Skip to main content

Proof Theory for First Order Łukasiewicz Logic

  • Conference paper
Book cover Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4548))

Abstract

An approximate Herbrand theorem is proved and used to establish Skolemization for first-order Łukasiewicz logic. Proof systems are then defined in the framework of hypersequents. In particular, extending a hypersequent calculus for propositional Łukasiewicz logic with usual Gentzen quantifier rules gives a calculus that is complete with respect to interpretations in safe MV-algebras, but lacks cut-elimination. Adding an infinitary rule to the cut-free version of this calculus gives a system that is complete for the full logic. Finally, a cut-free calculus with finitary rules is obtained for the one-variable fragment by relaxing the eigenvariable condition for quantifier rules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avron, A.: A constructive analysis of RM. Journal of Symbolic Logic 52(4), 939–951 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  2. Baaz, M., Ciabattoni, A., Fermüller, C.G.: Herbrand’s theorem for Prenex Gödel logic and its consequences for theorem proving. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  3. Baaz, M., Zach, R.: Hypersequents and the proof theory of intuitionistic fuzzy logic. In: Clote, P.G., Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  4. Belluce, L.P.: Further results on infinite valued predicate logic. Journal of Symbolic Logic 29, 69–78 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  5. Belluce, L.P., Chang, C.C.: A weak completeness theorem for infinite valued first order logic. Journal of Symbolic Logic 28, 43–50 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ciabattoni, A., Metcalfe, G.: Bounded Łukasiewicz logics. In: Mayer, M.C., Pirri, F. (eds.) TABLEAUX 2003. LNCS, vol. 2796, Springer, Heidelberg (2003)

    Google Scholar 

  7. Cignoli, R., D’Ottaviano, I.M.L., Mundici, D.: Algebraic Foundations of Many-Valued Reasoning. Trends in Logic, vol. 7. Kluwer, Dordrecht (1999)

    Google Scholar 

  8. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)

    MATH  Google Scholar 

  9. Hájek, P.: Making fuzzy description logic more general. Fuzzy Sets and Systems 23(2–4), 161–178 (2006)

    Google Scholar 

  10. Hay, L.S.: Axiomatization of the infinite-valued predicate calculus. Journal of Symbolic Logic 28(1), 77–86 (1963)

    Article  MathSciNet  Google Scholar 

  11. Łukasiewicz, J.: Selected Writings. North-Holland, Edited by L. Borowski (1970)

    Google Scholar 

  12. Łukasiewicz, J., Tarski, A.: Untersuchungen über den Aussagenkalkül. Comptes Rendus des Séances de la Societé des Sciences et des Lettres de Varsovie, Classe III, 23, Reprinted and translated in (1930)

    Google Scholar 

  13. Malinowski, G.: Many-Valued Logics. Oxford Logic Guides, vol. 25. Oxford University Press, New York (1993)

    MATH  Google Scholar 

  14. McNaughton, R.: A theorem about infinite-valued sentential logic. Journal of Symbolic Logic 16(1), 1–13 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  15. Metcalfe, G., Olivetti, N., Gabbay, D.: Sequent and hypersequent calculi for abelian and Łukasiewicz logics. ACM Transactions on Computational Logic 6(3), 578–613 (2005)

    Article  MathSciNet  Google Scholar 

  16. Mostowski, A.: Axiomatizability of some many valued predicate calculi. Fundamentica Mathematica 50, 165–190 (1961)

    MATH  MathSciNet  Google Scholar 

  17. Mundici, D.: Interpretation of AF C*-algebras in Łukasiewicz sentential calculus. Journal of Functional Analysis 65, 15–63 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  18. Mundici, D.: Satisfiability in many-valued sentential logic is NP-complete. Theoretical Computer Science 52(1-2), 145–153 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  19. Novak, V.: On the Hilbert-Ackermann theorem in fuzzy logic. Acta. Mathematica et Informatica Universitatis Ostraviensis 4, 57–74 (1996)

    MATH  MathSciNet  Google Scholar 

  20. Ragaz, M.E.: Arithmetische Klassifikation von Formelmengen der unendlichwertigen Logik. PhD thesis, ETH Zürich (1981)

    Google Scholar 

  21. Rutledge, J.D.: A preliminary investigation of the infinitely many-valued predicate calculus. PhD thesis, Cornell University, Ithaca (1959)

    Google Scholar 

  22. Scarpellini, B.: Die Nichtaxiomatisierbarkeit des unendlichwertigen Prädikatenkalküls von Łukasiewicz. Journal of Symbolic Logic 27(2), 159–170 (1962)

    Article  MathSciNet  Google Scholar 

  23. Straccia, U.: Reasoning within fuzzy description logics. Journal of Artificial Intelligence Research 14, 137–166 (2001)

    MATH  MathSciNet  Google Scholar 

  24. Vojtás, P.: Fuzzy logic programming. Fuzzy Sets. and Systems 124, 361–370 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Nicola Olivetti

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baaz, M., Metcalfe, G. (2007). Proof Theory for First Order Łukasiewicz Logic. In: Olivetti, N. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2007. Lecture Notes in Computer Science(), vol 4548. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73099-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73099-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73098-9

  • Online ISBN: 978-3-540-73099-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics