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Abstract. Model checking is a technique for verifying that a finite-state concur-
rent system is correct with respect to its specification. Inboundedmodel check-
ing (BMC), the system is unfolded until a given depth, and translated into a CNF
formula. A SAT solver is then applied to the CNF formula, to find a satisfying
assignment. Such a satisfying assignment, if found, demonstrates an error in the
model of the concurrent system.
Description Logic (DL) is a family of knowledge representation formalisms, for
which reasoning is based on tableaux techniques. We show how Description
Logic can serve as a natural setting for representing and solving a BMC prob-
lem. We formulate a bounded model checking problem as a consistency problem
in the DL dialectALCI. Our formulation results in a compact representation of
the model, one that is linear in the size of the model description, and does not
involve any unfolding of the model. Experimental results, using the DL reasoner
FaCT++, significantly improve on a previous approach that used DL reasoning
for model checking.

1 Introduction

Model checking ([8, 20], c.f.[9]) is a technique for verifying finite-state con-
current systems, that has been proven to be very effective in the verification of
hardware and software programs. In model checking, a modelM , given as a set
of state variablesV and their next-state relations, is verified against a temporal
logic formulaϕ. Essentially, verification of the formulaϕ on a modelM , checks
that the tree of all computations ofM satisfiesϕ.

The main challenge in model checking is known as thestate space explo-
sionproblem, where the number of states in the model grows exponentially in
the number of variables describing it. To cope with this problem, model check-
ing is donesymbolically, by representing the system under verification as sets
of states and transitions, and by using Boolean functions to manipulate those
sets. Two main symbolic methods are used to perform model checking. The
first, known asSMV [17], is based on Binary Decision Diagrams (BDDs) [6]
for representing the state space as well as for performing the model checking
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procedure. The second is known as Bounded Model Checking (BMC) [5]. Us-
ing this method, the model under verification is unfoldedk times (for a given
boundk), and translated into a propositional CNF formula. A SAT solver is then
applied to the formula, to find a satisfying assignment. Such an assignment, if
found, demonstrates an error in the model.

Description Logic (DL) ([2]) is a family of knowledge representation for-
malisms mainly used for specifying ontologies for information systems. An on-
tology T is called aterminologyor more simply aTbox, and corresponds to a
set of concept inclusion dependencies. Each inclusion dependency has the form
C1 v C2, and asserts containment properties of relevant concepts in an underly-
ing domain, e.g., thatmanagersare included inemployees

MANAGER v EMPOYEE,

and also inthose things that hire only employees

MANAGER v ∀hires.EMPLOYEE.

In this latter case,hiresis an example of arole. In DLs, a role is always a binary
relation over the underlying domain.

The main reasoning service provided by a DL system isconcept consis-
tency; that is, for a given terminologyT and conceptC, to determine if there
is a non-empty interpretation of the concept that also satisfies each inclusion
dependency inT , writtenT |=dl C. Most DL systems implement this service by
employing some form of tableaux or model building techniques. The examples
illustrate that these techniques manifest both propositional and modal reason-
ing (wherehires is viewed as an event), which makes using a DL system an
attractive possibility for model checking.

To explore this, we consider a goal directed embedding of BMC problems
as concept consistency problems in the DL dialectALCI. Our encoding of a
model description as a terminology inALCI results in a naturalsymbolicrep-
resentation of the sets of states and state transitions. Specifically, given a model
descriptionMD and a boundk, we formulate aBMC problem as a terminology
T k

MD overALCI. Our formulation is compact, and does not involveunfolding
of the model. Rather, the size of the terminology is the same as the size of the
description of the model plus a set ofk concept inclusions that are needed for
the bounded verification. In contrast, the knownBMC method that uses a SAT
solver for this task needsk copies of the model description. This produces a
representation that isk times larger than ours. For simplicity, we assume the
formula to be verified expresses asafetyproperty (anAG(b) type formula), al-
though more complex formulas can also be supported.
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Let M be a model defined by a setV of Boolean state variables and their
next-state transitionsR. We represent each variablevi ∈ V as a conceptVi and
the transition relation as a single roleR. We then introduce concept inclusions
of the type

C1 v ∀R.C2

stating that if the current state satisfies the condition represented byC1, then all
the next-states that can be reached in one step byR, must satisfy the condition
C2. Note that interpretations for this set of concept inclusions correspond to
sub-models of the given modelM .

Let the conceptS0 represent the set of initial states ofM . If S1 represents
states that can be reached in one step fromS0, then the concept inclusionS1 v
∃R−.S0 must hold (that is, the setS1 is a subset of all the states that can reach
S0 by going one step backwards using the relationR). Similarly, we denote by
Si subsets of the states reachable ink steps from the set of initial states, and
introduce the inclusions

Si v ∃R−.Si−1

for 0 < i ≤ k. Let ϕ = AG(b) be the specification to be verified, and let
B be the concept representingb (composed of a Boolean combination of the
conceptsV representing the state variables). Model checking is now carried out
by asking the query: “does there exist an interpretation for the above set of
concept inclusions, such thatCϕ(= ¬B u Si) is not empty for someSi?”. A
positive answer from the DL reasoner indicates an error inM .

We relate the consistency of the conceptCϕ with respect to the terminology
T k
M to the satisfaction ofϕ in the modelM , by proving thatMk

M 6|= ϕ if and
only if T k

M |=dl Cϕ is consistent.
Note that this formulation of a model checking problem isgoal directed.

That is, the DL reasoner begins from a description of buggy states (¬B u Si),
and proceeds from there to find a legal backward path to a description of initial
states. In earlier preliminary work using a DL for model checking [4], we ex-
plored a synchronous forward reasoning approach. In comparison to this earlier
approach, our experimental results confirm that goal directed encodings per-
form far better, indeed outperforming a BDD-based technology for the sample
safety property considered. However, the combination of our current encoding
and current DL reasoning technology [14] is still not competitive with SAT-
based approaches. We give some suggestions for future work to address this in
our concluding remarks.

The rest of the paper is organized as follows. The next section provides
the necessary background definitions. Our main contributions then follow in
Section 3 in which we formally define our translation and prove its correctness,
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and in which we report on some preliminary experimental results. In Section 4
we discuss related work. Summary comments and conclusions then follow in
Section 5.

2 Background and Definitions

2.1 Description Logic

Description Logics [2] come in different dialects. The basic DL dialect is called
Attributive Languagewith Complements, orALC. For our purposes we need the
more expressive dialectALCI, allowing the use of role inverse. Its definition is
given below.

Definition 1 (Description LogicALCI) LetNC andNR be sets of atomic con-
cepts{A1, A2, . . .} and atomic roles{R1, R2, . . .} respectively. The set ofroles
R of the description logicALCI is the smallest set includingNR that satisfies
the following.

– If R1 ∈ R then so isR−
1 .

The set ofconceptsC of the description logicALCI is the smallest set including
NC that satisfies the following.

– If C1, C2 ∈ C then so are¬C1 andC1 u C2.
– If C ∈ C andR ∈ R then∃R.C ∈ C.

Additional concepts are defined as syntactic sugaring of those above:

– > = A t ¬A for someA
– ∀R.C = ¬∃R.¬C

– C1 t C2 = ¬(¬C1 u ¬C2)

An inclusion dependencyis an expression of the formC1 v C2. A termi-
nologyT consists of a finite set of inclusion dependencies.

The semanticsof expressions is defined with respect to a structureI =
(∆I , ·I), where∆I is a non-empty set, and·I is a function mapping every
concept to a subset of∆I and every role to a subset of∆I ×∆I such that the
following conditions are satisfied.

– (R−)I = {(x, y) ∈ ∆I ×∆I | (y, x) ∈ RI }
– (¬C)I = ∆I \ CI

– (C1 u C2)I = CI
1 u CI

2

– ∃R.C = {x ∈ ∆I | ∃y ∈ ∆I s.t.(x, y) ∈ RI ∧ y ∈ CI}
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A structuresatisfies an inclusion dependencyC1 v C2 if CI
1 ⊆ CI

2 . Theconsis-
tency problem forALCI asks ifT |=dl C holds;1 that is, if there existsI such
thatCI is non-empty and such thatCI

1 ⊆ CI
2 holds for eachC1 v C2 in T .

2.2 Symbolic Model Checking

Definition 2 (Kripke Structure) LetV be a set of Boolean variables. AKripke
structureM overV is a four tupleM = (S, I,R, L) where

1. S is a finite set of states.
2. I ⊆ S is the set of initial states.
3. R ⊆ S × S is a transition relation that must be total, that is, for every state

s ∈ S there is a states′ ∈ S such thatR(s, s′).
4. L : S → 2V is a function that labels each state with the set of variables true

in that state.

We view each states as a truth assignment to the variablesV . We view a set of
states as a Boolean function overV , characterizing the set. For example, The
set of initial statesI is considered as a Boolean function overV . Thus, if a state
s belongs toI, we writes |= I. Similarly, if vi ∈ L(s) we writes |= vi, and if
vi 6∈ L(s) we writes |= ¬vi. We say thatw = s0, s1, ..., sk is a path inM if ∀i,
0 ≤ i < k, (si, si+1) ∈ R ands0 |= I.

In practice, the full Kripke structure of a system is not explicitly given.
Rather, a model is given as a set of Boolean variablesV = {v1, ..., vn}, their
initial values and their next-state assignments. The definition we give below is
an abstraction of the input language ofSMV [17].

Definition 3 (Model Description) Let V = {v1, ..., vn} be a set of Boolean
variables. A tupleMD = (IMD , [〈c1, c

′
1〉, ..., 〈cn, c′n〉]) is a Model Description

overV whereIMD, ci, c
′
i are Boolean expressions overV .

The semantics of a model description is a Kripke structureMMD = (S, IM , R, L),
whereS = 2V , L(s) = s, IM = {s|s |= IMD}, andR = {(s, s′) : ∀1 ≤ i ≤
n, s |= ci impliess′ |= ¬vi ands |= c′i ∧ ¬ci impliess′ |= vi}.

Intuitively, a pair〈ci, c
′
i〉 defines the next-state assignment of variablevi in

terms of the current values of{v1, ..., vn}. That is,

next(vi) =


0 if ci

1 if c′i ∧ ¬ci

{0, 1} otherwise

1 In the DL worlds, the sign|= is used to indicate consistency. However, this same sign is used

also in model checking to indicate a formula is satisfied in a model. We therefore use|=dl to
indicate consistency in DL.
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where the assignment{0, 1} indicates that for every possible next-state value of
variablesv1, ...vi−1, vi+1, ..., vn there must exist a next-state withvi = 1, and a
next-state withvi = 0.

Safety Formulas The formulas we consider aresafetyformulas, given asAG(b)
in CTL [8], or G(b) in LTL [19]. Such formulas state that the Boolean expres-
sionb holds on all reachable states of the model under verification. We note that
a large and useful subset of CTL and LTL can be translated intoAG(b) type
formulas [3].

Bounded Model Checking Given a Kripke structureM , a formulaϕ, and a
boundk, Bounded Model Checking (BMC) tries to refuteM |= ϕ by proving
the existence of a witness to the negation ofϕ, of lengthk or less. Forϕ =
AG(b) we say thatMk 6|= ϕ if and only if there exists a pathw = s0, ..., sj ,
such thatj ≤ k andsj |= ¬b.

The original BMC method [5] generates a propositional formula that is sat-
isfiable if and only ifMk 6|= ϕ. We show how to achieve this using Description
Logic.

3 Bounded Model Checking using Description Logic

We give a linear reduction of a bounded model checking problem into a con-
sistency check overALCI. Our method performs bounded reachability on the
given model, and thus resembles the BMC [5] method. However, classical BMC
methods unfold the modelk times (for a boundk), introducingk copies of the
state variables, as well as the transition relation. Our method in contrast, uses
only onecopy of each state variable, and defines reachability of boundk as a set
of k concept inclusions. Thus our method resembles the reachability algorithm
performed in BDD-based symbolic model checking [17]. Our method can there-
fore be seen as a combination of the two major approaches currently existing for
symbolic model checking.

In the next section we present the translation into a DL terminology. We
demonstrate the translation using an example in section 3.2, and then prove the
correctness of the translation in section 3.3. In section 3.4 we discuss implemen-
tation and experimental results.

3.1 Constructing a Terminology overALCI

Let MD = (I, [〈c1, c
′
1〉, ..., 〈cn, c′n〉]) be a model description for the model

MMD = (S, I,R, L), over V = {v1, ..., vn}. Let k be the bound and letϕ



7

be a safety formula. We generate a terminologyT k
MD , linear in the size ofMD ,

and a conceptCϕ, such thatT k
MD |= Cϕ is consistent if and only ifMk

MD 6|= ϕ.
For each variablevi ∈ V we introduce one primitive conceptVi, whereVi

denotesvi = 1 and¬Vi denotesvi = 0. We introduce one primitive roleR
corresponding to the transition relation of the model.

