is “what we all mean by” log x has been debated elsewhere [31].

2 What Does It Mean?

1. Numerical evaluation. Generally speaking, if the input is real, this means real
evaluation where possible. To do numerical evaluation, one has to choose the
branch cuts (if there are any) of the relevant function — see [9].

2. Plotting — generally a consequence of the above, though more can in fact
be done [2] if the function is better “understood”.

3. Differentiation. This property is generally hard-coded for some functions,
with an extension mechanism for others, e.g. defining diff/f for a function
f in Maple, or giving a symbol a !*DF property in REDUCE.

4. Integration. This is the difficult one, and is discussed during much of the
rest of this paper.

5. Special values. This is not the same as numerical evaluation (though the two
can easily be confused): sin(π) is precisely 0, whereas

sin(3.1415926535897932384626433) = 8.32795 × 10−26

(with an appropriate setting of Digits or the equivalent). This is a case
where the precise nature, and the adherence [4], of the branch cuts is critical:
log(−1.0 + εi) might be near either of πi or −πi, but log(−1) has (with the
standard definitions) to be πi.

6. Simplification. Some of this is built in, e.g. for even/odd functions, as in
sin(−x) and cos(−x): other simplifications can be invoked via commands
such as expand or collect, or by giving functions properties (REDUCE).

3 Defining Functions

There are various ways by which new functions can be defined.

3.1 By Explicit Formulae, Normally Composition

“Let h(x) = f(g(x))”. Provided that f and g are “understood”, and that the
system knows the chain rule, this more or less means that the system “under-
stands” h, at least as well as it understands f(g(x)). This may be “not at all”,
as in the case of the real-valued function log log sinx, which is nowhere defined.
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Numerical and symbolic evaluation and plotting are, at least conceptually,
simple. Difficulties can arise, though, if we expect the algebra system to remove
removable singularities, i.e.

h(x) =
{

f(g(x)) g(x) well-defined
limy→x f(g(y)) otherwise. (2)

Expecting a system to perform (2) automatically is, in the author’s opinion,
expecting too much, though possibly systems might provide some help in this
direction. Problems ought, where possible, to be signalled at definition time
rather than at use time, so an explicit, tool-supported, definition mechanism is
probably what should be provided. An example of what can go wrong is provided
by arctan

(
1

1−x

)
, where there is a jump discontinuity at x = 1 corresponding to

the “discontinuity at infinity” of arctan.

3.2 By Indefinite Integration

One might define erf to be the integral2 of exp(−x2), or, more formally,

erf(x) =
∫ x

0
exp −t2 dt,

in order to fix the constant of integration.
Such a definition tells us explicitly how to evaluate the function numerically3,

and implicitly how to differentiate the new function. Risch’s algorithm [27,5] will
tell us whether this is a ‘new’ function or can be defined in terms of previously
known ones (though current systems are not always good at getting the constant
of integration right).

Indefinite integration is much harder. All integration algorithms for elemen-
tary functions rely on Liouville’s principle: that the only new elementary func-
tions which can be introduced are logarithms, and that only with constant co-
efficients. This theorem remains true even if the integrand is not elementary.
However, this is not what one actually wants. Just as we added a new logarithm
to compute

∫ 1
x log x = log log x, we would like to add new error functions, or

whatever is in the domain of discourse, and this is not always obvious. The first
term in the following integral (taken from [7]) is pretty obvious, but it is far
from clear where the last term comes from.

∫
erf (ax) erf (bx) = xerf (ax) erf (bx)+

e−a2x2
erf (bx)√
πa

+
e−b2x2

erf (ax)√
πb

− erf
(√

a2 + b2x
) (

a

b
+

b

a

)
1√
π

1√
a2 + b2

2 In practice, one introduces a multiplicative factor of 2/
√

π to keep the statisticians
happy, but the principle is the same.

3 And hence how to plot it. However, there are much better, and more stable, ways of
plotting an integral than via a sequence of de novo numerical evaluations.
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Similarly [8] ∫
x

log2 x
= 2 li(x2) − x2

log x
, (3)

where li(x) =
∫ 1

log x , and one could wonder where the li(x2) comes from.
In general, one needs a fresh generalisation of Liouville’s Principle for each

new function generator introduced. Some such have been proved [3,7,8,19,20],
but even the most general [30] is far from complete: it deals with EL-elementary
extensions subject to the restriction that, for each H in case (e) below, the degree
of the numerator of H does not exceed the degree of the denominator by more
than 1.

