
Markov Decision Petri Net and Markov Decision

Well-formed Net formalisms

M. Beccuti, G. Franceschinis1? and S. Haddad2??

1 Univ. del Piemonte Orientale,
giuliana.franceschinis@mfn.unipmn.it

2 LAMSADE CNRS, Univ. Paris Dauphine
haddad@lamsade.dauphine.fr

Abstract. In this work, we propose two high-level formalisms, Markov

Decision Petri Nets (MDPNs) and Markov Decision Well-formed Nets

(MDWNs), useful for the modeling and analysis of distributed systems
with probabilistic and non deterministic features: these formalisms al-
low a high level representation of Markov Decision Processes. The main
advantages of both formalisms are: a macroscopic point of view of the al-
ternation between the probabilistic and the non deterministic behaviour
of the system and a syntactical way to define the switch between the
two behaviours. Furthermore, MDWNs enable the modeller to specify in
a concise way similar components. We have also adapted the technique
of the symbolic reachability graph, originally designed for Well-formed
Nets, producing a reduced Markov decision process w.r.t. the original
one, on which the analysis may be performed more efficiently. Our new
formalisms and analysis methods are already implemented and partially
integrated in the GreatSPN tool, so we also describe some experimental
results.

1 Introduction

Markov Decision Processes (MDP). Since their introduction in the 50’s, Markov
Decision process models have gained recognition in numerous fields including
computer science and telecommunications [13]. Their interest relies on two com-
plementary features. On the one hand, they provide to the modeler a simple
mathematical model in order to express optimization problems in random en-
vironments. On the other hand, a rich theory has been developed leading to
efficient algorithms for most of the practical problems.

Distributed Systems and MDPs. The analysis of distributed systems mainly
consists in (1) a modeling phase with some high-level formalism like Petri nets
(PN) or process algebra, (2) the verification of properties expressed in some logic
(like LTL or CTL) and (3) the computation of performance indices by enlarging

? The work of these authors was supported in part with the Italian MUR “local”
research funds.

?? The work of this author was supported in part by ANR Setin project CheckBound.

the model with stochastic features and applying either (exact or approximate)
analysis methods or simulations. In this framework, a MDP may be viewed as a
model of a distributed system where it is possible to perform a non deterministic
choice among the enabled actions (e.g., the scheduling of tasks) while the effect of
the selected action is probabilistic (e.g., the random duration of a task). Then,
with appropriate techniques, one computes the probability that a property is
satisfied w.r.t. the “worst” or the “best” behavior [3,7]. The time model that
will be considered in this paper is discrete: each non deterministic choice is
taken in a given decision epoch, after the probabilistic consequence of the choice
has been performed, a new decision epoch starts.

Here the way we model distributed systems by MDPs is rather different.
During a phase, the system evolves in a probabilistic manner until periodically a
(human or automatic) supervisor takes the control in order to configure, adapt
or repair the system depending on its current state before the next phase. In
other words, usual approaches consider that the alternation between non de-
terministic and probabilistic behavior occurs at a microscopic view (i.e., at the
transition level) whereas our approach adopts a macroscopic view of this alter-
nation (i.e., at a phase level). It should be emphasized that, depending on the
applications, one or the other point of view should be preferred and that the
user should have an appropriate formalism and associated tools for both cases.
For instance PRISM [11], one of the most used tools in this context, works at
the microscopic level whereas the formalism of stochastic transition systems is
based on a macroscopic view [8]. The latter formalism is a slight semantical
variation of generalized stochastic Petri nets [12] where the choice among the
enabled immediate transitions is performed non deterministically rather than
probabilistically. Despite its simplicity, this formalism has a serious drawback
for the design process since the modeler has no mean to syntactically define
the switches between the probabilistic behavior and the non deterministic one.
Furthermore, the difference between the distributed feature of the probabilistic
behavior and the centralized one of the non deterministic behavior is not taken
into account.

Our contribution. In this work, we propose a high-level formalism in order to
model distributed systems with non deterministic and probabilistic features.
Our formalism is based on Well-formed Petri Nets (WN) [4]. First, we introduce
Markov Decision Petri nets (MDPN): an MDPN is defined by three parts, a
set of active components (e.g., processes or machines), a probabilistic net and a
non deterministic net. Every transition of the probabilistic net is triggered by a
subset of components. When every component has achieved the activities related
to the current probabilistic phase, the supervisor triggers the non deterministic
transitions in order to take some decisions, either relative to a component or
global. Every transition has an attribute (run/stop) which enables the modeler to
define when the switches between the nets happen. The semantics of this model
is designed in two steps: a single Petri net can be derived from the specification
and its reachability graph can be transformed with some additional information,
also specified at the MDPN level, into an MDP.

Distributed systems often present symmetries i.e, in our framework, many
components may have a similar behavior. Thus, both from a modeling and an
analysis point of view, it is interesting to look for a formalism expressing and ex-
ploiting behavioral symmetries. So we also define Markov Decision Well-formed
nets (MDWN) similarly as we do for MDPNs. The semantics of a model is then
easily obtained by translating a MDWN into a MDPN. Furthermore, we develop
an alternative approach: we transform the MDWN into a WN, then we build the
symbolic reachability graph of this net [5] and finally we transform this graph
into a reduced MDP w.r.t. the original one. We argue that we can compute
on this reduced MDP, the results that we are looking for in the original MDP.
The different relations between the formalisms are shown in the figure depicted
below. Finally we have implemented our analysis method within the GreatSPN
tool [6] and performed some experiments.

Organization of the paper. In section 2, we recall basic notions relative to MDPs,
then we define and illustrate MDPNs. In section 3, we introduce MDWNs and
develop the corresponding theoretical results. In section 4, we present some ex-
perimental results. In section 5, we discuss related work. Finally we conclude
and give some perspectives in section 6.

2 Markov Decision Petri Net

2.1 Markov Decision Process

A (discrete time and finite) MDP is a dynamic system where the transition
between states (i.e., items of S a finite set) are obtained as follows. First, given
s the current state, one non deterministically selects an action among the subset
of actions currently enabled (i.e., As). Then one samples the new state w.r.t. to
a probability distribution depending on s and a ∈ As (i.e., p(·|s, a)). An MDP
includes rewards associated with state transitions; here, we choose a slightly
restricted version of the rewards that do not depend on the destination state (i.e.,
r(s, a)). Starting from such elementary rewards, different kinds of global rewards
may be associated with a finite or infinite execution thus raising the problem to
find an optimal strategy w.r.t. a global reward. For sake of simplicity, we restrict
the global rewards to be either the expected total reward or the average reward.
The next definitions formalize these concepts.