We construct the terminologyT k
MD as the union of two terminologies:T k

MD =
TMD ∪ Tk, where the terminologyTMD depends on the model description, and
Tk depends only on the boundk of the number of cycles searched. The con-
struction ofTMD andTk are given below.

Constructing TMD Let MD = (I, [〈c1, c
′
1〉, ..., 〈cn, c′n〉]) be a model descrip-

tion, whereI, ci, c
′
i are Boolean expressions over the variablesV = {v1, ..., vn}.

We define the conceptS0 to representI, by replacing eachvi in I with the con-
ceptVi, and the connectives∧,∨,¬ with u,t,¬.

Let the pair〈ci, c
′
i〉 describe the next state behavior of the variablevi. That

is,

next(vi) =


0 if ci

1 if c′i ∧ ¬ci

{0, 1} otherwise

where{0, 1} is a non-deterministic assignment, allowingvi to assume both0
and1 in the next state. LetCi be the concept generated by replacing everyvi in
ci with the conceptVi, and∧ with u. Let C′

i be the concept corresponding toc′i
in the same way. We introduce the following concept inclusions.

Ci v ∀R.¬Vi

(¬Ci u C′
i) v ∀R.Vi

In total, two concept inclusions are introduced for each variablevi in MD (cor-
responding to the pair〈ci, c

′
i〉).

Constructing Tk. For a boundk, we introducek primitive concepts,S1, ..., Sk.
For1 ≤ i ≤ k, we introducek inclusions:

Si v ∃R−.Si−1,

Note that the concept inclusions inTk are purely syntactic and do not depend on
the model description under verificationMD. In fact, the same set of inclusions
shall appear in the verification (of boundk) of any model.
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Constructing Cϕ. Let ϕ be the specification to be verified. As mentioned be-
fore, we are concerned with safety formulas, asserting “AG(b)”, with b being a
Boolean formula over the variablesv1, ..., vn. To show that such a formula does
not hold, it is enough to find one states of the Kripke structure, reachable from
the initial state, such thats |= ¬b. We translate the Boolean formulab into a
conceptB in the usual way, where each variablevi is translated to the concept
Vi, and the Boolean connectives∨,∧ into their correspondentst,u.

We define the conceptCϕ ≡ ¬Bu(S0tS1t...tSk). If Cϕ is consistent with
respect to the terminologyT k

MD = Tk ∪ TMD it means that¬b holds in some
state, with distance less thank from the initial state. Verification is therefore
reduced to the query:T k

MD |=dl Cϕ.

3.2 Example

Consider the model description

Exmp= (I, [〈v1 ∧ v2, v3〉, 〈¬v2, v1 ∧ ¬v1〉, 〈¬v1, v1〉])

overV = {v1, v2, v3} with I = ¬v1 ∧ v2 ∧ ¬v3. Figure 1 draws the states and
transitions of the Kripke structureMExmpdescribed byExmp, where the label
of each state is the value of the vector(v1, v2, v3). Let the formula to be verified

Fig. 1.A Kripke structure for Exmp

beϕ = AG(¬v2 ∨ ¬v3). Note thatMExmp 6|= ϕ, as can be seen in Figure 1,
since the state(0, 1, 1), that contradictsϕ, can be reached in two steps from the
initial state. We choose the bound to bek = 4.
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In order to build a terminology forExmpwe introduce one primitive roleR
and three primitive conceptsV1, V2, V3. We first build the terminologyTExmp.
For the initial state, represented by the conceptS0, we introduce the following
concept inclusion:

S0 v (¬V1 u V2 u ¬V3)

The rest ofTExmp is composed of the transition relation of the model, as given
below.

(V1 u V2) v ∀R.¬V1

(¬(V1 u V2) u V3) v ∀R.V1

¬V2 v ∀R.¬V2

¬V1 v ∀R.¬V3

V1 v ∀R.V3

Note that for simplicity, we omitted the inclusion(¬¬V2 u V1 u ¬V1) v ∀R.V2

(corresponding to¬CiuC′
i v ∀R.Vi for i = 2 ), since the prefix¬¬V2uV1u¬V1

is actually equivalent to⊥. Similarly, the concept¬¬V1 uV1 (corresponding to
¬C3 u C′

3 ) was replaced by the equivalentV1.
In order to “unfold” the model four times (for the chosen boundk = 4), we

introduce the primitive conceptsS1, S2, S3, S4, and the concept inclusions:

S1 v ∃R−.S0

S2 v ∃R−.S1

S3 v ∃R−.S2

S4 v ∃R−.S3

For the specificationϕ = AG(¬v2 ∨ ¬v3) we getB ≡ ¬V2 t ¬V3, and
Cϕ ≡ ¬Bu (S0 tS1 tS2 tS3 tS4). We can now present the full terminology
T k
Exmp, as shown in Figure 2 below. Verification is then carried out by asking

the query: Is the conceptCϕ consistent with respect toT 4
Exmp?

In the next section we prove the correction of our translation.

3.3 Correctness

We relate the consistency of the conceptCϕ with respect toT k
MD to the satis-

faction ofϕ in the modelMMD . Let MD = (I, [〈c1, c
′
1〉, ..., 〈cn, c′n〉]) denote

a model description for a modelMMD = (S, IM , R, L), and letϕ = AG(b)
be a safety formula. LetT k

MD be the terminology built forMD, as defined in
section 3.1, and letCϕ be the concept representingϕ.

Theorem 4. Mk
MD 6|= ϕ if and only ifT k

MD |=dl Cϕ is consistent.
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S0 v (¬V1 u V2 u ¬V3)
(V1 u V2) v ∀R.¬V1

(¬(V1 u V2) u V3) v ∀R.V1

¬V2 v ∀R.¬V2

¬V1 v ∀R.¬V3

V1 v ∀R.V3

S1 v ∃R−.S0

S2 v ∃R−.S1

S3 v ∃R−.S2

S4 v ∃R−.S3

Fig. 2.The terminologyT 4
Exmp overALCI

For the proof of the theorem, we need the following definition and lemma.
Let I = (∆I , ·I) be an interpretation forT k

MD . We define a function from the
elements ofI to states inS in the following way.

Definition 5 F from I to S is a function such thatF (σ) = s if ∀1 ≤ i ≤ n,
σ ∈ Vi if and only ifs |= vi.

Note that the functionF is well defined, since a states is determined by the
value of the variablesv1, ..., vn.

Lemma 6. LetI = (∆I , ·I) be an interpretation forT k
MD . Letc be a Boolean

expression overv1, ..., vn, and C its corresponding concept derived by replacing
each variablevi by the conceptVi, and the Boolean connectives∨,∧,¬ by
t,u,¬. Let σ ∈ ∆I be an element in the interpretationI, and lets = F (σ).
Thenσ ∈ CI if and only ifs |= c.

Proof. By induction on the structure of the Boolean expressionc. ut

Proof. (of Theorem 4)
(=⇒) Assume thatMk

MD 6|= ϕ. Then there exists a path inMk
MD , w =

s0, ..., sj , wherej ≤ k, such thats0 |= I, ∀0 < l ≤ j, (sl−1, sl) ∈ R, and
sj |= ¬b. We build a finite interpretationI = (∆I , ·I) based onw. The set
∆I includesj + 1 elementsσ0, ..., σj . Each of the primitive conceptsVi is
interpreted as a setVI

i , such that∀0 ≤ l ≤ j, σl ∈ VI
i if and only if sl |= vi.

Note that for this interpretation,F (σl) = sl.
We interpret each primitive conceptSl as{σl} for 0 ≤ l ≤ j. The primitive

conceptsSj+1, ..., Sk are interpreted as∅. The interpretationRI of the roleR
is a set of pairs(σl, σl+1), 0 ≤ l < j. It remains to show that all concept
inclusions ofT k

