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Universitätsstraße 150
D-44780 Bochum

Germany
andre.adelsbach@nds.rub.de, {huber,sadeghi}@crypto.rub.de

Abstract. We propose a stream cipher that provides confidentiality,
traceability and renewability in the context of broadcast encryption as-
suming that collusion-resistant watermarks exist. We prove it to be as
secure as the generic pseudo-random sequence on which it operates. This
encryption approach, termed fingercasting, achieves joint decryption and
fingerprinting of broadcast messages in such a way that an adversary
cannot separate both operations or prevent them from happening simul-
taneously. The scheme is a combination of a known broadcast encryption
scheme, a well-known class of fingerprinting schemes and an encryption
scheme inspired by the Chameleon cipher. It is the first to provide a for-
mal security proof and a non-constant lower bound for resistance against
collusion of malicious users, i.e., a minimum number of content copies
needed to remove all fingerprints. To achieve traceability, the scheme
fingerprints the receivers’ key tables such that they embed a fingerprint
into the content during decryption. The scheme is efficient and includes
parameters that allow, for example, to trade-off storage size for compu-
tation cost at the receiving end.

Keywords: Chameleon encryption, stream cipher, spread-spectrum wa-
termarking, fingerprinting, collusion resistance, frame-proofness, broad-
cast encryption.

1 Introduction

Experience shows that adversaries attack Broadcast Encryption (BE) systems
in a variety of different ways. Their attacks may be on the hardware that stores
cryptographic keys, e.g., when they extract keys from a compliant device to
develop a pirate device such as the DeCSS software that circumvents the Content
Scrambling System [2]. Alternatively, their attacks may be on the decrypted
content, e.g., when a legitimate user shares decrypted content with illegitimate
users on a file sharing system such as Napster, Kazaa, and BitTorrent.
� An extended abstract of this paper appeared in the Proceedings of the Tenth Aus-

tralasian Conference on Information Security and Privacy (ACISP 2006) [1].
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The broadcasting sender thus has three security requirements: confidentiality,
traceability of content and keys, and renewability of the encryption scheme. The
requirements cover two aspects. Confidentiality tries to prevent illegal copies in
the first place, whereas traceability is a second line of defense aimed at finding
the origin of an illegal copy (content or key). The need for traceability originates
from the fact that confidentiality may be compromised in rare cases, e.g., when
a few users illegally distribute their secret keys. Renewability ensures that after
such rare events, the encryption system can recover from the security breach.

In broadcasting systems deployed today, e.g., Content Protection for Pre-
Recorded Media [3] or the Advanced Access Content System [4], confidential-
ity and renewability often rely on BE because it provides short ciphertexts
while at the same time having realistic storage requirements in devices and
acceptable computational overhead. Traitor tracing enables traceability of keys,
whereas fingerprinting provides traceability of content. Finally, renewability may
be achieved using revocation of the leaked keys.

However, none of the mentioned cryptographic schemes covers all three secu-
rity requirements. Some existing BE schemes lack traceability of keys, whereas
no practically relevant scheme provides traceability of content [5,6,7,8]. Traitor
tracing only provides traceability of keys, but not of content [9,10]. Fingerprint-
ing schemes alone do not provide confidentiality [11]. The original Chameleon
cipher provides confidentiality, traceability and a hint on renewability, but with
a small constant bound for collusion resistance and, most importantly, without
formal proof of security [12]. Asymmetric schemes, which provide each compli-
ant device with a certificate and accompany content with Certificate Revocation
Lists (CRLs), lack traceability of content and may reach the limits of renewabil-
ity when CRLs become too large to be processed by real-world devices. Finally,
a trivial combination of fingerprinting and encryption leads to an unacceptable
transmission overhead because the broadcasting sender needs to sequentially
transmit each fingerprinted copy.

Our Contribution. We present, to the best of our knowledge, the first rigorous
security proof of Chameleon ciphers, thus providing a sound foundation for the
recent applications of these ciphers, e.g., [13]. Furthermore, we give an explicit
criterion to judge the security of the Chameleon cipher’s key table. Our finger-
casting approach fulfills all three security requirements at the same time. It is a
combination of (i) a new Chameleon cipher based on the fingerprinting capabili-
ties of a well-known class of watermarking schemes and (ii) an arbitrary broadcast
encryption scheme, which explains the name of the approach. The basic idea is to
use the Chameleon cipher for combining decryption and fingerprinting. To achieve
renewability, we use a BE scheme to provide fresh session keys as input to the
Chameleon scheme. To achieve traceability, we fingerprint the receivers’ key ta-
bles such that they embed a fingerprint into the content during decryption. To
enable higher collusion resistance than the original Chameleon scheme, we tai-
lor our scheme to emulate any watermarking scheme whose coefficients follow a
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probability distribution that can be disaggregated into additive components.1 As
proof of concept, we instantiate the watermarking scheme with Spread Spectrum
Watermarking (SSW), which has proven collusion resistance [14,15]. However, we
might as well instantiate it with any other such scheme.

Joint decryption and fingerprinting has significant advantages compared to ex-
isting methods such as transmitter-side or receiver-side Fingerprint Embedding
(FE) [11]. Transmitter-side FE is the trivial combination of fingerprinting and
encryption by the sender. As discussed above, the transmission overhead is in the
order of the number of copies to be distributed, which is prohibitive in practical
applications. Receiver-side FE happens in the user’s receiver; after distribution
of a single encrypted copy of the content, a secure receiver based on tamper-
resistant hardware is trusted to embed the fingerprint after decryption. This
saves bandwidth on the broadcast channel. However, perfect tamper-resistance
cannot be achieved under realistic assumptions [16]. An adversary may succeed
in extracting the keys of a receiver and subsequently decrypt without embedding
a fingerprint.

Our fingercasting approach combines the advantages of both methods. It saves
bandwidth by broadcasting a single encrypted copy of the content. In addition, it
ensures embedding of a fingerprint even if a malicious user succeeds in extracting
the decryption keys of a receiver. Furthermore, as long as the number of colluding
users remains below a threshold, the colluders can only create decryption keys
and content copies that incriminate at least one of them.

This paper enhances our extended abstract [1] in the following aspects. First,
the extended abstract does not contain the security proof, which is the ma-
jor contribution. Second, we show here that our instantiation of SSW is exact,
whereas the extended abstract only claims this result. Last, we discuss here the
trade-off between storage size and computation cost at the receiving end.

2 Related Work

The original Chameleon cipher of Anderson and Manifavas is 3-collusion-resist-
ant [12]: A collusion of up to 3 malicious users has a negligible chance of creating
a good copy that does not incriminate them. Each legitimate user knows the
seed of a Pseudo-Random Sequence (PRS) and a long table filled with random
keywords. Based on the sender’s master table, each receiver obtains a slightly
different table copy, where individual bits in the keywords are modified in a
characteristic way. Interpreting the PRS as a sequence of addresses in the table,
the sender adds the corresponding keywords in the master table bitwise modulo
2 in order to mask the plaintext word. The receiver applies the same operation
to the ciphertext using its table copy, thus embedding the fingerprint.

The original cipher, however, has some inconveniences. Most importantly, it
has no formal security analysis and bounds the collusion resistance by the con-
stant number 3, whereas our scheme allows to choose this bound depending on
the number of available watermark coefficients. In addition, the original scheme
1 Our scheme does not yet support fingerprints based on coding theory.
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limits the content space (and keywords) to strings with characteristic bit po-
sitions that may be modified without visibly altering the content. In contrast,
our scheme uses algebraic operations in a group of large order, which enables
modification of any bit in the keyword and processing of arbitrary documents.

Chameleon was inspired by work from Maurer [17,18]. His cipher achieves
information-theoretical security in the bounded storage model with high prob-
ability. In contrast, Chameleon and our proposed scheme only achieve compu-
tational security. The reason is that the master table length in Maurer’s cipher
is super-polynomial. As any adversary would need to store most of the table
to validate guesses, the bounded storage capacity defeats all attacks with high
probability. However, Maurer’s cipher was never intended to provide traceability
of content or renewability, but only confidentiality.

Ferguson et al. discovered security weaknesses in a randomized stream cipher
similar to Chameleon [19]. However, their attack only works for linear sequences
of keywords in the master table, not for the PRSs of our proposed solution.

Ergun, Kilian, and Kumar prove that an averaging attack with additional
Gaussian noise defeats any watermarking scheme [20]. Their bound on the min-
imum number of different content copies needed for the attack asymptotically
coincides with the bound on the maximum number of different content copies to
which the watermarking scheme of Kilian et al. is collusion-resistant [15]. As we
can emulate [15] with our fingercasting approach, its collusion resistance is—at
least asymptotically—the best we can hope for.

Recently there was a great deal of interest in joint fingerprinting and de-
cryption [13,21,22,11,23]. Basically, we can distinguish three strands of work.
The first strand of work applies Chameleon in different application settings.
Briscoe et al. introduce Nark, which is an application of the original Chameleon
scheme in the context of Internet multicast [13]. However, in contrast to our
new Chameleon cipher they neither enhance Chameleon nor analyze its security.
The second strand of work tries to achieve joint fingerprinting and decryption
by either trusting network nodes to embed fingerprints (Watercasting in [21]) or
doubling the size of the ciphertext by sending differently fingerprinted packets
of content [22]. Our proposed solution neither relies on trusted network nodes
nor increases the ciphertext size. The third strand of work proposes new joint
fingerprinting and decryption processes, but at the price of replacing encryption
with scrambling, which does not achieve indistinguishability of ciphertext and
has security concerns [11,23]. In contrast, our new Chameleon cipher achieves
indistinguishability of ciphertext.

3 Preliminaries

3.1 Notation

We recall some standard notations that will be used throughout the paper. First,
we denote scalar objects with lower-case variables, e.g., o1, and object tuples as
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well as roles with upper-case variables, e.g., X1. When we summarize objects
or roles in set notation, we use an upper-case calligraphic variable, e.g., O :=
{o1, o2, . . .} or X := {X1,X2, . . .}. Second, let A be an algorithm. By y ← A(x)
we denote that y was obtained by running A on input x. If A is deterministic,
then y is a variable with a unique value. Conversely, if A is probabilistic, then y is
a random variable. For example, by y ← N(μ, σ) we denote that y was obtained
by selecting it at random with normal distribution, where μ is the mean and
σ the standard deviation. Third, o1

R←O and o2
R←[0, z ] denote the selection of a

random element of the set O and the interval [0, z ] with uniform distribution.
Finally, V ·W denotes the dot product of two vectors V := (v1, . . . , vn) and
W := (w1, . . . ,wn), which is defined as V ·W :=

∑n
j=1 vjwj , while ||V || denotes

the Euclidean norm ||V || := √V · V .