Definition 1 (MDP). An MDP M is a tuple M = 〈S, A, p, r〉 where:

– S is a finite set of states,

– A is a finite set of actions defined as
⋃

s∈S As where As is the set of enabled
actions in state s,

– ∀s ∈ S, ∀a ∈ As, p(·|s, a) is a (transition) probability distribution over S such
that p(s′|s, a) is the probability to reach s′ from s by triggering action a,

– ∀s ∈ S, ∀a ∈ As, r(s, a) ∈ R is the reward associated with state s and action
a.

A finite (resp. infinite) execution of an MDP is a finite (resp. infinite) se-
quence σ = s0a0 . . . sn (resp. σ = s0a0 . . .) of alternating states and actions, s.t.
∀i, si ∈ S ∧ ai ∈ Asi

and p(si+1|si, ai) > 0.

The total reward of such an execution is defined by trw(σ) =
∑n−1

i=0 r(si, ai)

(resp. trw(σ) = limn→∞

∑n−1
i=0 r(si, ai) provided the limit exists) and its average

reward is arw(σ) = 1
n

∑n−1
i=0 r(si, ai) (resp. arw(σ) = limn→∞

1
n

∑n−1
i=0 r(si, ai)

provided the limit exists).

We denote SEQ∗(M) (resp. SEQ∞(M)) the set of finite (resp. infinite) se-
quences. A strategy st is a mapping from SEQ∗(M) to A such that st(s0a0 . . . sn)
belongs to Asn

. Since a strategy discards non determinism, the behavior of M
w.r.t. st is a stochastic process Mst defined as follows. Assume that the current
execution is some s0a0 . . . sn then an = st(s0a0 . . . sn) and the next state sn+1

is randomly chosen w.r.t. distribution p(·|sn, an). Consequently, the reward of
a random sequence of Mst is a random variable and the main problem in the
MDP framework is to maximize or minimize the mean of this random variable
and to compute the associated strategy when it exists. In finite MDPs, efficient
solution techniques have been developed to this purpose [13].

Here we want to model systems composed by multiple active components
whose behavior during a period is described in a probabilistic way and a cen-
tralized decision maker taking some decisions between execution periods (e.g.,
assigning available resources to components). Let us illustrate this kind of sys-
tems by a toy example. Imagine an information system based on two redundant
computers: this system is available as long as one computer is in service. A com-
puter may fail during a period. At the end of a period, the decision maker can
choose to send a single repairman to repair a faulty computer when he is not
yet busy. There is a fixed probability that the repairing ends inside the period.
In this framework, the rewards denote costs (for unavailability and repairs) and
the analysis aims at minimizing them. The MDP corresponding to this system is
shown in Fig. 1, where the states description does not maintain the distinction
between the components; this is only possible when the computers are identical.

The design of this MDP is rather easy. However when the system has more
computers and repairmen with different behaviors, then modeling it at the MDP
level becomes unfeasible.

2.2 Markov Decision Petri Net

A Markov Decision Petri Net MN is composed by two different parts (i.e. two
extended Petri nets): the probabilistic one N pr and the non deterministic one

Fig. 1. Symbolic representation of the MDP modeling in this section

Nnd called the decision maker ; it is thus possible to clearly distinguish and
design the probabilistic behavior of the system and the non deterministic one.
The probabilistic part models the probabilistic behavior of the system and can
be seen as composition of a set of n components (Comppr) that can interact;
instead the non deterministic part models the non deterministic behavior of the
system where the decisions must be taken (we shall call this part the decision
maker). Hence the global system behavior can be described as an alternating
sequence of probabilistic and non deterministic phases.

The probabilistic behavior of a component is characterized by two differ-
ent types of transitions Trunpr and Tstoppr. The Trunpr transitions represent
intermediate steps in a probabilistic behavior phase and can involve several com-
ponents (synchronized through that transition), while the Tstoppr ones always
represent the final step of the probabilistic phase of at least one component.

In the non deterministic part, the decisions can be defined at the system
level (transitions of T nd

g) or at the component level (transitions of T nd
l). The

sets T nd
g and T nd

l are again partitioned in Trunnd
g and Tstopnd

g , and Trunnd
l

and Tstopnd
l with the same meaning. The decision maker does not necessarily

control every component and may not take global decisions. Thus the set of
controllable “components” Compnd is a subset of Comppr] {ids} where ids

denotes the whole system.

The probabilistic net is enlarged with a mapping weight associating a weight
with every transition in order to compute the probabilistic choice between tran-
sitions enabled in a marking. Furthermore it includes a mapping act which asso-
ciates to every transition the subset of components that (synchronously) trigger
the transition. The non deterministic net is enlarged with a mapping obj which
associates with every transition the component which is involved by the transi-
tion. The following definition summarizes and formalizes this presentation.

Definition 2 (Markov Decision Petri Net (MDPN)). A Markov Decision
Petri Net (MDPN) is a tuple MN = 〈Comppr, Compnd, Npr, Nnd〉 where:

– Comppr is a finite non empty set of components;

– Compnd ⊆ Comppr] {ids} is the non empty set of controllable components;

– Npr is defined by a PN with priorities [12] 〈P, T pr, Ipr, Opr, Hpr, priopr, m0〉,
a mapping weight: T pr → R and a mapping act: T pr → 2Comppr

. Moreover
T pr = Trunpr] Tstoppr

– Nnd is defined by a PN with priorities 〈P, T nd, Ind, Ond, Hnd, priond, m0〉
and a mapping obj: T nd → Compnd. Moreover T nd = Trunnd] Tstopnd.

Furthermore, the following constraints must be fulfilled:

– T pr ∩ T nd = ∅. A transition cannot be non deterministic and probabilistic.
– ∀id ∈ Comppr, ∃C ⊆ Comppr, s.t. id ∈ C and act−1({C}) ∩ Tstoppr 6= ∅.

Every component must trigger at least one final probabilistic transition.
– ∀id ∈ Compnd, obj−1({id}) ∩ Tstopnd 6= ∅. Every controllable component

must be the object of at least one final non deterministic transition.

Note that the probabilistic part and the decision maker share the same set of
places and the same initial marking. Let us now introduce the rewards associated
with the MDPN net. As will be developed later, an action of the decision maker
corresponds to a sequence of transition firings starting from some marking. We
choose to specify a reward by first associating with every marking m a reward
rs(m), with every transition t a reward rt(t) and then by combining them with
an additional function rg (whose first parameter is a state reward and the second
one is a reward associated with a sequence of transition firings). The requirement
on its behavior given in the next definition will be explained when presenting
the semantics of a MDPN.