MD hold under this interpretation, and thatCI
ϕ, the interpretation

of the conceptCϕ is not empty.
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– Inclusions fromTk: For l > j, SI
l = ∅, and are thus included in any other

set. In order forSl v ∃R−.Sl−1 to hold, for l ≤ j, we need to show
that SI

l ⊆ {x ∈ ∆I | ∃y ∈ ∆I s.t. (y, x) ∈ RI ∧ y ∈ SI
l−1}. Indeed,

SI
l = {σl}, SI

l−1 = {σl−1}, (σl−1, σl) ∈ RI , and(σl−1, σl) is the only pair
(x, y) ∈ RI such thatx ∈ SI

l−1. Thus the inclusion holds.
– Inclusions fromTMD : We need to show that inclusions of the typeCi v
∀R.¬Vi and¬Ci uC′

i v ∀R.Vi, for 1 ≤ i ≤ n, hold under the interpretation
I. We know that∀0 < l ≤ j, (sl−1, sl) ∈ R. According to the definition of
model description, it means that∀0 < i ≤ n, sl−1 |= ci impliessl |= ¬vi

andsl−1 |= ¬ci ∧ c′i impliessl |= vi. By lemma 6 we get thatσl−1 ∈ CI
i

implies σl 6∈ VI andσl−1 ∈ (∆I \ CI
i ) ∩ C′I

i implies σl ∈ VI . Since no
pairs other than(σl−1, σl) belong toRI in the interpretationI, the inclusions
hold.

– CI
ϕ is not empty: We shall show thatσj ∈ CI

ϕ. Recall that

Cϕ ≡ ¬Bu (S0 t S1 t ... t Sk)

and therefore under the interpretationI,

CI
ϕ = (∆I \ BI) ∩ (SI

0 ∪ SI
1 ∪ ... ∪ SI

k )

SinceSj = {σj}, we get thatσj ∈ (SI
0 ∪SI

1 ∪ ...∪SI
k ). Sincesj |= ¬b, we

get by Lemma 6 thatσj 6∈ BI . Thusσj ∈ ∆I \ BI , and thereforeσj ∈ CI
ϕ.

(⇐=) Let I = (∆I , ·I) be an interpretation showing thatT k
MD |=dl Cϕ is

consistent. We have to show thatMk
MD 6|= ϕ. SinceCI

ϕ = (∆I \ BI) ∩ (SI
0 ∪

SI
1 ∪ ... ∪ SI

k ) is not empty inI, it must be the case that for somej, 0 ≤ j ≤ k,
(∆I \ BI) ∩ SI

j is not empty. Letσj be an element in(∆I \ BI) ∩ SI
j . Then

σj ∈ (∆I \ BI) and alsoσj ∈ SI
j .

SinceT k
MD includes the concept inclusionSj v ∃R−.Sj−1, andSI

j is not
empty, we deduce thatSI

j−1 is not empty, and that∃σj−1 ∈ SI
j−1, such that

(σj−1, σj) ∈ RI . By similar considerations, there must exist a sequence of ele-
mentsσ0, ..., σj ∈ ∆I , such that for0 ≤ l < j, (σl, σl+1) ∈ RI , andσ0 ∈ SI

0 .
We define a sequence of statess0, ..., sj from MMD according to the function
F from Definition 5:F (σl) = sl.

We need to prove that for0 ≤ l < j, (sl, sl+1) ∈ R, s0 |= I, sj |= ¬b.
These follow easily from Lemma 6 as shown below.

– s0 |= I. Recall that the conceptS0 corresponds to the conditionI of the
model MMD, which is a Boolean combination of the variablesvi. Thus
sinceσ0 ∈ SI

0 we get by Lemma 6 thats0 |= I.
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– sj |= ¬b. As shown above,σj ∈ (∆I \ BI) and thereforeσj 6∈ BI . By
Lemma 6,s0 6|= b, that issj |= ¬b.

– (sl, sl+1) ∈ R. Since all concept inclusions ofT k
MD hold under the interpre-

tationI, we know that∀1 ≤ i ≤ n,
CI

i ⊆ {x ∈ ∆I | ∀y ∈ ∆I , (x, y) ∈ RI → y ∈ ∆I \ Vi} and also
(∆I \ CI

i ) ∪ C′I
i ⊆ {x ∈ ∆I | ∀y ∈ ∆I , (x, y) ∈ RI → y ∈ Vi}.

Thus if σl ∈ CI
i it must be the case thatσl+1 6∈ VI

i , and similarly if
σl ∈ (¬CI

i ∩ C′I
i ) it must be the case thatσl+1 ∈ VI

i . Because of the corre-
spondence betweenσl andsl, we have thatsl |= ci impliessl+1 |= ¬vi and
sl |= c′i ∧ ¬ci impliessl+1 |= vi. Thus by definition,(sl, sl+1) ∈ R.