3.2 Roles and Objects in Our System Model

The (broadcast) center manages the broadcast channel, distributes decryption
keys and is fully trusted. The users obtain the content via devices that we refer to
as receivers. For example, a receiver may be a set-top box in the context of pay-
TV or a DVD player in movie distribution. We denote the number of receivers
with N ; the set of receivers is U := {ui | 1 ≤ i ≤ N }. When a receiver violates
the terms and conditions of the application, e.g., leaks its keys or shares content,
the center revokes the receiver’s keys and thus makes them useless for decryption
purposes. We denote the set of revoked receivers with R := {r1, r2, . . .} ⊂ U .

We represent broadcast content as a sequence M := (m1, . . . ,mn) of real
numbers in [0, z ], where M is an element of the content spaceM.2 For example,
these numbers may be the n most significant coefficients of the Discrete Cosine
Transform (DCT) as described in [14]. However, they should not be thought
of as a literal description of the underlying content, but as a representation of
the values that are to be changed by the watermarking process [20]. We refer to
these values as significant and to the remainder as insignificant. In the remainder
of this paper, we only refer to the significant part of the content, but briefly
comment on the insignificant part in Section 5.

3.3 Cryptographic Building Blocks

Negligible Function. A negligible function f : N→ R is a function where the
inverse of any polynomial is asymptotically an upper bound:

∀k > 0 ∃λ0 ∀λ > λ0 : f(λ) < 1/λk

Probabilistic Polynomial Time. A probabilistic polynomial-time algorithm
is an algorithm for which there exists a polynomial poly such that for every input
x ∈ {0, 1}∗ the algorithm always halts after poly(|x |) steps, independently of the
outcome of its internal coin tosses.
2 Although this representation mainly applies to images, we discuss an extension to

movies and songs in Section 5.
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Pseudo-Random Sequence (PRS). We first define the notion of pseudo-
randomness and then proceed to define a Pseudo-Random Sequence Generator
(PRSG). For further details we refer to [24, Section 3.3.1]:

Definition 1 (Pseudo-randomness). Let len : N → N be a polynomial such
that len(λ) > λ for all λ ∈ N and let Ulen(λ) be a random variable uniformly dis-
tributed over the strings {0, 1}len(λ) of length len(λ). Then the random variable X
with |X | = len(λ) is called pseudo-random if for every probabilistic polynomial-
time distinguisher D, the advantage Adv (λ) is a negligible function:

Adv (λ) :=
∣
∣Pr [D(X ) = 1]− Pr

[D(Ulen(λ)) = 1
]∣
∣

Definition 2 (Pseudo-Random Sequence Generator). A PRSG is a de-
terministic polynomial-time algorithm G that satisfies two requirements:

1. Expansion: There exists a polynomial len : N → N such that len(λ) > λ for
all λ ∈ N and |G(str)| = len(|str |) for all str ∈ {0, 1}∗.

2. Pseudo-randomness: The random variable G(Uλ) is pseudo-random.

A PRS is a sequence G(str ) derived from a uniformly distributed random seed
str using a PRSG.

Chameleon Encryption. To set up a Chameleon scheme CE := (KeyGenCE,
KeyExtrCE, EncCE, DecCE, DetectCE), the center generates the secret master ta-
ble MT , the secret table fingerprints TF := (TF (1), . . . ,TF (N )), and selects a
threshold t using the key generation algorithm (MT ,TF , t)← KeyGenCE(N , 1λ′

,
parCE), where N is the number of receivers, λ′ a security parameter, and parCE a
set of performance parameters. To add receiver ui to the system, the center uses
the key extraction algorithm RT (i) ← KeyExtrCE(MT ,TF , i) to deliver the se-
cret receiver table RT (i) to ui . To encrypt content M exclusively for the receivers
in possession of a receiver table RT (i) and a fresh session key k sess, the center
uses the encryption algorithm C ← EncCE(MT , k sess,M ), where the output is
the ciphertext C . Only a receiver ui in possession of RT (i) and k sess is capable
of decrypting C and obtaining a fingerprinted copy M (i) of content M using the
decryption algorithm M (i) ← DecCE(RT (i), k sess,C ).

When the center discovers an illegal copy M ∗ of content M , it executes
DetectCE, which uses the fingerprint detection algorithm DetectFP of the un-
derlying fingerprinting scheme to detect whether RT (i) left traces in M ∗. For
further details on our notation of a Chameleon scheme, we refer to Appendix C.

Fingerprinting. To set up a fingerprinting scheme, the center generates the
secret content fingerprints CF := (CF (1), . . . ,CF (N )) and the secret similarity
threshold t using the setup algorithm (CF , t) ← SetupFP(N ,n ′, parFP), where
N is the number of receivers, n ′ the number of content coefficients, and parFP

a set of performance parameters. To embed the content fingerprint CF (i) :=
(cf (i)

1 , . . . , cf (i)
n′ ) of receiver ui into the original content M , the center uses the

embedding algorithm M (i) ← EmbedFP(M ,CF (i)). To verify whether an illegal
copy M ∗ of content M contains traces of the content fingerprint CF (i) of receiver
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ui , the center uses the detection algorithm dec ← DetectFP(M ,M ∗,CF (i), t). It
calculates the similarity between the detected fingerprint CF ∗ := M ∗ −M and
CF (i) using a similarity measure. If the similarity is above the threshold t , then
the center declares ui guilty (dec = true), otherwise innocent (dec = false).
This type of detection algorithm is called non-blind because it needs the original
content M as input; the opposite is a blind detection algorithm.

We call a fingerprinting scheme additive if the probability distribution ProDis
of its coefficients has the following property: Adding two independent random
variables that follow ProDis results in a random variable that also follows ProDis.
For example, the normal distribution has this property, where the means and
variances add up during addition.

Spread Spectrum Watermarking (SSW) is an instance of an additive fin-
gerprinting scheme. We describe the SSW scheme of [15], which we later use
to achieve collusion resistance. The content fingerprint CF (i) consists of in-
dependent random variables cf (i)

j with normal distribution ProDis = N(0, σ′),
where σ′ is a function fσ′ (N ,n ′, parFP). The similarity threshold t is a function
ft (σ′,N , parFP). Both functions fσ′ and ft are specified in [15]. During EmbedFP,
the center adds the fingerprint coefficients to the content coefficients: m(i)

j ←
mj + cf (i)

j . The similarity test is Sim(CF ∗,CF (i)) ≥ t with Sim(CF ∗,CF (i)) :=
(CF ∗ · CF (i))/||CF ∗||. Finally, the scheme’s security is given by:

Theorem 1. [15, Section 3.4] In the SSW scheme with the above parameters,
an adversarial coalition needs Ω(

√
n ′/ lnN ) differently fingerprinted copies of

content M to have a non-negligible chance of creating a good copy M ∗ without
any coalition member’s fingerprint.

For further details on our notation of a fingerprinting scheme and the SSW
scheme of [15], we refer to Appendix D.

Broadcast Encryption. To set up the scheme, the center generates the se-
cret master key MK using the key generation algorithm MK ← KeyGenBE(N ,
1λ′′

), where N is the number of receivers and λ′′ the security parameter. To
add receiver ui to the system, the center uses the key extraction algorithm
SK (i) ← KeyExtrBE(MK , i) to extract the secret key SK (i) of ui . To encrypt
session key k sess exclusively for the non-revoked receivers U \ R, the center
uses the encryption algorithm C ← EncBE(MK ,R, k sess), where the output is
the ciphertext C . Only a non-revoked receiver ui has a matching private key
SK (i) that allows to decrypt C and obtain k sess using the decryption algorithm
k sess ← DecBE(i ,SK (i),C ). For further details on our notation of a BE scheme,
we refer to Appendix E.

3.4 Requirements of a Fingercasting Scheme

Before we enter into the details of our fingercasting approach, we summarize its
requirements: correctness, security, collusion resistance, and frame-proofness. To
put it simply, the aim of our fingercasting approach is to generically combine
an instance of a BE scheme, a Chameleon scheme, and a fingerprinting scheme
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such that the combination inherits the security of BE and Chameleon as well as
the collusion resistance of fingerprinting. To define correctness we first need to
clarify how intrusive a fingerprint may be. For a copy to be good, the fingerprint
may not perceptibly deteriorate its quality:

Definition 3 (Goodness). Goodness is a predicate Good : M2 → {true,
false} over two messages M1,M2 ∈ M that evaluates their perceptual differ-
ence. A fingerprinted copy M (i) is called good if its perceptual difference to
the original content M is below a perceptibility threshold. We denote this with
Good(M (i),M ) = true. Otherwise, the copy is called bad.

Definition 4 (Correctness). Let pbad � 1 be the maximum allowed probability
of a bad copy. A fingercasting scheme is correct if the probability for a non-
revoked receiver to obtain a bad copy M (i) of the content M is at most pbad,
where the probability is taken over all coin tosses of the setup and encryption
algorithm:

∀M ∈ M, ∀ui ∈ U \ R : Pr
[
Good(M ,M (i)) = false

] ≤ pbad

The SSW scheme of [15] uses the goodness predicate ||M (i)−M || ≤ √n ′δ, where
n ′ is the number of content coefficients and δ a goodness criterion.

All relevant BE schemes provide IND-CCA1 security [6,7,8], which is a stronger
notion than IND-CPA security. As we aim to achieve at least IND-CPA security,
the remaining requirements only relate to the Chameleon scheme CE.