Definition 3 (MDPN reward functions). Let MN be a MDPN. Then its
reward specification is given by:

– rs : NP → R which defines for every marking its reward value.
– rt : T nd → R which defines for every transition its reward value.
– rg : R × R → R, not decreasing w.r.t its second parameter.

An example of (a portion of) probabilistic and non deterministic subnets is
shown in Fig. 3: in the framework of the MDPN formalism, the annotations
on arcs and next to the places and transitions should be ignored. The decision
maker implements the possible ways of assigning resources (e.g. for component
repair) to those components that need them (e.g. failed components): for each
component needing a resource two possibilities are included, namely assign or
not assign resource. The probabilistic part shows 3 system components: two of
them are controllable (let’s call them Proc and Mem), one is not controllable
(let’s call it ResCtr). The Proc and Mem components can work fine or fail,
the third one supervises the repair process (when the resource is available) and
the Proc and/or Mem resume phase. Tstop transitions are e.g. WorkFineProc,
WaitRepProc, ResumeProc, ResumeMemProc, the first two involving only Proc,
the third involving Proc and ResCtr, the last one involving all three compo-
nents; the firing of these transitions mean that the involved components have
reached a stable state in the current decision epoch. Trun transitions are e.g.
FailProc, FailMem involving respectively Proc and Mem, and EndRep involving

Fig. 2. Arcs connecting the places Stop
pr
i , Runnd

i and the transition PrtoNd; arcs
connecting the places Stopnd

i , Runnd
i and the transition NdtoPr

only ResCtr. These transitions represent intermediate steps in the components
evolution (e.g. a failure can be followed by a wait for repair resource or a resume
final step).

MDPN semantics. The MDPN semantics is given in three steps. First, one
composes the probabilistic part and the decision maker in order to derive a
unique PN. Then one generates the (finite) reachability graph (RG) of the PN.
At last, one produces an MDP from it.

From MDPN to PN. First we explain the semantics of additional places Stop
pr
i ,

Run
pr
i , Stopnd

i , Runnd
i , Stopnd

0 and Runnd
0 and additional non deterministic tran-

sitions PrtoNd and NdtoPr. Places Stop
pr
i , Run

pr
i , Stopnd

i , Runnd
i , Stopnd

0 and
Runnd

0 regulate the interaction among the components, the global system and
the decision maker. There are places Run

pr
i , Stop

pr
i for every component i, while

we insert the places Runnd
0 and Stopnd

0 if the decision maker takes same global
decision and the pair of places Runnd

i and Stopnd
i for every controllable com-

ponent i ∈ Compnd. Non deterministic transitions PrtoNd and NdtoPr ensure
that the decision maker takes a decision for every component in every time
unit: the former triggers a non deterministic phase when all the components
have finished their probabilistic phase whereas the latter triggers a probabilistic
phase when the decision maker has taken final decisions for every controllable
component.

The scheme describing how these additional items are connected together
and with the nets of the MDPN is shown in Fig. 2. The whole PN N comp =
〈P comp, T comp, Icomp, Ocomp, Hcomp, priocomp, m

comp
0 〉 related to a MDPN MN

is defined below.

– P comp = P]i∈Comppr
{Run

pr
i , Stop

pr
i }]i∈Compnd

{Runnd
i , Stopnd

i }

– T comp = T pr] T nd] {PrtoNd, NdtoPr}
– The incidence matrices of N comp are defined by:

• ∀p ∈ P, t ∈ T nd,

Icomp(p, t) = Ind(p, t), Ocomp(p, t) = Ond(p, t), Hcomp(p, t) = Hnd(p, t)
• ∀p ∈ P, t ∈ T pr,

Icomp(p, t) = Ipr(p, t), Ocomp(p, t) = Opr(p, t), Hcomp(p, t) = Hpr(p, t)
• ∀t ∈ Tstoppr s.t. i ∈ act(t) : Icomp(Run

pr
i , t) = Ocomp(Stop

pr
i , t) = 1

• ∀t ∈ Trunpr s.t. i ∈ act(t) : Icomp(Run
pr
i , t) = Ocomp(Run

pr
i , t) = 1

• ∀t ∈ Tstopnd s.t. i ∈ act(t) : Icomp(Runnd
i , t) = Ocomp(Stopnd

i , t) = 1
• ∀t ∈ Trunnd s.t. i ∈ act(t) : Icomp(Runnd

i , t) = Ocomp(Runnd
i , t) = 1

• ∀i ∈ Comppr : Icomp(Stop
pr
i , P rtoNd) = Ocomp(Run

pr
i , NdtoPr) = 1

• ∀i ∈ Compnd : Icomp(Stopnd
i , NdtoPr,) = Ocomp(Runnd

i , P rtoNd) = 1
• for all I(p, t), O(p, t), H(p, t) not previously defined,

Icomp(p, t) = Ocomp(p, t) = 0, Hcomp(p, t) = ∞;
– ∀t ∈ T nd, prio(t) = priond(t), ∀t ∈ T pr, prio(t) = priopr(t),

prio(PrtoNd) = prio(NdtoPr) = 1, (actually these values are irrelevant)

– ∀p ∈ P, m
Comp
0 (p) = m0(p), m

Comp
0 (Runnd

i) = 1,

m
Comp
0 (Stopnd

i) = m
Comp
0 (Run

pr
i) = m

Comp
0 (Stop

pr
i) = 0.

