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Abstract. We shall describe connections between Petri nets, quantum
physics and category theory. The view of Net theory as a kind of discrete
physics has been consistently emphasized by Carl-Adam Petri. The con-
nections between Petri nets and monoidal categories were illuminated
in pioneering work by Ugo Montanari and José Meseguer. Recent work
by the author and Bob Coecke has shown how monoidal categories with
certain additional structure (dagger compactness) can be used as the set-
ting for an effective axiomatization of quantum mechanics, with striking
applications to quantum information. This additional structure matches
the extension of the Montanari-Meseguer approach by Marti-Oliet and
Meseguer, motivated by linear logic.

1 Introduction

In this paper, we shall be concerned with links between three, prima facie very
different, areas:

– Models of concurrent computation, especially Petri nets.

– Physics, especially quantum mechanics and quantum information.

– Monoidal categories with additional structure (e.g. compact closure [16]).

In particular, we are motivated by the following previous work:

– Petri’s seminal work, which has always emphasized links between his Net
Theory and Physics [24–26].

– The pioneering work by Ugo Montanari and José Meseguer [21] using monoidal
categories as a setting for Net Theory, further extended by Marti-Oliet and
Meseguer [20].

– Our own work with Bob Coecke [4, 5], using monoidal categories as a set-
ting for a novel axiomatization of quantum mechanics, with applications to
quantum information.

Thus the situation can be depicted as follows:
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2 Petri Nets as Discrete Physics

An important quality of Petri’s conception of concurrency, as compared with
“linguistic” approaches such as process calculi, is that it seeks to explain funda-
mental concepts: causality, concurrency, process, etc. in a syntax-independent,
“geometric” fashion. Another important point, which may originally have seemed
merely eccentric, but now looks rather ahead of its time, is the extent to which
Petri’s thinking was explicitly influenced by physics (see e.g. [25]). As one exam-
ple, note that K-density comes from one of Carnap’s axiomatizations of relativ-
ity [11]. To a large extent, and by design, Net Theory can be seen as a kind of
discrete physics: lines are time-like causal flows, cuts are space-like regions,
process unfoldings of a marked net are like the solution trajectories of a
differential equation.

This acquires new significance today, when the consequences of the idea that
“Information is Physical” [17] are being explored in the rapidly developing field
of quantum informatics. Moreover, the need to recognize the spatial structure
of distributed systems has become apparent, and is made explicit in formalisms
such as the Ambient calculus [10], and Milner’s bigraphs [23].

We shall illustrate these points with some quotations from [25].

“This paper attempts to provide a common basis for physical and
computational ways of thinking. . . . If this approach should turn out to
be a small, but definite step towards the remote (perhaps illusory) goal
of founding technology and natural sciences on a theory of information
flow, the author would feel rewarded beyond merit.”

The paper discusses four levels of description for processes and systems.
We concentrate on the first two.

Level 0: Concurrency Structure

“Concurrency is short for “the binary relation of cotemporality of
world points”. Here we follow closely the axiomatizations of relativistic
space-time . . .

For individuals, we take the time layers of signals, the smallest prop-
agators of physical effects. Some signals are particles, others propagate



. . . through interaction. The history of each signal is a “world line” and
consists of world points. Let x and y be individuals; we write x < y if
x 6= y and a signal passes from x to y. We define

x co y ⇔ neither x < y nor y < x

x li y ⇔ x < y or y < x or x = y

Let
Co(x) := {z | x co z} Li(x) := {z | x li z}

If Co(x) = Co(y) or Li(x) = Li(y), we shall collect x and y into a
cluster; such clusters are equivalence classes of world points, and will be
the individuals of Level 1.”

Level 1: Occurrence Nets

“We shall now describe the structure of the set X of all occurrences,
and its partition into a set S of state elements, and a set T of transition
elements. . . .

A subset l ⊂ X will be called a Line iff it is a maximal set of
occurrences which are pairwise in relation li.

A subset c ⊂ X will be called a Cut iff it is a maximal set of occur-
rences which are pairwise in relation co.

The old physical postulate that every Cut represents a spatial dis-
tribution . . . can now be written as ‘every Cut meets every Line’, i.e. as
K-density.”

2.1 Causal Sets and Other Roads

Quite independently, physicists have recently been thinking along strikingly sim-
ilar lines, in one of the radical current approaches to quantum gravity, which
is being developed by Raphael Sorkin and his collaborators [28, 9].