Definition 5. θ is said to be EL-elementary over a differential field K if one
of the following is true:

(a) θ is algebraic over K;
(b) θ′ = η′/η for some η ∈ K (we write θ = log η);
(c) θ′ = η′θ for some η ∈ K (we write θ = exp η);
(d) θ′ = ζ′R′(ζ)ηG(η)) and η′ = ζ′R′(ζ)η for some ζ ∈ K (we might4 write

η = exp(R(ζ)) and θ =
∫

G(exp(R(ζ))));
(e) θ′ = ζ′ S′(ζ)

S(ζ) H(η)) and η′ = ζ′ S′(ζ)
S(zη) for some ζ ∈ K (we might4 write

η = log(S(ζ)) and θ =
∫

H(log(S(ζ)))),

where each of G, H, R, S are prescribed5 rational functions of one variable. The
function f is said to be EL-elementary over K if it can be expressed in some
K(θ1, . . . θn) with each θi EL-elementary over K(θi . . . θi−1). If K is omitted,
C(x) is assumed.

For example, error functions would be coped with by having (G, R) = (t �→
t, t �→ −t2).

Special values are essentially then problems of definite integration. Tricks such
as evaluating erf(∞) by writing

erf2(∞) =
(∫ ∞

0

2√
π

e−x2
dx

) (∫ ∞

0

2√
π

e−y2
dy

)

=
∫ ∞

0

∫ ∞

0

4
π

e−x2−y2
dxdy

=
∫ ∞

0

∫ π/2

0

4
π

e−r2
rdrdθ

= 1

are within the scope of heuristics rather than algorithms at the current time.
4 The use of “might” here indicates that the problem of introducing new constants by

this formulation of such an extension is a delicate one.
5 This is the original definition from [30]. In practice the (G, R) and (H,S) are pre-

scribed pairs of rational functions, so that a given G goes with a given R, etc.
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Even/odd simplifications are generally possible, but deducing further rules is
again a matter for heuristics. If F =

∫
0 f , then

F (a + b) =
∫ a

0
f +

∫ a+b

a

f = F (a) +
∫ a+b

a

f,

and if the last term can be transformed into
∫ c

0 f , then a simplification can be
deduced.

3.3 By First Order Linear Differential Equations

In general, one would consider a y defined by

y′ + fy = g, (4)

with an initial condition equivalent to the constant of integration discussed
above. Let F =

∫
f and y = z exp(−F ). Then (4) becomes

z′ exp(−F ) − fz exp(−F ) + fz exp(−F ) = g, (5)

i.e. z′ = g exp(F ). Hence

y = exp(−F )
∫

(g exp(F )) , (6)

and the problem is reduced to the previous one, i.e. the solution is Liouvillian
over the field generated by f and g.

However, there are some caveats here [11]. The first is that any logarithms with
rational coefficients in F have to be expressed explicitly, and the exponentiation
has to perform the “simplification” exp log(h)) �→ h, thereby possibly adding
radicals to the mix. The second is that, if F has any components other than
logarithms with rational coefficients, then

∫
(g exp(F )) = G exp(F ), and then

exp(−F ) and exp(F ) cancel, and the integration is in fact the solution of the
original differential equation.

3.4 By Higher Order Linear Differential Equations

If we take second-order linear differential equations with coefficients in C(x),
there are four possibilities [22] (generalised in [29] to Liouvillian coefficients).

(1) There is a solution of the form e
∫

f , where f is a rational function. In this
case, the differential operator factorises, and we get a first order equation,
the solutions of which are always Liouvillian.

(2) The first case is not satisfied, but there is a solution of the form e
∫

f , where
f satisfies a quadratic equation with rational functions as coefficients. In this
case, the differential operator factorises and we get a first order equation,
the solutions of which are always Liouvillian.
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(3) The first two cases are not satisfied, but there is a non-zero Liouvillian
solution. In this case, every solution is an algebraic function.

(4) The non-zero solutions are not Liouvillian.