RG semantics and transitions sequence reward. Considering the RG obtained
from the PN we observe that the reachability set (RS) can be partitioned into
two subsets: the non deterministic states (RSnd), in which only non determin-
istic transitions are enabled, and the probabilistic states (RSpr), in which only
probabilistic transitions are enabled. By construction, the PN obtained from a
MDPN can never reach a state enabling both nondeterministic and probabilistic
transitions. A probabilistic transition can be enabled only if there is at least one
place Run

pr
i with m(Run

pr
i) > 0, while a non deterministic transition can be

enabled only if there is at least one place Runnd
i with m(Runnd

i) > 0. Initially
only Runnd

i places are marked. Then only when all the tokens in the Runnd
i

places have moved to the Stopnd
i places (through the firing of some transition in

Tstopnd), the transition NdtoPr can fire, removing all tokens from the Stopnd
i

places and putting one token in every Run
pr
i place. Similarly, transition PrtoNd

is enabled only when all tokens have moved from the Run
pr
i to the Stop

pr
i places;

the firing of PrtoNd brings the tokens back in each Runnd
i place. Thus places

Run
pr
i and places Runnd

i cannot be simultaneously marked.
Observe that any path in the RG can be partitioned into (maximal) sub-

paths leaving only states of the same type, so that each path can be described as
an alternating sequence of non deterministic and probabilistic sub-paths. Each
probabilistic sub-path can be substituted by a single “complex” probabilistic
step and assigned a probability based on the weights of the transitions firing
along the path. The non deterministic sub-paths can be interpreted according to
different semantics (see [2] for a detailed discussion). Here we select the following
semantics: a path through non deterministic states is considered as a single
complex action and the only state where time is spent is the first one in the
sequence (that is the state that triggers the “complex” decision multi-step). So
only the first state in each path will appear as a state in the MDP (the other

states in the path are vanishing, borrowing the terminology from the literature
on generalized stochastic Petri nets).

Let us now define the reward function for a sequence of non deterministic
transitions, σ ∈ (T nd)∗; abusing notation we use the same name rt() for the
reward function for single transitions and for transition sequences. The following
definition rt(σ) assumes that the firing order in such a sequence is irrelevant
w.r.t. the reward which is consistent with an additive interpretation when several
decisions are taken in one step.

Definition 4 (Transition sequence reward rt(σ)). The reward for a non
deterministic transition sequence is defined as follows:

rt(σ) =
∑

t∈T nd rt(t)|σ|t
where |σ|t is the number of occurrences of non deterministic transition t in σ.

Generation of an MDP given a RG of a MDPN and the reward structure. The
MDP can be obtained from the RG of the PN model in two steps: (1) build
from the RG the RGnd such that given any non deterministic state nd and any
probabilistic state pr all maximal non deterministic sub-paths from nd to pr

are reduced to a single non deterministic step; (2) build the RGMDP (i.e., a
MDP) from the RGnd such that given any non deterministic state nd and any
probabilistic state pr, all maximal probabilistic sub-paths from pr to nd are
substituted by a single probabilistic step. Finally derive the MDP reword from
rs,rt and rg functions.

Let nd be a non deterministic state reached by a probabilistic transition
(such states will be the non deterministic states of RGnd). We focus on the
subgraph “rooted” in nd and obtained by the maximal non deterministic paths
starting from nd. Note that the probabilistic states occurring in this subgraph
are terminal states. If there is no finite maximal non deterministic sub-paths
starting from nd then no probabilistic phase can follow. So the construction is
aborted. Otherwise, given every probabilistic state pr of the subgraph, one wants
to obtain the optimal path σnd,pr from nd to pr w.r.t. the reward. Once for every
such pr, this path is computed, in RGnd an arc is added from nd to pr labeled
by σnd,pr. The arcs starting from probabilistic states are unchanged in RGnd.

Thus the building of RGnd depends on whether the optimization problem is a
maximization or a minimization of the reward. We only explain the minimization
case (the other case is similarly handled). We compute such a sequence using
the Bellman and Ford (BF) algorithm for a single-source shortest paths in a
weighted digraph where the transition reward is the cost function associated with
the arcs. This algorithm is sound due to our (cumulative) definition for rewards
of transition sequences. Note that if the BF algorithm finds a negative loop
(i.e., where the reward function decreases), the translation is aborted. Indeed
the optimal value is then −∞ and there is no optimal sequence: this problem
must be solved at the design level.

We now explain how to transform RGnd into the MDP RGMDP . Given a
probabilistic state pr and a non deterministic state nd we want to compute the
probability to reach nd along probabilistic sub-paths. Furthermore, the sum of

these transition probabilities over non deterministic states must be 1. So if in
RGnd, there is a terminal strongly connected component composed by only prob-
abilistic states, we abort the construction. The checked condition is necessary
and sufficient according to Markov chain theory. Otherwise, we obtain the transi-
tion probabilities using two auxiliary matrices. P(pr,pr), a square matrix indexed
by the probabilistic states, denotes the one-step probability transitions between
these states and P(pr,nd), a matrix whose rows are indexed by the probabilistic
states and columns are indexed by non deterministic states, denotes the one-step
probability transitions from probabilistic states to non deterministic ones. Let us
describe how these transition probabilities are obtained. These probabilities are
obtained by normalizing the weights of the transitions enabled in pr. Now again,
according to Markov chain theory, matrix P = (Id−P(pr,pr))−1 ◦P(pr,nd), where
Id is the identity matrix represents the searched probabilities. A similar trans-
formation is performed in the framework of stochastic Petri nets with immediate
transitions (see [12] for the details).

Finally in the MDP, the probability distribution p(·|nd, σ) associated with

state nd and (complex) action σ, assuming nd
σ

−→ pr, is given by the row vector
P[pr, ·] and the reward function for every pair of state and action is defined by the
following formula: r(nd, σ) = rg(rs(nd), rt(σ)). Since rg is not decreasing w.r.t.
its second parameter, the optimal path w.r.t. rt found applying the Bellman and
Ford algorithm is also optimal w.r.t. rg(rs(nd), rt(·)).

Discussion The MDPN is a high-level formalism for specifying MDPs. However
this formalism suffers a drawback: by definition, the components are identified
and always distinguished in the state representation, even if they have similar
behavior (i.e., even if one component is an exact copy of another component).
This can have an impact both at the level of the model description (which could
become difficult to read when several components are present), and at the level
of the state space size. In the next section, we cope with these problems by
introducing a higher-level formalism.

3 Markov Decision Well-formed Net

3.1 WN informal introduction

WNs are an high-level Petri net formalism whose syntax has been the start-
ing point of numerous efficient analysis methods. Below, we describe the main
features of WNs. The reader can refer to [4] for a formal definition.

In a WN (and more generally in high-level nets) a color domain is associated
with places and transitions. The colors of a place label the tokens contained in
this place, whereas the colors of a transition define different ways of firing it.
In order to specify these firings, a color function is attached to every arc which,
given a color of the transition connected to the arc, determines the number of
colored tokens that will be added to or removed from the corresponding place.
The initial marking is defined by a multi-set of colored tokens in each place.

A color domain is a Cartesian product of color classes which may be viewed as
primitive domains. Classes can have an associated (circular) order expressed by
means of a successor function. The Cartesian product defining a color domain is
possibly empty (e.g., for a place which contains neutral tokens) and may include
repetitions (e.g., a transition which synchronizes two colors inside a class). A
class can be divided into static subclasses. The colors of a class have the same
nature (processes, resources, etc.), whereas the colors inside a static subclass
have the same potential behavior (batch processes, interactive processes, etc.).