Following intuitions going back to Riemann and Einstein, the aim with
Causal Sets is to build a theory of space-time which is ultimately (at the “Planck
scale”) discrete. A causal set is just a locally finite poset. The elements are
events, the ordering is causality. The aim is to build everything back from these
ingredients, under the slogan

Order + Number = Geometry.

“Number” here refers to counting the events which have occurred in a given
region of spacetime; this is meaningful by local finiteness, and leads to a notion
of “volume”. There is a “dynamics” which comes from the growth of a poset.
Large-scale structural properties of space-time should emerge from stochastic
properties of such growth.

One may also note the popular book by Lee Smolin [27]: the discussion in the
first few chapters, especially of the relational view of spacetime, is very much in
the same spirit.



We also mention the striking recent work by Keye Martin and Prakash Panan-
gaden [19], which builds back the spacetime manifold from the causal order, using
ideas from domain theory.

3 Interlude: Symmetric Monoidal Categories

We briefly recall and motivate the basic setting of symmetric monoidal cate-
gories. For further details, we refer to standard texts such as [18].

3.1 Categories

A category C has objects (types) A, B, C, . . . , and for each pair of objects A,
B a set of morphisms C(A,B). (Notation: f : A → B). It also has identities
idA : A→ A, and composition g ◦ f when types match:

A
f

−→ B
g

−→ C

Categories allow us to deal explictly with typed processes, e.g.

Logic Programming Computation

Propositions Data Types States

Proofs Programs Transitions

3.2 Symmetric Monoidal Categories

A symmetric monoidal category comes equipped with an associative opera-
tion ⊗, the “tensor product”, which acts on both objects and morphisms — a
bifunctor:

A⊗B f1 ⊗ f2 : A1 ⊗ A2 −→ B1 ⊗B2

There is also a symmetry operation

σA,B : A⊗B −→ B ⊗A

which satisfies some ‘obvious’ rules, e.g. naturality:

A1 ⊗A2

f1 ⊗ f2
- B1 ⊗B2

A2 ⊗A1

σA1,A2

? f1 ⊗ f2
- B2 ⊗B1

σB1,B2

?



The Logic of Tensor Product Tensor can express independent or concurrent
actions (mathematically: bifunctoriality):

A1 ⊗A2

f1 ⊗ id
- B1 ⊗A2

A1 ⊗B2

id ⊗ f2

?

f1 ⊗ id
- B1 ⊗B2

id ⊗ f2

?

But tensor is not a ‘cartesian’ or categorical product, in the sense that we
cannot reconstruct an ‘element’ of the tensor from its components.

This turns out to comprise the absence of natural diagonals (copying) and
projections (deleting):

A
∆
−→ A⊗A A1 ⊗A2

πi−→ Ai

Cf. A ⊢ A ∧A A1 ∧A2 ⊢ Ai.

Hence there is a direct connection to “resource-sensitive” logics such as linear
logic [14].

A basic example, familiar to Computer Scientists, is given by Rel, the cat-
egory with sets as objects and relations as arrows. Here the usual cartesian
product of sets gives a tensor product, but not the categorical product. In par-
ticular, although we can define diagonals and projections, they are not natural.
For diagonals, this means that the diagram

X
∆X

- X ×X

Y

R

?

∆Y

- Y × Y

R ×R

?

does not commute in general, where ∆X = {(x, (x, x)) | x ∈ X} is the usual
diagonal, and R ⊆ X × Y can be any relation.

A fundamental example for Quantum Mechanics and Quantum Information
is FdHilb, the category of finite-dimensional complex Hilbert spaces and linear
maps, with the standard concrete tensor product of linear algebra [4].

4 Petri Nets and Monoidal Categories

In the late 1980’s there was a brief flowering of work relating Petri nets with
monoidal categories and Linear logic [29, 13, 21, 20]. This work does not seem



to have had much lasting impact on the Petri net community, but the work by
Ugo Montanari and José Meseguer in particular has been influential on wider
developments in concurrency and graph rewriting, e.g. [22]. We shall briefly
summarize their approach.

4.1 The Meseguer and Montanari Approach

Petri Nets are defined as

N = (S⊗, T, δ0, δ1)

where

– S⊗ is a free commutative monoid of states

– T is the set of transitions

– δ0, δ1 : T −→ S⊗ give the source and target of each transition.

A multiset of S-elements is just another way of thinking of a distribution of
tokens.