We define IND-CPA security of CE by a game between an IND-CPA adversary
A and a challenger C: The challenger runs (MT ,TF , t) ← KeyGenCE(N , 1λ′

,
parCE), generates a secret random session key k sess and sends (MT ,TF , t) to
A. A outputs two content items M0,M1 ∈ M on which it wishes to be chal-
lenged. C picks a random bit b R←{0, 1} and sends the challenge ciphertext Cb ←
EncCE(MT , k sess,Mb) to A. Finally, A outputs a guess b′ and wins if b′ = b. We
define the advantage of A against CE as Advind-cpa

A,CE (λ′) := |Pr [b′ = 0|b = 0] −
Pr [b′ = 0|b = 1] |. For further details on security notions we refer to [25].

Definition 5 (IND-CPA security). A Chameleon scheme CE is IND-CPA se-
cure if for every probabilistic polynomial-time IND-CPA adversary A we have
that Advind-cpa

A,CE (λ′) is a negligible function.

We note that in Definition 5, the adversary is not an outsider or third party, but an
insider in possession of the master table (not only a receiver table). Nevertheless,
the adversary should have a negligible advantage in distinguishing the ciphertexts
of two messages of his choice as long as the session key remains secret.

Collusion resistance is defined by the following game between an adversarial
coalition A ⊆ U \ R and a challenger C: The challenger runs KeyGenCE on
parameters (N , 1λ′

, parCE), generates a ciphertext C ← EncCE(MT , k sess,M ),
and gives A the receiver tables RT (i) of all coalition members as well as the
session key k sess . Then A outputs a document copy M ∗ and wins if for all
coalition members the detection algorithm fails (false negative):
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Definition 6 (Collusion resistance). Let DetectFP be the fingerprint detection
algorithm of the fingerprinting scheme that a Chameleon scheme CE instantiates.
Then CE is (q, pneg)-collusion-resistant if for every probabilistic polynomial-time
adversarial coalition A of at most q := |A| colluders we have that

Pr
[
Good(M ∗,M )=true, ∀ui ∈ A : DetectFP(M ,M ∗,CF (i), t)=false

] ≤ pneg ,

where the false negative probability is taken over the coin tosses of the setup
algorithm, of the adversarial coalition A, and of the session key k sess.

Note that 1-collusion resistance is also called robustness. Frame-proofness is
similar to collusion resistance, but A wins the game if the detection algorithm
accuses an innocent user (false positive).

Definition 7 (Frame-proofness). Let DetectFP be the fingerprint detection
algorithm of the fingerprinting scheme that a Chameleon scheme CE instanti-
ates. Then CE is (q, ppos)-frame-proof if for every probabilistic polynomial-time
adversarial coalition A of at most q := |A| colluders we have that

Pr
[
Good(M ∗,M )=true, ∃ui /∈ A : DetectFP(M ,M ∗,CF (i), t)=true

] ≤ ppos ,

where the false positive probability is taken over the coin tosses of the setup
algorithm, of the adversarial coalition A, and of the session key k sess.

In Definitions 6 and 7, the adversarial coalition again consists of insiders in
possession of their receiver tables and the session key. Nevertheless, the coalition
should have a well-defined and small chance of creating a plaintext copy that
incriminates none of the coalition members (collusion resistance) or an innocent
user outside the coalition (frame-proofness).

4 Proposed Solution

4.1 High-Level Overview of the Proposed Fingercasting Scheme

To fingercast content, the center uses the BE scheme to send a fresh session
key to each non-revoked receiver. This session key initializes a pseudo-random
sequence generator. The resulting pseudo-random sequence represents a sequence
of addresses in the master table of our new Chameleon scheme. The center
encrypts the content with the master table entries to which the addresses refer.
Each receiver has a unique receiver table that differs only slightly from the
master table. During decryption, these slight differences in the receiver table
lead to slight, but characteristic differences in the content copy.

Interaction Details. We divide this approach into the same five steps that
we have seen for Chameleon schemes in Section 3.3. First, the key generation
algorithm of the fingercasting scheme consists of the key generations algorithms
of the two underlying schemes KeyGenBE and KeyGenCE. The center’s master
key thus consists of MK , MT and TF . Second, the same observation holds
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for the key extraction algorithm of the fingercasting scheme. It consists of the
respective algorithms in the two underlying schemes KeyExtrBE and KeyExtrCE.
The secret key of receiver ui therefore has two elements: SK (i) and RT (i).

Third, the encryption algorithm defines how we interlock the two underly-
ing schemes. To encrypt, the center generates a fresh and random session key
k sess R←{0, 1}λ. This session key is broadcasted to the non-revoked receivers us-
ing the BE scheme: CBE ← EncBE(MK ,R, k sess). Subsequently, the center uses
k sess to determine addresses in the master table MT of the Chameleon scheme
and encrypts with the corresponding entries: CCE ← EncCE(MT , k sess,M ). The
ciphertext of the fingercasting scheme thus has two elements CBE and CCE.

Fourth, the decryption algorithm inverts the encryption algorithm with un-
noticeable, but characteristic errors. First of all, each non-revoked receiver ui

recovers the correct session key: k sess ← DecBE(i ,SK (i),CBE). Therefore, ui can
recalculate the PRS and the correct addresses in receiver table RT (i). However,
this receiver table is slightly different from the master table. Therefore, ui ob-
tains a fingerprinted copy M (i) that is slightly different from the original content:
M (i) ← DecCE(RT (i), k sess,CCE). Last, the fingerprint detection algorithm of the
fingercasting scheme is identical to that of the underlying fingerprinting scheme.

4.2 A New Chameleon Scheme

Up to now, we have focused on the straightforward aspects of our approach; we
have neglected the intrinsic difficulties and the impact of the requirements on
the Chameleon scheme. In the sequel, we will show a specific Chameleon scheme
that fulfills all of them. We design it in such a way that its content fingerprints
can emulate any additive fingerprinting scheme, which we later instantiate with
the SSW scheme as proof of concept.

Key Generation. To define this algorithm, we need to determine how the
center generates the master table MT and the table fingerprints TF . To generate
MT , the center chooses L table entries at random from the interval [0, z ] with
independent uniform distribution: mtα

R←[0, z ] for all α ∈ {1, . . . , L}. As the table
entries will be addressed with bit words, we select L = 2l such that l indicates
the number of bits needed to define the binary address of an entry in the table.
The center thus obtains the master table MT := (mt1,mt2, . . . ,mtL).

To generate the table fingerprints TF := (TF (1), . . . ,TF (N )), the center se-
lects for each receiver ui and each master table entry mtα a fingerprint coefficient
in order to disturb the original entry. Specifically, each fingerprint coefficient tf (i)

α

of table fingerprint TF (i) is independently distributed according to the proba-
bility distribution ProDis of the additive fingerprinting scheme, but scaled down
with an attenuation factor f ∈ R, f ≥ 1:

tf (i)
α ← 1/f · ProDis(parFP) (1)

Key Extraction. After the probabilistic key generation algorithm we now de-
scribe the deterministic key extraction algorithm. The center processes table
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(a) To derive RT (i) from MT , the cen-
ter subtracts the L fingerprint coefficients
tf (i)

α at address α for all α ∈ {1, . . . , L}.

(b) To derive ciphertext C from plaintext
M , the center uses the session key to gen-
erate a PRS. It then adds the addressed
master table entries to the plaintext.

Fig. 1. Receiver table derivation and ciphertext calculation

fingerprint TF (i) := (tf (i)
1 , . . . , tf (i)

L ) of receiver ui as follows: The center sub-
tracts each fingerprint coefficient in TF (i) from the corresponding master table
entry to obtain the receiver table entry, which we illustrate in Fig. 1(a):

∀α ∈ {1, . . . , L} : rt (i)
α ← mtα − tf (i)

α mod p (2)

Remark 1. The modulo operator allows only integer values to be added. How-
ever, the master table, the table fingerprints and the content coefficients are
based on real numbers with finite precision. We solve this ostensible contradic-
tion by scaling the real values to the integer domain by an appropriate scaling
factor ρ, possibly ignoring further decimal digits. ρ must be chosen large enough
to allow a computation in the integer domain with a sufficiently high precision.
We implicitly assume this scaling to the integer domain whenever real values are
used. For example, with real-valued variables rt (i), mt , and tf (i) the operation
rt (i) ← (mt − tf (i)) mod p actually stands for ρ · rt (i) ← (ρ ·mt − ρ · tf (i)) mod p.
The group order p := ρ · z� + 1 is defined by the content space [0, z ] (see
Section 3.2) and the scaling factor ρ.

Encryption. Fig. 1(b) gives an overview of the encryption algorithm. The ses-
sion key k sess is used as the seed of a PRSG with expansion function len(|k sess|) ≥
n ·s · l , where parameter s will be specified below. To give a practical example for
a PRSG, k sess may serve as the key for a conventional block cipher, e.g., AES or
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triple DES,3 in output feedback mode. Each block of l bits of the pseudo-random
sequence is interpreted as an address β in the master table MT . For each coef-
ficient of the plaintext, the center uses s addresses that define s entries of the
master table. In total, the center obtains n · s addresses that we denote with
βj ,k , where j is the coefficient index, k the address index, and Extracti extracts
the i-th block of length l from its input string:

∀j ∈ {1, . . . ,n}, ∀k ∈ {1, . . . , s} : βj ,k ← Extract(j−1)s+k (G(k sess)) (3)

For each content coefficient, the center adds the s master table entries modulo
the group order. In Fig. 1(b), we illustrate the case s = 4, which is the design
choice in the original Chameleon cipher. The j -th coefficient cj of the ciphertext
C is calculated as

∀j ∈ {1, . . . ,n} : cj ←
(
mj +

s∑

k=1

mtβj ,k

)
mod p , (4)

where mtβj ,k
denotes the master table entry referenced by address βj ,k from (3).

Decryption. The decryption algorithm proceeds in the same way as the en-
cryption algorithm with two exceptions. First, the receiver has to use its receiver
table RT (i) instead of MT . Second, the addition is replaced by subtraction. The
j -th coefficient m(i)

j of the plaintext copy M (i) of receiver ui is thus calculated as

m(i)
j ←

(
cj −

s∑

k=1

rt (i)
βj ,k

)
mod p, (5)

where rt (i)
βj ,k

denotes the receiver table entry of receiver ui referenced by address
βj ,k generated in (3). As the receiver table RT (i) slightly differs from the mas-
ter table MT , the plaintext copy M (i) obtained by receiver ui slightly differs
from the original plaintext M . By appropriately choosing the attenuation factor
f in (1), the distortion of M (i) with respect to M is the same as that of the
instantiated fingerprinting scheme and goodness is preserved (see Section 4.3).

Fingerprint Detection.When the center detects an illegal copy M ∗=(m∗
1 , . . . ,

m∗
n) of content M , it tries to identify the receivers that participated in the

generation of M ∗. To do so, the center verifies whether the fingerprint of a
suspect receiver ui is present in M ∗. Obviously, the fingerprint is unlikely to
appear in its original form; an adversary may have modified it by applying
common attacks such as resampling, requantization, compression, cropping, and
rotation. Furthermore, the adversary may have applied an arbitrary combination
of these known attacks and other yet unknown attacks. Finally, an adversarial
coalition may have colluded and created M ∗ using several different copies of M .

The fingerprint detection algorithm is identical to that of the underlying fin-
gerprinting scheme: dec ← DetectFP(M ,M ∗,CF (i), t). In order to properly scale

3 Advanced Encryption Standard [26] and Data Encryption Standard [27].
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the content fingerprint, we need to select the attenuation factor f in (1). We
choose it such that the addition of s attenuated fingerprint coefficients generates
a random variable that follows ProDis without attenuation (for an example see
Section 4.3). In order to verify whether the table fingerprint TF (i) of receiver ui

left traces in M ∗, DetectFP calculates the similarity between the detected con-
tent fingerprint CF ∗ with coefficients cf ∗j := m∗

j −mj and the content fingerprint
CF (i) in ui ’s copy M (i) with

cf (i)
j := m(i)

j −mj
(4),(5)

=
s∑

k=1

(
mtβj ,k

− rt (i)
βj ,k

)
(2)
=

s∑

k=1

tf (i)
βj ,k

, (6)

where tf (i)
βj ,k

is the fingerprint coefficient that fingerprinted receiver table RT (i) at
address α = βj ,k in (2). If the similarity is above threshold t , the center declares
ui guilty. Note that the calculation of CF ∗ necessitates the original content M ,
whereas the calculation of CF (i) relies on the session key k sess and the table
fingerprint TF (i); the scheme is thus non-blind in its current version. However,
we assume it is possible to design an extended scheme with a blind detection
algorithm. If instantiated with Spread Spectrum Watermarking, the watermark
is often robust enough to be detected even in the absence of the original content.

The same algorithm applies to detection of fingerprints in illegal copies of
receiver tables. Their fingerprints have the same construction and statistical
properties, where the attenuated amplitude of the fingerprint coefficients in (1)
is compensated by a higher number of coefficients, as the relation L/f ≈ n holds
for practical parameter choices (see Section 5.1).

When the center detects the fingerprint of a certain user in an illegal content
copy or an illegal receiver table, there are two potential countermeasures with
different security and performance tradeoffs. One is to simply revoke the user
in the BE scheme such that the user’s BE decryption key becomes useless and
no longer grants access to the session key. However, the user’s receiver table
still allows to decrypt content if yet another user illegally shares the session key.
In an Internet age, this is a valid threat as two illegal users may collude such
that one user publishes the receiver table (and gets caught) and the other user
anonymously publishes the session keys (and doesn’t get caught). Nevertheless,
we stress that this weakness, namely the non-traceability of session keys, is
common to all revocation BE schemes because the session key is identical for all
users and therefore does not allow tracing.4

In order to avoid this weakness, the other potential countermeasure is to not
only revoke the user whose receiver table was illegally shared, but also renew the
master table and redistribute the new receiver tables. If the broadcast channel
has enough spare bandwidth, the center can broadcast the receiver tables indi-
vidually to all receivers in off-peak periods, i.e., when the channel’s bandwidth
4 The common assumption for revocation BE schemes is that it is difficult to share the

session key anonymously on a large scale without being caught. Even if key sharing
may be possible on a small scale, e.g., among family and friends, the main goal is
to allow revocation of a user that shared the decryption key or session keys and got
caught, no matter by which means of technical or legal tracing.
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is not fully used for regular transmission. The relevant BE schemes [6,7,8] allow
to encrypt each receiver table individually for the corresponding receiver such
that only this receiver can decrypt and obtain access.5 If the broadcast channel’s
bandwidth is too low, then the receiver tables need to be redistributed as in the
initial setup phase, e.g., via smartcards.

Parameter Selection. The new Chameleon scheme has two major parameters
L and s that allow a trade-off between the size of RT (i), which ui has to store, and
the computation cost, which grows linearly with the number s of addresses per
content coefficient in (4). By increasing L, we can decrease s in order to replace
computation cost with storage size. Further details follow in Section 5.1.

4.3 Instantiation with Spread Spectrum Watermarking

In this section, we instantiate the fingerprinting scheme with the SSW scheme
of [15] and thereby inherit its collusion resistance and frame-proofness. Let the
center choose the SSW scheme’s parameters parFP = (δ, pbad, ppos), which al-
lows to calculate a standard deviation σ′ and a threshold t via two functions
fσ′(N ,n ′, δ, pbad) and ft (σ′,N , ppos) defined in [15]. The probability distribution
of the SSW scheme is then ProDis = N(0, σ′). We set f = s because then
1/f · N(0, σ′) in (1) is still a normal distribution with mean 0 and standard
deviation 1/

√
s · σ′, and adding s of those variables in (4) and (5) leads to the

required random variable with standard deviation σ′. It remains to define the
similarity measure for the detection algorithm dec ← DetectFP(M ,M ∗,CF (i), t),
which [15] defines as:

dec = true if
CF ∗ · CF (i)

||CF ∗|| > t

We call an instantiation exact if it achieves the same statistical properties as
the fingerprinting scheme that it instantiates. Theorem 2 below states that the
above choice is an exact instantiation of the SSW scheme.

Theorem 2. Let σ′ and σ be the standard deviations of the SSW scheme and
the Chameleon scheme instantiated with SSW, respectively, and n ′ and n be their
number of content coefficients. Then the following mapping between both schemes
is an exact instantiation:

σ′ =
√

s · σ (⇔ f = s) and n ′ = n

Towards the proof of Theorem 2. We prove an even stronger result than
Theorem 2. In addition to the exactness of the instantiation, we also prove
that it is optimal to fingerprint every entry of the receiver tables. To do so, we
first formulate Lemmata 1–4 and then describe why they imply Theorem 2. For
5 In all of these schemes, the center shares with each user an individual secret, which

they can use for regular symmetric encryption.
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the Lemmata, we introduce a parameter F ∈ {1, 2, . . . , L} that describes the
number of receiver table entries that obtain a fingerprint coefficient tf (i)

α in (2).
The position of the F fingerprinted entries in the receiver table is selected with
uniform distribution. We show that the choice F = L is optimal in the sense
that the resulting instantiation is exact.

The difficulty in analyzing the SSW instantiation is that each content coeffi-
cient is not only fingerprinted with a single fingerprint coefficient as in SSW, but
with up to s such variables as can be seen from (6). Note that for F < L some
receiver table entries do not receive a fingerprint coefficient and are therefore
identical to the master table entry. In order to analyze the statistical properties
of the resulting fingerprint, we will need to calculate the expectation and variance
of two parameters that link the instantiation to the original SSW scheme.

The first parameter is the number N fp of fingerprint coefficients tf (i) that are
added to a content coefficient mj by using the receiver table RT (i) in (5) instead
of the master table MT in (4). In SSW, N fp has the constant value 1, i.e., a
content fingerprint consists of one fingerprint coefficient per content coefficient,
whereas in our scheme N fp varies between 0 and s as shown in (6). If only F
of the L receiver table entries have been fingerprinted, then tf (i) = 0 for the
remaining L− F entries.

The second parameter is the number of content coefficients that carry a de-
tectable content fingerprint. In SSW, this number has the constant value n ′, i.e.,
every coefficient carries a fingerprint with fixed standard deviation, whereas in
our scheme, some of the n coefficients may happen to receive no or only few
fingerprint coefficients tf (i). Specifically, this happens when the receiver table
entry rt (i)

βj ,k
of (5) did not receive a fingerprint coefficient in (2) for F < L. The

next lemma gives the number of normally distributed table fingerprint coeffi-
cients that our scheme adds to a content coefficient. This number is a random
variable characterized by its expectation and standard variance.

We prove the lemmata under the uniform sequence assumption, i.e., the se-
quence used to select the addresses from the master table has independent uni-
form distribution. We stress that we only use it to find the optimal mapping with
SSW; security and collusion resistance of the proposed scheme do not rely on
this assumption for the final choice of parameters (see the end of this section).6

Lemma 1. Let N fp be the random variable counting the number of fingerprinted
receiver table entries with which a coefficient m(i)

j of copy M (i) is fingerprinted.
Then the probability of obtaining k ∈ {0, . . . , s} fingerprinted entries is

Pr
[
N fp = k

]
=

(
s
k

)

(
F
L

)k (1− F
L

)s−k

The expectation and the variance of N fp are

E(N fp) = s
F
L

and σ2
N fp := E([N fp − E(N fp)]2) = s

F
L

(1 − F
L

).

6 Note that even if this was not the case, we can show that the adversary’s advantage
is still negligible by a simple reduction argument.
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Proof. During decryption, the receiver subtracts s receiver table entries rt (i)
α

from the ciphertext coefficient using (5). Each entry rt (i)
α is either fingerprinted

or not. Under the uniform sequence assumption, the addresses of the subtracted
entries rt (i)

α have independent uniform distribution. In addition, the F finger-
printed entries are distributed over RT (i) with independent uniform distribution.
Therefore, the probability that a single address α = βj ,k in (5) points to a fin-
gerprinted receiver table entry rt (i)

α is F/L, which is the number of fingerprinted
receiver table entries divided by the total number of entries. As the underly-
ing experiment is a sequence of s consecutive yes-no experiments with success
probability F/L, it follows that N fp has binomial distribution. This implies the
probability, the expectation, and the variance.

Lemma 1 allows us to determine how many fingerprint coefficients we can expect
in each content coefficient and how the number of such fingerprint coefficients
varies. The next question is what kind of random variable results from adding
N fp fingerprint coefficients.