A color function is built by standard operations (linear combination, com-
position, etc.) on basic functions. There are three basic functions: a projection
which selects an item of a tuple and is denoted by a typed variable (e.g., p, q); a
synchronization/diffusion that is a constant function which returns the multiset
composed by all the colors of a class or a subclass and is denoted SCi

(SCi,k
)

where Ci (Ci,k) is the corresponding (sub)class; and a successor function which
applies on an ordered class and returns the color following a given color.

Transitions and color functions can be guarded by expressions. An expres-
sion is a boolean combination of atomic predicates. An atomic predicate either
identifies two variables [p = q] or restricts the domain of a variable to a static
subclass.

Examples of arc functions, transition guards, color domains can be seen in
the model portions of Fig. 3 and Fig. 4. The details about the WN notation can
be found in [4].

The constraints on the syntax of WN allow the automatic exploitation of
the behavioral symmetries of the model and the performance of the state-space
based analysis on a more compact RG: the symbolic reachability graph (SRG).
The SRG construction lies on the symbolic marking concept, namely a compact
representation for a set of equivalent ordinary markings. A symbolic marking is a
symbolic representation, where the actual identity of tokens is forgotten and only
their distributions among places are stored. Tokens with the same distribution
and belonging to the same static subclass are grouped into a so-called dynamic
subclass. Starting from an initial symbolic marking, the SRG can be constructed
automatically using a symbolic firing rule [4].

Various behavioral properties may be directly checked on the SRG. Fur-
thermore, this construction leads also to efficient quantitative analysis, e.g. the
performance evaluation of Stochastic WNs (SWNs) [4] (a SWN is obtained from
a WN by associating an exponentially distributed delay with every transition,
which may depend only on the static subclasses to which the firing colors belong).

3.2 Markov Decision Well-formed Net definition

A Markov Decision Well-formed Net, like an MDPN, is composed by two dis-
tinct parts: the probabilistic one and the non deterministic one, and also in
this case the set of transitions in each part is partitioned into Trun and Tstop.
Each part of a MDWN is a WN model: the two parts share the same set of
color classes. A MDWN comprises a special color class, say C0, representing

the system components: its cardinality |C0| gives the total number of compo-
nents in the system. This class can be partitioned into several static subclasses
C0 = (

⊎m

k=1 C0,k)] (
⊎n0

k=m+1 C0,k) such that colors belonging to different static
subclasses represent components with different behavior and the first m static
subclasses represent the controllable components while the others represent the
non-controllable components. Observe that the model is parametric in the num-
ber of components of each.

Let us describe the specification of transition triggering by components in an
MDWN. First, remember that the firing of a transition t involves the selection a
color c = (ci,j)i∈0..n,j∈1..ei

∈ cd(t) =
⊗

i∈0..n Cei

i . Thus the subset of components
{c0,j}j∈1..e0

defines which components trigger the firing of t(c).

– When the type (synctype(t)) of t is Some then the subset of components that
trigger this firing is Comp(t, c) = {c0,j}j∈dyn(t), where dyn(t) ⊆ {1, . . . , e0}.
Note that when t is a probabilistic transition, this requires that dyn(t) 6= ∅
whereas when t is a non deterministic one, this requires that |dyn(t)| ≤ 1
(with the convention that dyn(t) = ∅ means that t is a decision relative to
the system). Furthermore in the latter case, we assume that the guard of t

entails that when dyn(t) = {c0,j}, c0,j ∈
⊎m

k=1 C0,k, i.e. c0,j is a controllable
component.

– When the type of t is Allbut then the subset of components that trigger
this firing is Comp(t, c) =

⊎
k∈static(t) C0,k \ {c0,j}j∈dyn(t) where static(t) ⊆

{1, . . . , n0}. Note that this type requires that t is a probabilistic transition.
Additional conditions in the following definition ensure that this set of com-
ponents is not empty.

Definition 5 (Markov Decision Well-formed Net (MDWN)). A Markov
Decision Well-formed is a tuple MDWN = 〈N pr, Nnd, synctype, dyn, static〉
where:

– Npr is defined by a WN 〈P, T pr, C, cdpr, Ipr, Opr, Hpr, φpr, priopr , , m0〉,, a
mapping weights for each transition t, from cdpr(t) to R

– Nnd is defined by a WN 〈P, T nd, C, cdnd, Ind, Ond, Hnd, φ, prio, m0〉,;
– synctype : T pr ∪ T nd → {Some, Allbut} is a function which associates with

every transition a label, s.t. ∀t ∈ T nd ⇒ synctype(t) = Some.
– dyn(t), where t ∈ T pr ∪ T nd and cd(t) =

⊗
i∈{0,...,n} Cei

i , is a subset of

{1, . . . , e0} (cd is either cdpr or cdnd);
– static(t), defined when synctype(t) = Allbut, is a subset of {1, . . . , n0} where

n0 represents the number of static subclasses in C0.

Furthermore, the following constraints must be fulfilled:

– T pr ∩ T nd = ∅;
– T pr = Trunpr] Tstoppr ∧ T nd = Trunnd] Tstopnd;
– ∀t ∈ T pr ∧ synctype(t) = Some ⇒ dyn(t) 6= ∅;
– ∀t s.t. synctype(t) = Allbut,

∑
j∈static(t) |C0,j | > |dyn(t)| (see discussion

above);

– ∀t ∈ T nd ⇒ 0 ≤ |dyn(t)| ≤ 1; moreover the transition guard φ(t) should
enforce that when t(c) is fireable with c = (ci,k)i∈0..n,k∈1..ei

∈ cd(t) and
j ∈ dyn(t) then c0,j ∈

⊎m

k=1 C0,k;
– ∀c0 ∈ C0, ∃t ∈ Tstoppr, ∃c ∈ cd(t), s.t. φ(t)(c) ∧ c0 ∈ Comp(t, c) and ∀c0 ∈⊎m

k=1 C0,k, ∃t ∈ Tstopnd, ∃c ∈ cd(t), s.t. φ(t)(c) ∧ c0 ∈ Comp(t, c). These
conditions can be ensured by appropriate syntactical sufficient conditions.

– ∀{j, j′} ⊆ dyn(t) ∧ j 6= j′, ∀c = (ci,k)i∈0..n,k∈1..ei
∈ cd(t) s.t. t(c) is possibly

fireable one must have c0,j 6= c0,j′ . This should be enforced by the transition
guard.

Now we introduce the rewards associated to the MDWN. Two types of re-
ward functions are possible: the place reward and the transition reward. Before
introducing the place reward we must define the set C̃ .

Definition 6 (C̃). Let i ∈ {1, . . . , n}, C̃i is the set {1, . . . , ni} where ni is the

number of static subclasses in Ci. C̃ is the set of sets {C̃i}i∈I with I = {0, . . . , n}.

We can always map the color class C on the set C̃ such that the definition of
the c̃d function immediately follows.

Definition 7 (c̃d). The function c̃d(p) is defined as follows:

c̃d
def
= ˜(

⊗
i∈I Cei

i) =
⊗

i∈I C̃ei

i

For instance if C0 = C0,1 ∪ C0,1 ∪ C0,3 where C0,1 = {comp1, comp2}, C0,2 =

{comp3}, C0,3 = {comp4}, hence C̃0 = {C0,1, C0,1, C0,3}, and p ∈ P with cd(p) =

C0 × C0 × C0 then c̃d(p) = C̃0 × C̃0 × C̃0, c = 〈comp1, comp2, comp3〉 ∈ cd(p)

and c̃ = 〈1, 1, 2〉 ∈ c̃d(p).
It is important to observe that a unique c̃ corresponds to every c.

Definition 8 (MDWN reward functions).

– rs :
⊗

p∈P N
ecd(p) → R is a function which returns for every colored marking

a reward value.
– ∀t ∈ T nd, rt[t] : cd(t) → R is a vector which associates with every transition

a function defining the reward value of its instances; two instances may be
assigned a different reward value only if there exists a standard predicate
capable to distinguish the two.

– rg : R × R → R is defined as in MDPN.

An example of MDWN is shown in Fig. 3, the same already used to illustrate
MDPNs, but this time color annotations on arcs, transitions and places are
relevant. In this model we are assuming that there are several instances of Proc,
Mem and ResCtr components (grouped in banks, each with one instance of
each component): rather than replicating the same subnet several times, we use
colored tokens to represent several instances on the same net structure (there is
also another controllable component not shown in the probabilistic subnet, but
visible in the decision maker). Class C0 comprises four static subclasses, one for

Trunpr = {FailProc, FailMem, EndRep} all other transitions belong to Tstoppr ; all variables are

component parameters. All transitions in the decision maker are in Tstopnd. Transition priorities
are denoted π = prio(t) in the figure. C0,1, C0,2 and C0,3 are the Proc, Mem and ResCtr subclasses
respectively. Here we have represented the probabilistic transitions with different simbols (double
rectangle, gray rectangle and double gray rectangle) depending on the involved components

Fig. 3. MDWN example. On the left: a portion of probabilistic part, on the right: the decision maker.

each component type. The cardinality of the Proc, Mem and ResCtr subclasses
corresponds to the number of banks in the system. Arcs in Fig. 3 are annotated
with very functions (tuples of projections) and all the variables appearing in the
functions in this example are component parameters. The guards on the arcs
include a term in the form d(x) = CompType to force parameter x to range
within static subclass CompType. The additional terms φxyz, φxz , φyz are not
detailed here, but are used to associate components in the same bank: in fact
the probabilistic part of the model must correctly synchronize components of
type Proc, Mem and ResCtr belonging to the same bank (the model represents
a situation where only one resource is assigned to each bank at a time, and it
can be used to resume all failed components in the bank).

3.3 MDWN semantics

In this section we are going to describe how it is possible to obtain from an
MDWN model the corresponding MDP model. The two possible methods are
shown in the figure of the introduction.

The first method requires the unfolding of the MDWN in order to obtain an
equivalent MDPN and to derive from this an MDP, but this is not very efficient
in fact it will multiply the number of places, transitions and arcs, moreover if the
number of components is high the cost for computing the results will be high.
In [2] it is possible to find the details of this method.

Instead the second method derives directly from an MDWN model an MDP.
This second method can be decomposed in two steps: the first step defines how
to compose the probabilistic part and the decision maker and to derive from such
composition a unique WN. The second step consists in generating the (finite)

Fig. 4. arcs connecting places Stoppr, Runnd
l , Runnd

g , and transition PrtoNd and
their functions; arcs connecting places Stopnd

l , Stopnd
g , Runnd

l and transition NdtoPr

and their function; example of connection of the decision maker to places Runnd and
Stopnd: component parameters are highlighted in boldface in the arc functions.

RG of the WN obtained in the first step and then in deriving an MDP from it.
In this way there is no need to produce the intermediate MDPN.

Before describing the second method we must explain the use of the places
Stop

pr
l , Run

pr
l , Stopnd

l , Runnd
l , Stopnd

g , Runnd
g and the non deterministic tran-

sitions PrtoNd and NdtoPr, that are introduced during the composition phase.
The places Stoppr, Runpr, Stopnd

l , Runnd
l , Stopnd

g and Runnd
g are used in

order to regulate the interaction among the components, the global system and
the decision maker like the similar places in the semantics for MDPN. The color
domain of the places Stoppr, Runpr, Stopnd

l is C0, that is they will contain
colored tokens representing the components; while Runnd

g , Stopnd
g are neutral.

The non deterministic transitions PrtoNd and NdtoPr are used to assure that
the decision maker takes a decision for every component in every time unit.

The schema describing how the places Stoppr, Runpr, Stopnd
l , Runnd

l , Stopnd
g

and Runnd
g and the transitions PrtoNd and NdtoPr are connected, is shown in

Fig.4. Observe that the basic schema is the same already defined for MDPN but
now the arcs are annotated with function < S > meaning that all components
must synchronize at that point.

Let us describe how to derive a unique WN composing the probabilistic part
with the non deterministic part. Places Runpr and Stoppr, introduced above, are
connected with its run/stop transitions of N pr in the same way as for MDPNs,
similarly places Runnd

l and Stopnd
l Runnd

g and Stopnd
g introduced above are

connected to the run/stop transitions of Nnd as for MDPNs, but now the arcs
must be annotated with the following functions.

– ∀t ∈ T pr ∪ T nd
l , if synctype(t) = Some then the function is 〈

∑
i∈dyn(t) x0,i〉,

where variable x0,i denotes the i-th component of type C0 in the color do-
main of t. This function selects the colors of the component that trigger the
transition, thus checking that all of them are still active.

– ∀t ∈ Trunpr, if synctype(t) = Allbut then the function is 〈
∑

j∈static(t) S0,j −∑
i∈dyn(t) x0,i〉 with the same interpretation.

Observe that the arcs connecting transitions T nd
g and places Runnd

g , Stopnd
g are

not annotated with any function because these places have neutral color (i.e.
they contain plain black tokens) since they are related to the decision w.r.t. the
whole system.

Once the composed WN is built, its RG can be constructed and transformed
into a MDP following the same two steps already explained for MDPN. Here,
since we start from a high-level net, the resulting reachability graph may be
huge. So the following subsection describe how the properties of WN can be
extended to MDWN so that a smaller MDP can be directly derived from the
Symbolic Reachability Graph (SRG) of the corresponding WN.

3.4 Theoretical results on symmetry exploitation

In this section, we informally describe how we exploit the symbolic reachability
graph in order to obtain a reduced MDP on which the solution to the original
problem can be computed (see [2] for a complete theoretical development).

First, let us pick a symbolic reachable marking which only enables non deter-
ministic transitions and an ordinary marking belonging to this symbolic marking.
Now let us pick two ordinary firings from this marking corresponding to the same
symbolic firing. Suppose that, at some instant of an execution, a strategy selects
one of these firings. Then, after selecting the other firing, one mimics the original
strategy by applying one of the permutations which lead from the former firing
to the latter one to any subsequent (probabilistic or non deterministic) firing and
let invariant the ordinary marking. Due to our assumptions about the rewards,
the two executions yield the same (total or average) reward. It means that the
choice of the second firing is at least as good as the selection of the first firing.
Since the argument is symmetric, one concludes that the selection of any non
deterministic firing inside a symbolic arc is irrelevant.

Then the reduced MDP obtained from the SRG by considering that a sym-
bolic firing of a non deterministic transition corresponds to a single decision and
that the weight of probabilistic symbolic firing is the weight of any ordinary
firing inside it (any choice leads to the same weight due to our assumptions)
multiplied by the number of such firings provides an MDP equivalent to the
original one w.r.t. the considered optimization problem. Indeed the rewards do
not depend on the choice of an ordinary marking inside a symbolic marking and
the choice of an ordinary firing inside a symbolic firing. We will call SRGnd the
SRG where all the transition instances passing only through non determinis-
tic states are reduced to one non deterministic step and SRGMDP the SRGnd

where all probabilistic paths are substituted by single probabilistic arcs.

4 Experiments discussion

In this section we will present an example modeling a multiprocessor system
where each processor has a local memory, but with also a global shared memory
that can be used by any processor when its local memory fails. Each processor,

Table 1. Results for the example modeling a multiprocessor system. The RG for
Proc=4 and Mem=4 is not computed because it requires a lot of time; its size is
computed indirectly by the SRG

Proc=2,Mem=2,Res=2 Proc=3,Mem=3,Res=2 Proc=4,Mem=4,Res=2
Prob. Non det. Time Prob. Non det. Time Prob. Non det. Time

RG 19057 21031 13s 755506 863886 1363s 26845912 31895848 >13h
RGnd 19057 441 9s 755506 4078 2833s
RGMDP 0 441 2s 0 4078 250s

SRG 9651 10665 9s 132349 150779 284s 1256220 1478606 5032s
SRGnd 9651 219 3s 132349 831 222s 1256220 2368 12795s
SRGMDP 0 219 1s 0 831 28s 0 2360 518s

RG prio 19057 5235 9s 755506 103172 983s 26845912 1863024 >13h
RGnd prio 19057 411 4s 755506 4078 1830s
RGMDP prio 0 411 2s 0 4078 246s

SRG prio 9651 2697 6s 132349 18904 187s 1256220 96044 3270s
SRGnd prio 9651 219 2s 132349 831 75s 1256220 2368 1560s
SRGMDP prio 0 219 1s 0 831 26s 0 2360 234s

local memory and global shared memory can fail independently; however we
consider recoverable failures, that can be solved by restarting/reconfiguring the
failed component. The system includes an automatic failure detection system
that is able to detect and perform a reconfiguration of the failed component
(e.g. by resetting it). The failure detection and recovery system can handle a
limited number k of failures in parallel.

Notice that if a local memory Mi and the global shared memory Mg are
both failed at the same time, the processor Pi cannot perform any useful work,
even if it is not failed and that if the processor Pi and its local memory Mi

are simultaneously failed, they are reset together (this is considered as a single
reset operation). The components in this system are: n processors, n local mem-
ories and one global shared memory. A portion of MDWN representation of this
system is depicted in Fig. 3

The decision maker corresponds to the automatic failure detection and re-
covery system. Several different recovery strategies can be conceived, and we are
interested in evaluating the most promising ones with respect to some metrics.

An MDPN (or MDWN) model of this system is composed of a submodel
representing all the components of the system (which in turn can be seen as a
combination of several submodels of the single components), and a submodel
representing the failure detection and recovery system, which in this context
corresponds to the decision maker.

The decision maker model may represent any possible recovery strategy, in
this case it should be modeled in such a way that any association of up to k

recovery resources to any subset of failed components at a given time can be
realized by the model.The system must pay a penalty depending of the number
of running processors when the number of running processors is less than a given
threshold and a repair cost for every recovery. More details about this example
are shown in [2]. The table 1 shows the number of states and the computation
time respectively of the RG, RGnd, RGMDP , SRG, SRGnd and SRGMDP for
different numbers of processors and memories performed with an AMD Athlon

64 2.4Ghz of 4Gb memory capacity. In particular the first, the second and the
third line report the number of states and computation time of the RG, the RGnd

and the RGmdp, while the following three lines show the number of states and
the computation time obtained using the SRG technique. It is easy to observe
how the SRG technique wins in terms of memory and time gain with respect to
the RG technique.

A further reduction of the number of states for this model can be achieved as-
sociating different priorities to the system transitions such that the interleavings
between the non deterministic/probabilistic actions are reduced. For instance
the last six lines in table 1 show the reduction in terms of non deterministic
states and time computation obtained imposing an order on the decision maker
choices. (First the decision maker must take all the decisions for the processors
then for the memories and in the end for the global memory).

It is not always possible to use this trick since the actions must be indepen-
dent; the priorities in practice must not reduce the set of possible strategies.
Our tool solves the MDPs using the library graphMDP developed at the Ecole
Nationale Suprieure de l’Aronautique et de l’Espace Toulouse. The optimal strat-
egy is expressed as a set of optimal actions, such that for every system state an
optimal action is given.

For example if we consider a model with two processors, two memories and
two recovery resources, and with reasonable fault probability, and repair and
penalty costs then we observe that if a fault happens and there is a free recovery
resource then the recovery of this fault starts immediately and the global mem-
ory recovery is preferred with respect the processor recovery and the memory
recovery.This is not always true, e.g. if global memory recovery cost is more than
four times of the memory repair cost.

After having obtained the optimal strategy we would like to synthesize a
new model without non determinism implementing it (this could be achieved by
substituting the decision maker part with a new probabilistic part implementing
the decisions of the optimal strategy): classical Markov chain analysis techniques
could be applied to this model, moreover the new net would constitute a higher
level (hopefully easier to interpret) description for the optimal strategy. Unfor-
tunately this is not always easy (especially when the number of states is large),
but this is an interesting direction of future research.

5 Related work

In this section we are going to compare our formalism with two other high level
formalisms for MDP: the PRISM language and the Stochastic Transition System
(STS) proposed in [8].

The PRISM language [11] is a state-based language based on the Reactive
Modules formalism of Alur and Henzinger [1]. A system is modeled by PRISM
language as composition of modules(components) which can interact with each
other. Every model contains a number of local variables used to define it state in
every time unit, and the local state of all modules determines the global state.

The behavior of each module is described by a set of commands; such that a
command is composed by a guard and a transition. The guard is a predicate
over all the (local/nonlocal) variables while a transition describes how the local
variable will be update if the its guard is true.

The composition of the modules is defined by a process-algebraic expression:
parallel composition of modules, action hiding and action renaming.

Comparing the MDPN formalism with the PRISM language we can observe
that they have the same expressive power: we can define local or global non-
deterministic actions and the reward function on the states and/or on the actions
in both formalisms; such that it is possible to translate MDPN model directly
in a PRISM model. The main difference is that by using the MDPN formalism
one can define complex probabilistic behaviors and complex non-deterministic
actions as a composition of simpler behaviors or actions.

If we compare the PRISM language with the MDWN then we can see that the
MDWN has two other advantages: a parametric description of the model and an
efficient analysis technique making it possible to automatically take advantage
of intrinsic symmetries of the system. In fact the PRISM language has a limited
possibility for parametrization. In order to cope with this problem in [9] it was
presented a syntactic pre-processor called eXtended Reactive Modules (XRM)
which can generate RM models giving to the users the possibility of describing
the system using for instance: for loops, if statements.

Instead several techniques proposed in order to reduce the states explosion
problem in PRISM i.e. in [10] were based on the minimization of the RG with
respect to bisimulation; but this requires the building of all the state space and
then to reduce it; hence our method gives the possibility of managing models
with a bigger number of states. It generates directly the Lumped MDP without
building all the state space.

A direct comparison between our formalisms and the STS is not possible,
because the STSs are an high level formalism for modeling the continuous time
MDPs. It extends the Generalized Stochastic Petri Net by introducing transitions
with an unspecified delay distributions and by the introducing the possibility of
non-deterministic choice among enabled immediate transitions. In every way we
can observe that the STS has the same problems of GSPN formalism; that make
its utilization less advantageous with respect to the WN. It is also important to
observe that there are no tools supporting this formalism.

6 Conclusion

We have introduced MDPNs, based on Petri nets, and MDWNs, based on Well-
formed nets, in order to model and analyze distributed systems with probabilistic
and non deterministic features. From a modeling point of view, these models sup-
port a macroscopic point of view of alternation between the non probabilistic
behavior and the non deterministic one of the system and a syntactical way
to define the switch between the two behaviors. Furthermore, MDWNs enable
the modeler to specify in a concise way similar components. From an analy-

sis point of view, we have adapted the technique of the symbolic reachability
graph producing a reduced Markov decision process w.r.t. the original one, on
which the analysis may be performed. Our methods are already implemented
and integrated in the GreatSPN tool and we have described some experimental
results.

References

1. R. Alur and T. Henzinger. Reactive modules. Formal Methods in System Design,
15(1):7–48, 1999.

2. M. Beccuti, G. Franceschinis, and S. Haddad. Markov Decision Petri Net and
Markov Decision Well-formed Net formalisms. Technical Report TR-INF-2007-
02-01, Dipartimento di Informatica, Università del Piemonte Orientale, 2007.
http://www.di.unipmn.it/Tecnical-R.

3. A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic
systems. In 15th Int. Conf. of Foundations of Software Technology and Theoretical

Computer Science, volume 1026 of LNCS, pages 499–513, Bangalore, India, 1995.
Springer.

4. G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. Stochastic well-formed
coloured nets for symmetric modelling applications. IEEE Transactions on Com-

puters, 42(11):1343–1360, nov 1993.
5. G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. A symbolic reachability

graph for coloured Petri nets. Theoretical Computer Science, 176(1–2):39–65, 1997.
6. G. Chiola, G. Franceschinis, R. Gaeta, and M. Ribaudo. GreatSPN 1.7: Graphical

editor and analyzer for timed and stochastic petri nets. Performance Evaluation,

special issue on Performance Modeling Tools, 24(1-2):47–68, November 1995.
7. L. de Alfaro. Temporal logics for the specification of performance and reliability.

In 14th Symposium on Theoretical Aspects of Computer Science, volume 1200 of
LNCS, pages 165–176, Hansestadt Lbeck, Germany, 1997. Springer.

8. L. de Alfaro. Stochastic transition systems. In 9th International Conference on

Concurrency Theory, volume 1466 of LNCS, pages 423–438, Nice, France, 1998.
Springer.

9. K. Demaille, S. Peyronnet, and B. Sigoure. Modeling of sensor networks using
XRM. In 2nd International Symposium on Leveraging Applications of Formal

Methods, Verification and Validation, Paphos, Cyprus, 2006.
10. H. Garavel and H. Hermanns. On combining functional verification and perfor-

mance evaluation using CADP. In In FME 2002: International Symposium of

Formal Methods Europe,, pages 10–429, Copenhagen, Denmark, 2000.
11. A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. PRISM: A tool for

automatic verification of probabilistic systems. In 12th International Conference

on Tools and Algorithms for the Construction and Analysis of Systems, volume
3920 of LNCS, pages 441–444, Vienna, Austria, 2006. Springer.

12. M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Mod-

elling with Generalized Stochastic Petri Nets. Wiley Series in Parallel Computing,
John Wiley and Sons, 1995. Download http://www.di.unito.it/∼greatspn.

13. M. L. Puterman. Markov Decision Processes. Discrete Stochastic Dynamic Pro-

gramming. Wiley, 2005.