Example

buy-a

change buy-c

buy-a’
4

3

$

q

a c

The transitions (axioms, arrows) are:

buy-c : $ ⊗ q −→ c buy-a : $ −→ a⊗ q

buy-a’ : q3 −→ a change : $ −→ q4

Petri Categories By closing up the transitions under sequential and parallel
composition, a general notion of process is obtained:

– Given α : A −→ B and β : B −→ C, form α;β : A −→ C. Taking sequential
composition to be associative, and adding idle transitions 1A : A −→ A

which are identities for sequential composition, this gives a category.



– Given α : A1 −→ B1 and β : A2 −→ B2, form the parallel composition
α ⊗ β : A1 ⊗ A2 −→ B1 ⊗ B2. If we assume the key (bi)functoriality
axiom

(α1 ⊗ α2); (β1 ⊗ β2) = (α1;β1) ⊗ (α2;β2)

this gives a symmetric monoidal category.

Meseguer and Montanari identify the particular kind of symmetric monoidal
categories which arise in this way — the Petri categories. They show that
the Best-Devillers theory of sequential and concurrent behaviours [8] can be
recaptured in a systematic way in this framework.

5 Processes in Monoidal Categories: A General

Perspective

We have seen that Petri Nets can be seen as particular examples of sym-
metric monoidal categories. But why not turn this around? Why not see
any symmetric monoidal category as a setting for describing computa-
tional processes in a resource sensitive way, closed under sequential
and parallel composition?

There is a natural objection to this, that we would then lose the addi-
tional concrete, combinatorial structure of Petri nets, and the corresponding
graphical formalism, which is so much a part of how they are used.

But this objection does not really hold water! Monoidal categories, quite
generally, admit a beautiful graphical calculus or diagrammatic notation
which makes equational proofs perspicuous, and is sound and complete for equa-
tional reasoning in monoidal categories [15]. It also supports links with Logic (e.g.
Proof Nets) and with Geometry (Knots, Braids, Temperley-Lieb algebra etc.)[1,
3].

5.1 Outline of the Graphical Calculus

In the graphical calculus we depict processes by boxes, and we label the inputs
and outputs of these boxes by types which indicate the kind of system on which
these processes act:

f
B

A

g
C

f
B

B

g
f
B

A

C

A

f
B

A

E

h
A

C

A B f
B

B

g
C

A

Algebraically, these correspond to:

1A : A→ A, f : A→ B, g ◦ f, 1A ⊗ 1B, f ⊗ 1C , f ⊗ g, (f ⊗ g) ◦ h

respectively. (The convention in these diagrams is that the ‘upward’ vertical
direction represents progress of time.)



Kets, Bras and Scalars: A special role is played by boxes with either no input
or no output, i.e. arrows of the form I −→ A or A −→ I respectively, where I is
the unit of the tensor. In the setting of FdHilb and Quantum Mechanics, they
correspond to states and costates respectively (cf. Dirac’s kets and bras [12]),
which we depict by triangles. Scalars then arise naturally by composing these
elements (cf. inner-product or Dirac’s bra-ket):

ψ
A

A

π
ψ

A
π

π ψo

=

Formally, scalars are arrows of the form I −→ I. In the physical context, they
provide numbers (“probability amplitudes” etc.). For example, in FdHilb, the
tensor unit is C, the complex numbers, and a linear map s : C −→ C is deter-
mined by a single number, s(1). In Rel, the scalars are the boolean semiring
{0, 1}.

This graphical notation can be seen as a substantial two-dimensional gener-
alization of Dirac notation [12]:

〈φ | | ψ〉 〈φ | ψ〉

Note how the geometry of the plane absorbs functoriality and naturality condi-
tions, e.g.:

f

g

=

f

g

(f ⊗ 1) ◦ (1 ⊗ g) = f ⊗ g = (1 ⊗ g) ◦ (f ⊗ 1)

6 Deficits and Cancellation

We shall now consider an extension of the Meseguer–Montanari approach, due
to Marti-Oliet and Meseguer [20]. For initial motivation, consider the following
example:



Example

buy-abuy-c change

4

$

c a q

Transitions:

buy-c : $ −→ c buy-a : $ −→ a⊗ q change : q4 −→ $

Note that there is no way of getting an apple if we start with three quarters!

6.1 The Financial Game

Marti-Oliet and Meseguer introduce the following modification of the usual token
game, motivated by the aim of extending the connection between Petri Nets and
monoidal structures to the whole of Multiplicative Linear Logic [14].