This concludes the proof. ut

3.4 Experiments

We implemented our method and experimented with it using the Description
Logic reasonerFACT++ [14]. We present two sets of results. In Table 1 we
compare our method with the one reported in [4], where a different encoding
of model checking in DL is described. The method in [4] applies aforward

Table 1.Forward vs. backward model checking using DL

Forward Search Backward Search
Model Sizeconceptsinclusions time conceptsinclusionstime

10 32 104 0.07 22 25 0
20 62 204 > 1200 32 40 0.01
50 152 514 > 1200 62 110 0.02

search, as opposed to the backward search proposed in this paper. We compare
the two methods on a very simple model, parameterized so we can run it with
increasing numbers of state variables. For the backward method we chose the
bound to be20. Table 1 shows the number of concepts and concept inclusions
needed to describe the model for each method, and the time in seconds it takes
to execute. We set a timeout of 1200 seconds. The results demonstrate that the
backward search, described in this paper, significantly outperforms the forward
search approach.

In Table 2 we present results comparing our method (backward search)
to two symbolic model checking tools:NuSMV [7] as a BDD-based model
checker, andzChaff [18] as a SAT solver for bounded model checking. The
model we use for comparison is derived from the NuSMV example “dme1-16”,
taken from [1] and parameterized to have different numbers of cells. The for-
mula verified is a safety one, that holds in the model. We did not attempt to
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Table 2.DL Model Checking Vs. SMV and SAT

Model SizeBoundDL-BackwardNuSMV zChaff
85 5 4 > 1200 1
85 10 > 1200 > 1200 0.9
272 5 202 > 1200 1.2
272 10 > 1200 > 1200 3.9
425 5 335 > 1200 2.4
425 10 > 1200 > 1200 6.7

optimize the run of any tool (many options are available), but rather, ran them in
their default mode. Although our method performs better than NuSMV on the
given examples, it still falls far behind the performance of zChaff. In particular
we note that the DL method seems to be very sensitive to the boundk on the
depth of the search.

4 Related Work

A connection between knowledge-base reasoning and model checking has been
explored before. Gottlob et al in [12, 13] analyzed the expressive power ofDat-
alog statements, and compared them to known temporal logics. Sahasrabudhe
in [21] has performed model checking of telephony feature interactions using
SQL, and compared the results with model checking of the same system us-
ing the model checker SMV [17]. Both these works however, used an explicit
representation of the model, as opposed to the symbolic representation that we
propose. This difference is crucial, since in many cases the Kripke structure for
the model is too big to be built, and symbolic methods must be used. Dovier
and Quintarelli in [11] were interested in the opposite direction: they translated
a knowledge-base into a Kripke structure, and a query into a temporal logic for-
mula. They then used a model checker to make inferences about the knowledge-
base.

In a previous paper [4] we gave a first formulation of a model checking
problem as a terminology in Description logic. The formulation there has some
advantages over the current: it performs unbounded model checking rather than
bounded model checking that we propose here; it supports safety as well as live-
ness formulas, and it uses the simpler dialectALC, rather thenALCI that we
use here. However, the terminology built for a given model description three
times as many concepts and five times as many concept inclusions. In addition,
the reasoning involved synchronizing the progress of the different state vari-
ables. Thus the performance of that method, as shown in section 3.4, was much
worse than the one presented in this paper.
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Finally, a compact representation of a BMC problem, with size similar to
the one described in this paper, is also achieved when presenting the model
description as a Quantified Boolean Formula (QBF). Recent activity in this area
[10, 16] suggest though, that this too does not perform as well as SAT solvers.

5 Conclusions and Future Work

We have shown how Description Logic can serve as a natural setting for rep-
resenting a BMC problem, avoiding the need to unfold the model. Thus for a
given model descriptionMD and a boundk, the size of the representation is
|MD| + k, as opposed to|MD| × k when translatingMD to a propositional
formula. Experimental results show a significant improvement over a different
method of model checking using DL, and comparable performance with BDD-
based model checking.

While performance is still not competitive with SAT-based approach, we
believe that model checking using DL reasoning is worth exploring. One future
direction is to better exploitabsorption[15]. Absorption is a pre-processing
technique that allows the elimination of some forms of concept inclusions by
converting them into augmented concept definitions. Our current translation into
DL does not allow absorption for most of the concept inclusions.
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