We could extend the definition of “Liouvillian” to allow solutions of second-order
differential equations (normally called “Eulerian”), and ask whether differential
equations can be solved in terms of Eulerian functions [28], and so on, but the
underlying differential Galois theory becomes intractable.

Is this function “new”?. A more fundamental question might be: “can special
function g, defined as a solution of equation (g), be expressed in terms of special
function f , defined as a solution of equation (f)?” Assuming that (f) and (g)
have order greater than one, this would be more precisely defined as “can special
function g, defined as a solution of equation (g) with given initial conditions, be
defined in terms of a basis f1, . . . , fn of solutions of (f)?”

An example is given by the Bessel functions. [1, chap. 9] defines Jν as solutions
of

x2y′′ + xy′ + (x2 − ν2)y = 0, (7)

whereas in [1, chap. 10], jn is defined as solutions of

x2y′′ + 2xy′ + (x2 − n(n + 1))y = 0. (8)

These are connected by jn(x) =
√

π
2xJn+ 1

2
(x). Can such a relationship be de-

duced automatically? If we know that jn(x) should be of the form6 Jn+ 1
2
(x)/f(x),

the fact that f(x) is of the form c
√

x can be deduced relatively easily. If we as-
sume merely that jn(x) is of the form Jk(x)/f(x), the correct solution can still
be deduced. Similarly, if we are faced with

x2y′′ + 2xy′ + 4(x4 − n(n + 1))y = 0, (9)

and if we suspect that the solution is of the form Jn(f(x)), deducing f(x) = x2

is not too hard. However, given

4 (y′′ (x))x2 +
(
16 x4 − 16 n2 + 1

)
y (x) (10)

and the suspicion that y is of the form Jn(f(x))g(x), the author knows of no
way of recovering the true answer — Jn(x2)

√
x. It is possible that the results of

[21] might help us to know which equation was related to which other equation,
but, despite the call in [24], little seems to have been done in this direction.

Properties of the Function. The differential equation and suitable initial
conditions will, in general, allow numerical evaluation, and thence plotting3.
Formal integration of the differential equation will lead to a corresponding equa-
tion for the integral, so the question of integration reduces to the “is it related”
question.

Even/odd simplification rules can be deduced from the differential equation,
where appropriate. More general rules, and special values, are even more in-
tractable than they are for integrals.
6 The author is not sure whom the factor

√
π
2 is meant to please.
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3.5 By Functional Equations

The simplest functional equation is the polynomial one: y such that P (x, y) = 0.
If this is soluble by radicals, then we can import the branch cut for logarithm
(though the result may be messy, and we need to worry about false solutions,
as in Cardan’s formula for the cubic [25]).. If it is not soluble by radicals, then
there appears to be no “natural” placement for the branch cuts.

About the simplest non-algebraic functional equation is yey = x, whose solu-
tion is the Lambert W function [10]. This is not elementary or Liouvillian [6],
but can also be defined by a non-linear differential equation: W ′(x) = W (x)

(1+W (x))x .
Just as log has infinitely many variants, separated by 2kπi, which can be chosen
to have a common branch cut, conventionally7 the negative real axis, with the
cut itself adhering [4] to the upper half-plane, so W has infinitely many branches,
but the description is somewhat more complex [10,17].

The analysis of W was very much ad hoc, and the author knows of no sys-
tematic approach to such equations, unless they can be reduced to differential
equations, as in the next section.

3.6 By Non-linear Differential Equations

The Lambert W function (see above) is one such. The question posed above “is
this function definable in terms of that one”, becomes even more relevant in this
setting, and there are some surprising results: [14] gives the solution8 to

(4y + 2x + 3)y′ − 2y − x − 1 = 0 (11)

as
4096 exp(−W (32768 exp(8x + c)) + 8x + c) − x

2
− 5

8
. (12)

The author knows of no way of deducing this in any sensible manner. The
constant 5/8 is easy enough to determine, as is the 1/2, but the overall struc-
ture of the integral, necessary for any ‘method of undetermined coefficients’ to
succeed, is not obvious.