– Negative or dual tokens a∗ etc. are introduced. We can use these to repre-
sent situations involving deficits as well as the usual presence of resources.

– As well as the usual firing rules, we now have the opportunity to “borrow”
resources, creating both the resource, and the corresponding deficit.

• • • ◦=⇒

– Conversely, given a resource and a corresponding deficit, we can cancel
them, removing both:

• ◦ =⇒

Deficits and Cancellation The basic transitions we need are:

I −→ a∗ ⊗ a a⊗ a∗ −→ I

where I is the unit of the monoidal structure, creating and cancelling a deficit.



We can now produce a computation in the above example to get an apple
from three quarters:

q3 −→ q3 ⊗ I −→ q3 ⊗ q∗ ⊗ q −→ $ ⊗ q∗ −→ a⊗ q ⊗ q∗ −→ a

This is a well known idea in Category theory: it takes us from symmetric
monoidal to compact closed categories [16]. How does this look in our graphical
calculus for monoidal categories?

Cups and Caps

A∗A

A∗ A

ǫA : A⊗A∗ −→ I ηA : I −→ A∗ ⊗A.

Caps = Cancellations; Cups = Deficits.

6.2 Graphical Calculus for Information Flow

Compact Closure : The basic algebraic laws for units and counits.

= =

(ǫA ⊗ 1A) ◦ (1A ⊗ ηA) = 1A (1A∗ ⊗ ǫA) ◦ (ηA ⊗ 1A∗) = 1A∗

In terms of deficits and cancellations:

• • ◦ • • •=⇒ =⇒ =



Names and Conames in the Graphical Calculus The units and counits are pow-
erful; they allow us to define a closed structure on the category. In particular,
we can form the name pfq of any arrow f : A → B, as a special case of
λ-abstraction, and dually the coname xfy:

f

f

xfy : A⊗B∗ → I pfq : I → A∗ ⊗B

This is the general form of Map-State duality:

C(A⊗B∗, I) ≃ C(A,B) ≃ C(I, A∗ ⊗ B).

7 Monoidal Categories and Physics

Having related physics to Petri nets, and Petri nets to monoidal categories, we
shall now show how to close the circle by relating (quantum) physics to monoidal
categories, following [4]. Moreover, a key role will be played by the compact
closed structure which was described in the previous section, as the abstract
form of the “negative flows” of deficits and cancellations, introduced by Marti-
Oliet and Meseguer to correspond to the logical structure of linear negation and
implication. Here the same structure arises with a physical motivation, and
plays a crucial rôle in explicating the information flows arising from quantum
entanglement.

7.1 Bits and Qubits

Classical Bits:

– have two values 0, 1
– are freely readable and duplicable
– admit arbitrary data transformations

Qubits:

– have a ‘sphere’ of values spanned by |0〉, |1〉



|+〉

|−〉

|+〉

|−〉

|Ψ〉

– measurements of qubits
• have two outcomes |−〉, |+〉
• change the value |ψ〉

– admit unitary transformations, i.e. antipodes and angles are preserved.

Formally, a qubit is a vector1 in the two-dimensional complex Hilbert space C2.
This space allows for two degrees of freedom when we measure the qubit in a
given basis; we get one of two possible answers, conventionally ‘0’ or ‘1’ in the
standard basis. Which of these answers we get is in general uncertain; the state
of the qubit tells us only the probability with which we will get each of the
two possible answers. Moreover, measurement has an effect on the system being
measured; it “collapses” to the basis state corresponding to the outcome of the
measurement.

7.2 Quantum Entanglement

We consider for illustration two standard examples of two-qubit entangled states,
the Bell state:

|00〉 + |11〉

and the EPR state:
|01〉 + |10〉

In quantum mechanics, compound systems are represented by the tensor
product of Hilbert spaces: H1 ⊗ H2. A typical element of the tensor product
has the form: ∑

i

λi · φi ⊗ ψi

where φi, ψi range over basis vectors, and the coefficients λi are complex num-
bers. Superposition encodes correlation: in the Bell state, the off-diagonal
elements have zero coefficients. This gives rise to Einstein’s “spooky action at
a distance”. Even if the particles are spatially separated, measuring one has an
effect on the state of the other. In the Bell state, for example, when we measure
one of the two qubits we may get either 0 or 1, but once this result has been
obtained, it is certain that the result of measuring the other qubit will be the
same.

1 Really by a one-dimensional subspace, or ray.



This leads to Bell’s famous theorem [6]: QM is essentially non-local, in
the sense that the correlations it predicts exceed those of any “local realistic
theory”.