Lemma 2. By adding a number N fp of independent N(0, σ)-distributed finger-
print coefficients, the resulting random variable has normal distribution with
mean 0 and standard deviation

√
N fpσ.

Proof. Each fingerprint coefficient is independently distributed according to the
normal distribution N(0, σ). When two independent and normally distributed
random variables are added, the resulting random variable is also normally dis-
tributed, while the means and the variances add up. Due to linearity, the result-
ing standard deviation for N fp random variables is

√
N fpσ2 =

√
N fpσ.

In order to fingerprint the content coefficients with the same standard devi-
ation σ′ as in the SSW scheme, the natural choice is to choose σ such that√

E(N fp)σ = σ′. The remaining question is how many content coefficients are
actually fingerprinted; note that due to the randomness of N fp, some content
coefficients may receive more fingerprint coefficients than others. We determine
the expected number of fingerprinted content coefficients in the next two lem-
mata, while we leave it open how many fingerprint coefficients are needed for
detection:

Lemma 3. Let N fp
min ∈ {1, . . . , s} be the minimum number of table fingerprint

coefficients needed to obtain a detectable fingerprint in content coefficient m(i)
j .

Then the probability pfing that coefficient m(i)
j of copy M (i) obtains at least N fp

min

fingerprint coefficients is

pfing =
s∑

k=N fp
min

(
s
k

)

(
F
L

)k (1− F
L

)s−k

Proof. The lemma is a corollary of Lemma 1 by adding the probabilities of all
events whose value of N fp is greater than or equal to N fp

min.



Fingercasting–Joint Fingerprinting and Decryption of Broadcast Messages 17

Lemma 4. Let N fing ∈ {0, . . . ,n} be the random variable counting the number
of fingerprinted coefficients. Then the expectation of N fing is

E(N fing) =
n∑

j=0

j
(

n
j

)

(pfing)j (1 − pfing)n−j = npfing

Proof. The lemma follows from the fact that N fing has binomial distribution with
success probability pfing and n experiments.

Given Lemmata 1–4 we can derive some of the parameters in our scheme from
SSW. Suppose that the center has already selected the parameters of the SSW
scheme such that the requirements on the number of receivers and collusion
resistance are met. This includes the choice of N , n ′, and parFP = parCE :=
(δ, pbad, ppos); it allows to derive σ′ and t of SSW based on the functions
fσ′(N ,n ′, δ, pbad) and ft (σ′,N , ppos), which are defined in [15].

Based on the center’s selection, we can derive the parameters n, F/L, and√
s · σ in our Chameleon scheme as follows. Our first aim is to achieve the same

expected standard deviation in the content coefficients of our scheme as in SSW,
i.e., σ′ =

√
E(N fp) · σ, which by Lemma 1 leads to σ′ =

√
sF/L · σ. Our second

aim is to minimize the variance of N fp in order to have N fp = E(N fp) not only
on average, but for as many content coefficients as possible, where N fp = E(N fp)
implies that the content coefficient in our scheme obtains a fingerprint with the
same statistical properties as in SSW. The two minima of σ2

N fp = s ·F/L·(1−F/L)
are F/L = 0 and F/L = 1, of which only the second is meaningful. F/L = 1
or F = L is the case where all entries of the master table are fingerprinted. As
this optimum case leads to a variance of σ2

N fp = 0 and N fp = s , the content
coefficients of our scheme and SSW have the same statistical properties. This
proves Theorem 2 and the claim that all tables entries should be fingerprinted.

With F/L = 1 and σ′ =
√

s · σ, we obtain Pr
[
N fp = s

]
= 1 by Lemma 1

and pfing = 1 by Lemma 3. Finally, we conclude that E(N fing) = n · pfing = n
by Lemma 4 and set E(N fing) = n = n ′. We stress that the equalities hold even
if we replace the uniform sequence with a pseudo-random sequence; for F = L
the equations N fp = s and N fing = n are obviously independent of the uniform
distribution of the sequence of addresses in the master table.

We note that the number s of addresses per content coefficient, introduced
in (4), is still undetermined and may be chosen according to the security require-
ments (see Section 4.4).

4.4 Analysis

Correctness, Collusion Resistance and Frame-Proofness. Correctness
follows from the correctness of the two underlying schemes, i.e., the BE scheme
and the Chameleon scheme. Correctness of the Chameleon scheme follows from
the correctness of the underlying fingerprinting scheme, which we can instantiate
exactly by properly choosing the scaling factor in (1) and thus making the con-
tent fingerprint of (6) identical to a fingerprint of the instantiated fingerprinting
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scheme. Collusion resistance and frame-proofness of content and receiver tables
follows from the collusion resistance and frame-proofness of the instantiated fin-
gerprinting scheme.

The mapping in Section 4.3 is an exact instantiation of the SSW scheme and
therefore inherits its collusion resistance and frame-proofness (see Theorem 1).
We note that the proof of Theorem 1, which appears in [15], covers both collu-
sion resistance and frame-proofness, although the original text of the theorem
only seems to cover collusion resistance. Collusion resistance, related to false
negatives, is shown in [15, Section 3.4], whereas frame-proofness, related to false
positives, is shown in [15, Section 3.2].

IND-CPA Security. We reduce the security of our Chameleon scheme to that
of the PRSG with which it is instantiated. In order to prove IND-CPA security,
we prove that the key stream produced by the Chameleon scheme is pseudo-
random (see Definition 1). IND-CPA security of the proposed scheme follows by
a simple reduction argument (see [28, Section 5.3.1]). To further strengthen the
proof, we assume that the adversary is in possession of the master table and
all receiver tables, although in practice the adversary only has one or several
receiver tables.

By scaling the real values of the content coefficients to the integer domain
(see Remark 1), we obtain a plaintext symbol space P with a cardinality Z
defined by the content and the scaling factor ρ. In the remainder of this section
we assume that the plaintext symbol space P and the key symbol space K are
equal to {0, 1, . . . ,Z − 1}. We make this assumption to simplify our notation,
but stress that this is no restriction, as there is a one-to-one mapping between
the actual plaintext symbol space [0, z ] and the scaled space {0, 1, . . . ,Z − 1},
which enumerates the elements of [0, z ] starting from 0.7 In the sequel, by key
symbols we mean the elements of K. We also note that the obvious choice for
the group order p is the size of the symbol space: p = |K| = Z . This ensures
identical size of plaintext and ciphertext space.

The proof is divided into 4 major steps. First, we show the properties of
the random variable that results from a single draw from the master table
(Lemma 5). Second, we define these properties as the starting point of an it-
eration on the number s of draws from the master table (Definition 8). Third,
we prove that the random variable that results from adding randomly drawn
master table entries improves with every draw, where improving means being
statistically closer to a truly random variable (Lemma 6). Last, we prove the
pseudo-randomness of the Chameleon scheme’s key stream (Theorem 3).

Lemma 5. Let Pr
[
X (1) = x

]
denote the probability of drawing the key symbol

x ∈ K in a single draw from master table MT. Let ηk ∈ {0, 1, . . . , L} denote
the number of times that key symbol xk ∈ K appears in MT. When we select
a master table entry at a random address with uniform distribution, then the
probability of obtaining key symbol xk ∈ K is pk := Pr

[
X (1) = xk

]
= ηk

L .

7 Note that [0, z ] consists of real numbers with finite precision. As pointed out in
Remark 1 these real numbers are mapped to integers by applying a scaling factor ρ.
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Proof. There are L entries in the master table. Due to the uniform distribution
of the selected address, each master table entry has the same probability of
being selected. Therefore, the probability of a specific key symbol xk ∈ K being
selected is the number ηk of occurrences of xk in the master table divided by the
total number L of master table entries.

For a single draw from the master table, the resulting random variable thus only
depends on the number of occurrences of the key symbols within the master
table. As the master table entries are generated with uniform distribution, the
frequencies are unlikely to be identical for each key symbol, leading to a non-
uniform and therefore insecure distribution Pr

[
X (1)

]
.

Definition 8 (Strong convergence). Let U be a random variable uniformly
distributed over the key symbol space. Let the statistical quality SQ (1) of MT
be the statistical difference between X (1) and U : SQ (1) := 1

2

∑Z−1
k=0

∣
∣pk − 1

Z

∣
∣. We

call the master table strongly converging if 2SQ (1) ≤ d for some d ∈ R such
that d < 1.

The statistical quality SQ (1) is thus a measure for the initial suitability of the
master table for generating a uniform distribution. The next lemma is the main
result of the security analysis; it proves that the statistical quality SQ (s) gets
better with every of the s draws.

Lemma 6. Let U be a random variable uniformly distributed over the key sym-
bol space. Let MT be a strongly converging master table. Let Xk denote the k-th
draw from MT and X (s) the random variable resulting from s independent uni-
formly distributed draws added modulo Z : X (s) :=

∑s
k=1 Xk mod Z . Then the

statistical difference SQ (s) between X (s) and U is a negligible function with an
upper bound of 1

2d s .