3.7 By Definite Integration

The classic example of this is the Γ function, defined by

Γ (z) =
∫ ∞

0
tz−1e−tdt. (13)

This is continuous over the whole of the complex plane, except for z=0,−1, −2 . . ..
It cannot be defined by a differential equation [16]. As far as the author was9

7 There is nothing special about this choice: see [9].
8 A reviewer pointed out that the solution can also be found by Maple as

W (c exp(8x)) − x
2 − 5

8 , but this does not fully answer the question: does equation
(11) have a solution in the form of (12) with fully undetermined coefficients?

9 The reviewer pointed out [15], which has some techniques for negative results.
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aware, there have been no attempts to systematise this analysis. There are heuris-
tics in some packages (e.g. Maple), which sometimes produce differential equa-
tions. Hence it seems that, at the current time, there is nothing that a system
can do in general except say “OK: you seem to have defined a function, which
I can (generally) evaluate numerically”.

3.8 Interrelations Between Methods

As we have seen, W can be defined either by a functional equation or by a
(nonlinear) differential equation. In this case, going from the functional equation
to the differential equation is fairly straight-forward, and mechanised in Maple’s
PDEtools, but the author knows no general way of reversing the process, or of
knowing whether it is reversible.

4 Branch Cuts

These are inevitable for certain functions defined by integration or other analytic
processes. Just to remind ourselves, let us look again at the branch cut for log.∮

C
1
xdx = 2πi, where C is the unit circle (traversed counter-clockwise). Hence

any continuous definition of log z =
∫ z

1
1
xdx is bound to be multi-valued by

multiples of 2πi. Hence the minimum10 branch cut necessary is a cut from 0 to
(complex) infinity, with the value of log decreasing by 2πi as one crosses the
branch cut in the direction of C (and increasing if one crosses it the other way).
This poses two questions.

– What shape and where should the cut be?
– What happens on the cut?

In answer to the first, Occam’s razor suggests that the cut might as well be a
straight line from the origin to complex infinity. Note that this is not mathemati-
cally necessary, merely philosophically desirable11. Occam’s razor again suggests
that the cut might as well be along one of the axes. The current favourite [1]
seems to be along the negative real axis, though the positive real axis has also
been used.

In answer to the second question, clearly any behaviour is possible. Adherence
to one side or the other (i.e. the value on the cut is the limit as you approach
the cut from a given direction) seems a reasonable stipulation, as does the fact
that the decision be taken consistently on the cut (if t parameterises the cut, we
could insist on upper continuity for rational t, and lower continuity for irrational
t, but this seems perverse) where possible. We stipulate “where possible” because

10 We could always add “unnecessary” and cancelling branch cuts by arbitrary (but
cancelling) amounts, but we will assume that this is not done.

11 We note that the International Date Line, which can be viewed as a branch cut of
7
√

is, for geopolitical reasons, not a straight line, but is piecewise straight, at least
in its current incarnation [13, international date.html].
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branch cuts may bifurcate or merge: see [17, Figure 2] Beyond this, logic and
Occam’s razor make no suggestions. There are two common schools of thought,
both of which can lay claim to being “consistent” in their own ways.

Independent. consistency. Here we have a rule for all branch cuts. The common
one is “counter-clockwise consistency”, advocated in [18], see also [26]. Here
one defines continuity on the branch cut as continuity with the region from
which one approaches the cut when circling the origin counter-clockwise.

Dependent. consistency. Here one stipulates that, if h can be derived from g,
i.e. h(x) = f1(g(f2(x))) where f1 and f2 have no, or “simpler” cuts, then
the branch cuts and adherence of h are derived from those of g. This is
largely the approach taken in [1]: one defines the branch cuts for log and the
rest follow. Difficulties occur when there are alternative definitions for h, say
h = f̂1(g(f̂2(x))), which might induce different branch cuts or adherence.
Hence this approach only makes sense when a particular definition of h in
terms of g is fixed. [26].

5 Conclusion

There has been comparatively little systematic work in this area: an early at-
tempt was [24], which urged the consideration of [21], but little has been done
in this direction. Perhaps the most interesting is [23].

To define functions completely, one has to know the branch cuts and their
behaviour, and nothing has been done about automating this — largely because
there is no consistent philosophy here. Indeed, it would be a significant step
forward to have a system capable of checking that a definition of, say, a proper
Liouvillian function and its branch cuts was consistent.

Hence the answer to the question “how should a system understand a new
function” at the moment seems to be “we don’t know, in general”.
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