From ‘paradox’ to ‘feature’: Teleportation

MBell

Ux

|00〉 + |11〉

x ∈ B2

|φ〉

|φ〉

Alice Bob

In the teleportation protocol [7], Alice sends an unknown qubit φ to Bob, using
a shared Bell pair as a “quantum channel”. By performing a measurement in
the Bell basis on φ and her half of the entangled pair, a collapse is induced
on Bob’s qubit. Once the result x of Alice’s measurement is transmitted by
classical communication to Bob (there are four possible measurement outcomes,
hence this requires two classical bits), Bob can perform a corresponding unitary
correction Ux on his qubit, after which it will be in the state φ.

7.3 Categorical Quantum Mechanics and Diagrammatics

We now outline the categorical approach to quantum mechanics developed in
[4, 5]. The same graphical calculus and underlying algebraic structure which
we have seen in the previous section has been applied to quantum information
and computation, yielding an incisive analysis of quantum information flow,
and powerful and illuminating methods for reasoning about quantum informatic
processes and protocols [4].

Bell States and Costates: The cups and caps we have already seen in the guise
of deficit and cancellation operations, now take on the rôle of Bell states and
costates (or preparation and test of Bell states), the fundamental building
blocks of quantum entanglement. (Mathematically, they arise as the transpose
and co-transpose of the identity, which exist in any finite-dimensional Hilbert
space by “map-state duality”).



A

A

A*

A*

The formation of names and conames of arrows (i.e. map-state and map-
costate duality) is conveniently depicted thus:

=: f =:

fff

(2)

The key lemma in exposing the quantum information flow in (bipartite) entan-
gled quantum systems can be formulated diagrammatically as follows:

=f

g

= f

g

f

g

=

f

g

Note in particular the interesting phenomenon of “apparent reversal of the causal
order” . While on the left, physically, we first prepare the state labeled g and
then apply the costate labeled f , the global effect is as if we first applied f

itself first, and only then g. This corresponds to the apparent reversal of flow
of computations in the token game on Petri nets achieved with deficits and
cancellations.

Derivation of quantum teleportation. This is the most basic application of com-
positionality in action. We can read off the basic quantum mechanical potential
for teleportation immediately from the geometry of Bell states and costates:

Alice Bob

=
ψ ψ

Alice Bob Alice Bob

= ψ

The Bell state forming the shared channel between Alice and Bob appears as the
downwards triangle in the diagram; the Bell costate forming one of the possible
measurement branches is the upwards triangle. The information flow of the input
qubit from Alice to Bob is then immediately evident from the diagrammatics.

This is not quite the whole story, because of the non-deterministic nature
of measurements. But in fact, allowing for this shows the underlying design



principle for the teleporation protocol. Namely, we find a measurement basis
such that each possible branch i through the measurement is labelled, under
map-state duality, with a unitary map fi. The corresponding correction is then
just the inverse map f−1

i . Using our lemma, the full description of teleportation
becomes:

f

=

fi i

fi
-1

fi
-1 =

8 Conclusions

We have described a striking nexus of ideas arising from several different sources.
Conceptually, the most interesting feature has been the need for “negative in-
formation flow”, which has arisen from several sources:

– In logic, with the need to account for negative polarities, as created by
connectives such as (linear) negation or implication, leading to Marti-Oliet
and Meseguer’s proposal of deficits and cancellations as a computational
correlate in the setting of Petri net dynamics.

– Physically, e.g. in the desciption of quantum teleportation, these negative
flows run counter to the normal flow of time and causality, and form part of
the enigma of quantum mechanics.

– Mathematically, we are led to dualities and closed structure.

– Geometrically, we go in the direction of loops, tangles and knots.

Standard Petri net theory, with its careful enforcement of local causality and
information flow, explicitly influenced by relativity theory, does not suffice to
capture the non-local features of quantum mechanics, which are exploited in
quantum information. Perhaps it is not too fanciful to see here in microcosm
some of the foundational obstacles to formulating an adequate theory of quantum
gravity!

The further elaboration and deepening of this nexus of ideas offers many in-
teresting challenges. In particular, a full analysis of distributed quantum compu-
tation, e.g. quantum security protocols, which should take into account both the
quantum and the classical ingredients of the protocols, and also reflect enough
of the spatio-temporal structure to capture the salient distributed features, will
require a deeper understanding of the ingredients we have assembled here, and
of how they may be related and combined.
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