Proof. The proof is by induction. For all k ∈ K, let p(i)
k := Pr

[
X (i) = k

]
de-

note the probability of the event that in the i-th iteration the random variable
X (i) takes the value of key symbol k . Represent this probability with an ad-
ditive error e(i)

k such that p(i)
k = 1

Z (1 + e(i)
k ). Due to

∑Z−1
k=0 p(i)

k = 1, we ob-
tain

∑Z−1
k=0 e(i)

k = 0. The induction start is trivially fulfilled by every strongly
converging master table: SQ (1) ≤ 1

2d . As the induction hypothesis, we have
SQ (i) ≤ 1

2d i , where SQ (i) := 1
2

∑Z−1
k=0 |p(i)

k − 1
Z | = 1

2Z

∑Z−1
k=0 |e(i)

k |. The induction
claim is SQ (i+1) ≤ 1

2d i+1. The induction proof follows: Iteration i + 1 is defined
as X (i+1) :=

∑i+1
k=1 Xk mod Z , which is equal to X (i+1) = X (i) + Xi+1 mod Z ,

where Xi+1 is just a single draw with the probabilities pk from Lemma 5 and er-
ror representation pk = 1

Z (1 + ek ) such that
∑Z−1

k=0 ek = 0. Therefore, we obtain
for all k ∈ K that

Pr
[
X (i+1) = k

]
=

Z−1∑

j=0

Pr
[
X (i) = j

] · Pr [Xi+1 = (k − j ) mod Z ]
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=
Z−1∑

j=0

p(i)
j p(k−j) mod Z =

1
Z 2

Z−1∑

j=0

(1 + e(i)
j )(1 + e(k−j) mod Z )

=
1
Z 2

(
Z−1∑

j=0

1 +
Z−1∑

j=0

e(i)
j

︸ ︷︷ ︸
=0

+
Z−1∑

j=0

e(k−j) mod Z

︸ ︷︷ ︸
=0

+
Z−1∑

j=0

e(i)
j e(k−j) mod Z

)

=
1
Z

+
1

Z 2

Z−1∑

j=0

e(i)
j e(k−j) mod Z

The upper bound for the statistical difference in iteration i + 1 is

SQ (i+1) :=
1
2

Z−1∑

k=0

∣
∣
∣
∣Pr

[
X (i+1) = k

]− 1
Z

∣
∣
∣
∣ =

1
2

Z−1∑

k=0

∣
∣
∣
∣
∣

1
Z 2

Z−1∑

j=0

e(i)
j e(k−j) mod Z

∣
∣
∣
∣
∣

≤ 1
2Z 2

(
Z−1∑

k=0

∣
∣
∣e(i)

k

∣
∣
∣

) (
Z−1∑

k=0

|ek |
)

= 2SQ (i)SQ (1) ≤ 1
2
d i+1 ,

where the first inequality follows from the fact that the two sums on the left-hand
side run over every combination of e(i)

j e(k−j) mod Z , which may have opposite
signs, whereas the right-hand side adds the absolute values of all combinations,
avoiding any mutual elimination of combinations with opposite signs.

Note that the proof relies on the uniform sequence assumption, i.e., the ad-
dresses used to point into the master table have independent uniform distribu-
tion. Clearly, this assumption has to be slightly weakened in practice by replacing
true randomness with pseudo-randomness. In Theorem 3 we therefore show that
we can use pseudo-randomness without compromising security. The idea is to
reduce an attack on the Chameleon key stream to an attack on the PRSG itself:

Theorem 3. Let U be a random variable uniformly distributed over the key
symbol space. Let MT be a strongly converging master table. Let the number
s(λ′) of draws from MT be a polynomial function of the security parameter λ′ of
CE such that the statistical difference SQ (s)(λ′) between X (s) and U is a negligible
function under the uniform sequence assumption. Then even after replacement of
the uniform sequence of addresses with a PRS, no probabilistic polynomial-time
adversary can distinguish the pseudo-random key stream consisting of variables
X (s) from a truly random key stream with variables U .

Before we enter into the details of the proof, we clarify the attack goal, the ad-
versary’s capabilities, and the criteria for a successful break of (i) a PRSG and
(ii) the pseudo-randomness of our Chameleon scheme’s key stream:

(i) The goal of an adversary A attacking a PRSG is to distinguish the output
of G on a random seed from a random string of identical length (see Definition 2).
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A’s capabilities are limited to a probabilistic Turing machine whose running
time is polynomially bounded in the length of its input (and thus also in the
security parameter λ, which is defines the input length). A successful break is
defined as follows: The challenger C generates a random seed str R←{0, 1}λ and
a random string str1

R←{0, 1}len(λ) with uniform distribution. C then applies the
PRSG to str and obtains str0 ← G(str). Finally, C tosses a coin b R←{0, 1} with
uniform distribution and sends strb to A. The challenge for A is to distinguish
the two cases, i.e., guess whether strb was generated with the PRSG (b = 0)
or the uniform distribution (b = 1). A wins if the guess b′ is equal to b. The
advantage of A is defined as:

Adv (λ) := |Pr [b′ = 0|b = 0]− Pr [b′ = 0|b = 1]| , (7)

where the randomness is taken over all coin tosses of C and A.
(ii) The goal of adversary A attacking the pseudo-randomness of the Chameleon
scheme’s key stream is to distinguish n instances of X (s) from a truly random
key stream. A is limited to a probabilistic Turing machine whose running time
is polynomially bounded in the length of its input (and thus also in the security
parameter λ′, as this input is given in unary representation). A successful break
is defined as follows: The challenger C generates a stream of n random keys:
K1 := (k1,1, . . . , k1,n) such that k1,j

R←K for all j ∈ {1, . . . ,n}. Next, C gener-
ates a random seed str R←{0, 1}λ and a strongly converging master table MT .
Then C applies the PRSG to str in order to obtain a pseudo-random sequence
of length len(λ) ≥ n · s · l , which is interpreted as a sequence of n · s addresses
in the master table. Subsequently, C adds for each content coefficient mj the
corresponding s master table entries modulo Z to obtain the other key stream
candidate: K0 := (k0,1, . . . , k0,n) such that k0,j ←

∑s
k=1 mtβj ,k

mod Z . Finally, C
tosses a coin b R←{0, 1} with uniform distribution and sends key stream candidate
Kb to A. The challenge for A is to distinguish the two cases, i.e., guess whether
Kb was generated with the Chameleon scheme (b = 0) or the uniform distribu-
tion (b = 1). A wins if the guess b′ is equal to b. The advantage is analogous
to (7).

After definition of the attack games, we give the full proof of Theorem 3:

Proof. The proof is by contradiction. Assuming that the advantage of an adver-
sary A against the pseudo-randomness of the Chameleon scheme’s key stream is
not negligible, we construct a distinguisher A′ for the PRSG itself, contradicting
the assumptions on the PRSG from Definition 2. We show the individual steps
of constructing A′ in Fig. 2.

1. The challenger C generates a random seed str R←{0, 1}λ and a random string
str1

R←{0, 1}len(λ) with uniform distribution. C then applies the PRSG to str :
str0 ← G(str). Finally, C tosses a coin b R←{0, 1} with uniform distribution.

2. C sends strb to A′. A′ needs to guess b.
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Challenger C Adversary A′ Adversary A

1)

−
2)

−−−−−−−→
3)

−
4)

−−−−−−−→
5)

←−
6)

−−−−−−−
7)

←−
8)

−−−−−−−

Fig. 2. Construction of adversary A′ based on adversary A

3. A′ generates a strongly converging master table MT . Then A′ takes the
string strb of length len(λ) ≥ n · s · l and interprets it as a sequence of
n · s addresses in the master table according to (3). Subsequently, A′ adds
for each content coefficient mj the corresponding s master table entries
modulo Z to obtain a key stream Kb := (kb,1, . . . , kb,n) such that kb,j ←∑s

k=1 mtβj ,k
mod Z .

4. A′ sends the key stream Kb to A as a challenge.
5. A calculates the guess b′, where b′ = 0 represents the random case, i.e.,
A guesses that Kb is a truly random key stream, and b′ = 1 represents
the pseudo-random case, i.e., A guesses that Kb was generated with the
Chameleon scheme.

6. A sends the guess b′ to A′.
7. A′ copies A’s guess.
8. A′ sends b′ to C as a guess for b.

To finish the proof, we need to show that if the advantage of A against the
pseudo-randomness of the Chameleon key stream is not negligible, then the
advantage of A′ against the PRSG is not negligible. We prove this by bounding
the probability differences in the real attack scenario, whereA is given input by a
correct challenger, and the simulated attack, where A is given slightly incorrect
input by A′. The contradictive assumption is that A’s advantage against the
Chameleon encryption scheme is not negligible in the real attack:

∣
∣Prreal [b′ = 0|b = 0]− Prreal [b′ = 0|b = 1]

∣
∣ ≥ εCE(λ′) ,

where Prreal [ ] denotes probabilities in the real attack between a Chameleon
challenger and a Chameleon adversary A and εCE(λ′) is A’s advantage, which is
not negligible. The randomness is taken over all coin tosses of C and A.
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Next, we summarize the input to A in the real attack and the simulated
attack. In the real attack, A obtains either the key stream output K0 of the
Chameleon scheme on a truly random seed str (b = 0), or a truly random key
stream K1 (b = 1). Specifically, the key stream element k0,j of K0 is equal to
k0,j =

∑s
k=1 mtβj ,k

mod Z , where the truly random seed str determines the
addresses of the master table entries mt j via the PRSG according to (3).

In the simulated attack, A′ does not apply the PRSG and instead uses the
challenge strb as a shortcut. A obtains either the key stream output K0 of the
Chameleon scheme executed on a pseudo-random string str0, derived from a
truly random seed str (b = 0), or the key stream output K1 of the Chameleon
scheme executed on a truly random string str1 (b = 1). The key stream outputs
K0 and K1 in the simulated attack thus only differ by the fact that K0 comes
from a pseudo-random string and K1 from a truly random string.

There is no difference between real and simulated attack for b = 0. The key
stream outputs K real

0 and K sim
0 both come from a PRSG executed on a truly

random seed str , leading to the following relation:
∣
∣Prreal [b′ = 0|b = 0]− Prsim [b′ = 0|b = 0]

∣
∣ = 0 ,

where the randomness is taken over all coin tosses of C and A in the real attack
and those of C, A′ and A in the simulated attack.

For b = 1 and a real attack, A obtains a truly random key stream K real
1 . In

the simulated attack, A′ operates on a truly random string str1 that determines
n · s addresses according to (3). As str1 is truly random, the n · s addresses are
also truly random with independent uniform distribution. Combined with the
assumptions of the theorem, this implies that each pair of key stream elements in
real and simulated attack has a negligible statistical difference. Negligible statis-
tical difference implies polynomial-time indistinguishability [24, Section 3.2.2].
Let εdiff(λ′) be the corresponding negligible bound on the advantage of a dis-
tinguisher, which applies for one key stream element. Then the difference be-
tween both attacks for all n key stream elements has a negligible upper bound
n · εdiff(λ′):

∣
∣Prreal [b′ = 0|b = 1]− Prsim [b′ = 0|b = 1]

∣
∣ ≤ n · εdiff(λ′) ,

where the randomness is taken over all coin tosses of C and A in the real attack
and those of C, A′ and A in the simulated attack.

The last three inequalities lead to a lower bound for the success probability
of A in the simulated attack, which is also the success probability of A′ in the
attack against the PRSG:

∣
∣Prsim [b′ = 0|b = 0]− Prsim [b′ = 0|b = 1]

∣
∣ ≥ εCE(λ′)− n · εdiff(λ′)

As εCE(λ′) is not negligible by the contradictive assumption, εdiff(λ′) is negligible
by the negligible statistical difference and n is a constant, we conclude that the
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success probability of A′ against the PRSG is not negligible, completing the
contradiction and the proof.

5 Implementation

The master table MT obviously becomes strongly converging for sufficiently
large L. Our simulation shows that L = 4Z gives high assurance of strong
convergence. However, lower values still lead to weak convergence in the sense
that it is not proven by our upper bound, but can easily be verified numerically.
As discussed in Section 4.2 we need to choose the number s of draws from MT in
accordance with L. The upper bound in Theorem 6 is too conservative to choose
s in practice. Our simulation shows that the statistical difference SQ (s) not only
decreases with factor d ≈ 2SQ (1) < 1, but with an even smaller factor. This is
due to the fact that some of the combinations e(i)

j e(k−j) mod Z on the left-hand
side of the inequality in the proof of Lemma 6 cancel out. In Appendix F we
therefore give an explicit formula for calculation of the exact statistical difference
after s draws from MT . The center can thus generate MT with arbitrary length
L, numerically verify convergence and determine the minimum number of draws
smin that provides the desired statistical difference.

The content representation can be extended to cover movies and songs by in-
terpreting them as a sequence of content items. A straightforward approach is to
regularly refresh the session key. While further refinements are possible, aiming
to prevent sequence-specific attacks such as averaging across movie frames, they
are beyond the scope of this document. However, it remains to define how the
insignificant part of the content should be processed (see Section 3.2). There are
three obvious options: sending it in the clear, passing it through our scheme or
encrypting it separately. Note that by its very definition, this part does not give
significant information about the content and was not watermarked because the
coefficients do not have perceptible influence on the reassembled content. The
easiest option is thus to pass them through the proposed scheme, which does
not influence goodness and maintains confidentiality of the content.

At first sight our proposed scheme trivially fulfills the correctness require-
ment (see Definition 4) due to the correctness of the SSW scheme. However,
both schemes face difficulties in the rare event that a content coefficient is at the
lower or upper end of the interval [0, z ], which corresponds with plaintext sym-
bols close to 0 or Z − 1. If the additive fingerprint coefficient causes a trespass
of lower or upper bound, the SSW scheme needs to decrease the coefficient’s
amplitude and round to the corresponding bound. Similarly, our scheme must
avoid a wrap-around in the additive group, e.g., when plaintext symbol Z − 2
obtains a coefficient of +3 and ends up at 1 after decryption. There are many op-
tions with different security trade-offs, such as sending a flag or even sending the
coefficient in cleartext; the appropriate choice depends on further requirements
of the implementation. Note that the center trivially anticipates the occurrence
of a wrap-around from inspecting the content coefficients.
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5.1 Efficiency

Three performance parameters determine whether the proposed scheme is effi-
cient and implementable: transmission overhead, storage size of a receiver, and
computation cost. We stress that our scheme enables a tradeoff between stor-
age size and computation cost. Increasing the size L of the master table (and
thus the storage size) decreases the necessary number s of draws (and thus the
computation cost), as can be seen from Lemma 6 and Definition 8, where SQ (1)

and thus d decreases with L. This feature allows us to adapt the scheme to the
particular constraints of the receiver, in particular to decrease s .

The transmission overhead of the Chameleon scheme is 0 if the master table
and receiver tables are not renewed on a regular basis. In this scenario, the
Chameleon scheme’s transmission overhead is 0 because ciphertext and cleartext
use the same symbol space and thus have the same length; the transmission
overhead of fingercasting is thus determined by that of the broadcast encryption
scheme, which is moderate [5,6,7,8].8

For the storage size, we highlight the parameters of a computation-intensive
implementation. Let the content be an image with n = 10, 000 significant co-
efficients of 16 bit length, such that Z = 216. By testing several lengths L of
the master table MT , we found a statistical quality of SQ (1) = d/2 < 1/8 for
L = 8 · Z = 8 · 216 = 219 = 2l . A receiver table thus has 219 · 16 = 223 bit or 220

Byte = 210 kByte = 1 MByte, which seems acceptable in practice.
The computation cost depends mostly on the number s of draws from the

master table. To achieve a small statistical difference SQ (s), e.g., below 2−128,
we choose s = 64 and therefore SQ (s) < 1/2 · d s = 2−1 · 2−2·64 = 2−129 by
the conservative upper bound of Lemma 6. Compared to a conventional stream
cipher that encrypts n ·log2 Z bits, a receiver has to generate n ·s ·l pseudo-random
bits, which is an overhead of (s · l)/ log2 Z = 76. To generate the pseudo-random
key stream, the receiver has to perform n ·s table lookups and n ·(s +1) modular
operations in a group of size 216.

In further tests, we also found a more storage-intensive implementation with
L = 225 and s = 25, which leads to 64 MBytes of storage and an overhead of
(s · l)/ log2 Z ≈ 39. By calculating the exact statistical difference of Appendix F
instead of the conservative upper bound of Lemma 6, s decreases further, but
we are currently unaware of any direct formula to calculate s based on a master
table length L and a desired statistical difference SQ (s) (or vice versa).

If the security requirements of an implementation require a regular renewal
of the master table and the subsequent redistribution of the receiver tables,
then the transmission overhead obviously increases. For each redistribution, the
total key material to be transmitted has the size of the master table times the
number of receivers. As mentioned before, a redistribution channel then becomes
necessary if the broadcast channel does not have enough spare bandwidth.

8 For example, this overhead is far smaller than that of the trivial solution, which
consists of sequentially sending an individually fingerprinted copy of the content
individually encrypted over the broadcast channel.
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6 Conclusion and Open Problems

In this document we gave a formal proof of the security of a new Chameleon
cipher. Applied to a generic fingercasting approach, it provides confidential-
ity of ciphertext, traceability of content and keys as well as renewability. We
achieved confidentiality through a combination of a generic broadcast encryp-
tion (BE) scheme and the new Chameleon cipher. The BE scheme provides a
fresh session key, which the Chameleon scheme uses to generate a pseudo-random
key stream. The pseudo-random key stream arises from adding key symbols at
pseudo-random addresses in a long master table, initially filled with random key
symbols. We have reduced the security of the pseudo-random key stream to that
of a pseudo-random sequence generator.

In addition, we achieved traceability of keys and content through embedding
of a receiver-specific fingerprint into the master table copies, which are given
to the receivers. During decryption, these fingerprints are inevitably embedded
into the content, enabling the tracing of malicious users. We achieve the same
collusion resistance as an exemplary watermarking scheme with proven security
bound. It may be replaced with any fingerprinting scheme whose watermarks
can be decomposed into additive components. Finally, we achieved renewability
through revocation, which is performed in the BE scheme.

Two open problems are the most promising for future work. First of all, the
detection algorithm should be extended in order to allow blind detection of a
watermark even in the absence of the original content. Another open problem
is to combine Chameleon encryption with a code-based fingerprinting scheme in
the sense of Boneh and Shaw [29]. The master table in Chameleon would need
to embed components of codewords in such a way that a codeword is embedded
into the content.
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A Abbreviations

Table 1 summarizes all abbreviations used in this document.

Table 1. Abbreviations used in this document

Abbreviation Abbreviated Technical Term

AACS Advanced Access Content System

AES Advanced Encryption Standard

BE Broadcast Encryption

CPPM Content Protection for Pre-Recorded Media

CRL Certificate Revocation List

CSS Content Scrambling System

DCT Discrete Cosine Transform

DES Data Encryption Standard

DVD Digital Versatile Disc

FE Fingerprint Embedding

PRS Pseudo-Random Sequence

PRSG Pseudo-Random Sequence Generator

SSW Spread Spectrum Watermarking

TV Television

B Summary of Relevant Parameters

Table 2 summarizes all parameters of our fingercasting approach and the under-
lying fingerprinting scheme, which we instantiate with the SSW scheme of [15].
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Table 2. Parameters of the proposed fingercasting scheme and the SSW scheme

Parameter Description

N Number of receivers

ui i-th receiver

q Maximum tolerable number of colluding receivers

M Representation of the original content

mj j -th coefficient of content M

n Number of coefficients (Chameleon scheme)

n ′ Number of coefficients (fingerprinting scheme)

CF (i) Content fingerprint of receiver ui

cf (i)
j Coefficient j of ui ’s content fingerprint CF (i)

M ∗ Illegal copy of the original content

CF ∗ Fingerprint found in an illegal copy M ∗

C Ciphertext of the original content M

cj j -th coefficient of ciphertext C

k sess Session key used as a seed for the PRSG

MT Master table of the Chameleon scheme

α Address of a table entry

mtα α-th entry of the master table MT

TF (i) Table fingerprint for receiver table of receiver ui

tf (i)
α h-th coefficient of ui ’s table fingerprint TF (i)

RT (i) Receiver table of receiver ui

rt (i)
α α-th entry of the receiver table RT (i)

l Number of bits needed for the binary address of a table entry

L Number of entries of the tables, L = 2l

F Number of fingerprinted entries of a receiver table

s Number of master table entries per ciphertext coefficient

parCE Input parameters (Chameleon scheme)

parFP Input parameters (fingerprinting scheme)

σ Standard deviation for receiver table

σ′ Standard deviation for SSW scheme

pbad Maximum probability of a bad copy

ppos Maximum probability of a false positive

pneg Maximum probability of a false negative

δ Goodness criterion (SSW scheme)

t Threshold of similarity measure (SSW scheme)

dec Decision output of detection algorithm

z Upper bound of interval [0, z ] (content coefficients)

Z Key space size and cardinality of discrete interval [0, z ]

ρ Scaling factor from real numbers to group elements

p Order of the additive group
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C Chameleon Encryption

Definition 9. A Chameleon encryption scheme is a tuple of five polynomial-
time algorithms CE := (KeyGenCE, KeyExtrCE, EncCE, DecCE, DetectCE), where:

– KeyGenCE is the probabilistic key generation algorithm used by the center
to set up all parameters of the scheme. KeyGenCE takes the number N of
receivers, a security parameter λ′, and a set of performance parameters parCE

as input in order to generate a secret master table MT, a tuple TF :=
(TF (1), . . . ,TF (N )) of secret table fingerprints containing one fingerprint per
receiver, and a threshold t. The values N and λ′ are public:

(MT ,TF , t)← KeyGenCE(N , 1λ′
, parCE)

– KeyExtrCE is the deterministic key extraction algorithm used by the center
to extract the secret receiver table RT (i) to be delivered to receiver ui in the
setup phase. KeyExtrCE takes the master table MT, the table fingerprints
TF , and the index i of receiver ui as input in order to return RT (i):

RT (i) ← KeyExtrCE(MT ,TF , i)

– EncCE is the deterministic encryption algorithm used by the center to encrypt
content M such that only receivers in possession of a receiver table and the
session key can recover it. EncCE takes the master table MT, a session key
k sess, and content M as input in order to return the ciphertext C :

C ← EncCE(MT , k sess,M )

– DecCE is the deterministic decryption algorithm used by a receiver ui to
decrypt a ciphertext C . DecCE takes the receiver table RT (i) of receiver ui ,
a session key k sess, and a ciphertext C as input. It returns a good copy M (i)

of the underlying content M if C is a valid encryption of M using k sess:

M (i) ← DecCE(RT (i), k sess,C )

– DetectCE is the deterministic fingerprint detection algorithm used by the
center to detect whether the table fingerprint TF (i) of receiver ui left traces
in an illegal copy M ∗. DetectCE takes the original content M , the illegal copy
M ∗, the session key k sess, the table fingerprint TF (i) of ui , and the threshold
t as input in order to return dec = true if the similarity measure of the
underlying fingerprinting scheme indicates that the similarity between M ∗

and M (i) is above the threshold t. Otherwise it returns dec = false:

dec ← DetectCE(M ,M ∗, k sess,TF (i), t)

Correctness of CE requires that

∀ui ∈ U : DecCE(RT (i), k sess, EncCE(MT , k sess,M )) = M (i) such that
Good(M (i),M ) = true (see Definition 3) with high probability.
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D Fingerprinting and Spread Spectrum Watermarking

In this section, we detail our notation of a fingerprinting scheme by describing the
respective algorithms of Spread Spectrum Watermarking [14,15]. This scheme is
a tuple of three polynomial-time algorithms (SetupFP, EmbedFP, DetectFP). We
detail each of the three algorithms in Sections D.1–D.3.

D.1 Setup Algorithm

SetupFP is the probabilistic setup algorithm used by the center to set up all
parameters of the scheme. SetupFP takes the number N of receivers, the number
n ′ of content coefficients, a goodness criterion δ, a maximum probability pbad of
bad copies, and a maximum probability ppos of false positives as input in order
to return a tuple of secret content fingerprints CF , containing one fingerprint
per receiver, as well as a similarity threshold t . The values N and n ′ are public:

(CF , t)← SetupFP(N ,n ′, δ, pbad, ppos)

The algorithm of [14,15] proceeds as follows. The set of content fingerprints CF is
defined as CF := (CF (1), . . . ,CF (N )). The content fingerprint CF (i) of receiver
ui is a vector CF (i) := (cf (i)

1 , . . . , cf (i)
n′ ) of n ′ fingerprint coefficients. For each

receiver index i ∈ {1, . . . ,N } and for each coefficient index j ∈ {1, . . . ,n ′}, the
fingerprint coefficient follows an independent normal distribution. The standard
deviation of this distribution depends on the values N , n ′, δ, and pbad:

∀ 1 ≤ i ≤ N , ∀ 1 ≤ j ≤ n ′ : cf (i)
j ← N(0, σ′) with σ′ = fσ′ (N ,n ′, δ, pbad)

The similarity threshold t is a function t = ft (σ′,N , ppos) of σ′, N , and ppos.
The details of fσ′ and ft can be found in [15].

D.2 Watermark Embedding Algorithm

EmbedFP is the deterministic watermark embedding algorithm used by the cen-
ter to embed the content fingerprint CF (i) of receiver ui into the original content
M . EmbedFP takes the original content M and the secret content fingerprint
CF (i) of receiver ui as input in order to return the fingerprinted copy M (i) of ui :

M (i) ← EmbedFP(M ,CF (i))

The algorithm of [14,15] adds the fingerprint coefficient to the original content
coefficient to obtain the fingerprinted content coefficient:

∀j ∈ {1, . . . ,n ′} : m(i)
j ← mj + cf (i)

j

D.3 Watermark Detection Algorithm

DetectFP is the deterministic watermark detection algorithm used by the center
to verify whether an illegal content copy M ∗ contains traces of the content
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fingerprint CF (i) that was embedded into the content copy M (i) of receiver
ui . DetectFP takes the original content M , the illegal copy M ∗, the content
fingerprint CF (i), and the similarity threshold t as input and returns the decision
dec ∈ {true, false}:

dec ← DetectFP(M ,M ∗,CF (i), t)

The algorithm of [14,15] calculates the similarity measure between the fingerprint
in the illegal copy and the fingerprint of the suspect receiver. The similarity
measure is defined as the dot product between the two fingerprints, divided by
the Euclidean norm of the fingerprint in the illegal copy:

CF ∗ ← M ∗ −M

Sim(CF ∗,CF (i))← CF ∗ · CF (i)

||CF ∗||
If Sim(CF ∗,CF (i)) > t

Then Return dec = true

Else Return dec = false

E Broadcast Encryption

In this section we describe a general BE scheme that allows revocation of an
arbitrary subset of the set of receivers. Examples for such BE schemes are [6,7,8].
As these schemes all belong to the family of subset cover schemes defined in [6],
we use this name to refer to them:

Definition 10. A Subset Cover BE (SCBE) scheme is a tuple of four
polynomial-time algorithms (KeyGenBE, KeyExtrBE, EncBE, DecBE), where:

– KeyGenBE is the probabilistic key generation algorithm used by the center
to set up all parameters of the scheme. KeyGenBE takes the number N of
receivers and a security parameter λ′′ as input in order to generate the secret
master key MK. The values N and λ′′ are public:

MK ← KeyGenBE(N , 1λ′′
)

– KeyExtrBE is the deterministic key extraction algorithm used by the center
to extract the secret key SK (i) to be delivered to a receiver ui in the setup
phase. KeyExtrBE takes the master key MK and the receiver index i as input
in order to return the secret key SK (i) of ui :

SK (i) ← KeyExtrBE(MK , i)

– EncBE is the deterministic encryption algorithm used to encrypt session key
k sess in such a way that only the non-revoked receivers can recover it. EncBE
takes the master key MK , the set R of revoked receivers, and session key
k sess as input in order to return the ciphertext CBE:

CBE ← EncBE(MK ,R, k sess)
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– DecBE is the deterministic decryption algorithm used by a receiver ui to
decrypt a ciphertext CBE. DecBE takes the index i of ui , its private key
SK (i), and a ciphertext CBE as input in order to return the session key k sess

if CBE is a valid encryption of k sess and ui is non-revoked, i.e., ui /∈ R.
Otherwise, it returns the failure symbol ⊥:

k sess ← DecBE(i ,SK (i),CBE) if ui /∈ R
Correctness of a SCBE scheme requires that

∀ui ∈ U \ R : DecBE(i ,SK (i), EncBE(MK ,R, k sess)) = k sess .

F Selection of the Minimum Number of Draws

The center can calculate the statistical difference after s draws if it knows the
corresponding probability distribution. The next lemma gives an explicit formula
for this probability distribution. To determine the minimum number of draws
to achieve a maximum statistical difference, e.g., 2−128, the center increases s
until the statistical difference is below the desired maximum. Note that this only
needs to be done once at setup time of the system when s is chosen.

Lemma 7. If the draws use addresses with independent uniform distribution
and the master table MT is given in the representation of Lemma 5, then the
drawing and adding of s master table entries leads to the random variable

X (s) :=

(
s∑

j=1

Xj

)

mod Z with

Pr [X (s) = x ] =
∑

condition

(
s

s0, . . . , sZ−1

) Z−1∏

k=0

pk
sk

where condition ⇔ (8) ∧ (9) ∧ (10) :
sk ≥ 0 ∀ k ∈ {0, 1, . . . ,Z − 1} (8)

Z−1∑

k=0

sk = s (9)

(
Z−1∑

k=0

sk · xk ) mod Z = x , (10)

where sk denotes the number of times that key space element xk was chosen in
the s selections and

(
s

s0,...,sZ−1

)
:= s!

s0!·...·sZ−1!
denotes the multinomial coefficient.

Proof. Each of the s selections is a random variable Xj with Pr [Xj = xk ] = pk .
The independence of the random addresses transfers to the independence of the
Xj . The probability of a complete set of s selections is thus a product of s
probabilities of the form

∏s
1 p with appropriate indices. The counter sk stores
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the number of times that probability pk appears in this term. This counter is
non-negative, implying( 8). In total, there are s selections, implying (9).

To fulfill the condition X (s) = x , the addition modulo Z of the s random
variables must have the result x . Given the counters sk , the result of the addition
is (

∑Z−1
k=0 sk · xk ) mod Z . The combination of both statements implies (10).

There is more than one possibility for selecting sk times the key symbol xk

during the s selections. Considering all such key symbols in s selections, the total
number of possibilities is the number of ways in which we can choose s0 times
the key symbol x0, then s1 times the key symbol x1, and so forth until we reach
a total of s selections. This number is the multinomial coefficient

(
s

s0,...,sZ−1

)
.

Note that we can trivially verify that the probabilities of all key space elements
x in Lemma 7 add to 1. Among the three conditions (8), (9), and (10), the first
two conditions appear in the well-known multinomial theorem

(
Z−1∑

k=0

pk )s =
∑

s0,...,sZ−1≥0

s0+...+sZ−1=s

(
s

s0, . . . , sZ−1

) Z−1∏

k=0

pk
sk

By adding the probabilities over all elements, we obviously add over all addends
on the right-hand side of the multinomial theorem. As the left-hand side trivially
adds to 1, so do the probabilities over all key space elements.
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