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Abstract. Model checking is a technique for verifying that a finite-state concur-
rent system is correct with respect to its specificatiorbdnndedmodel check-

ing (BMC), the system is unfolded until a given depth, and translated into a CNF
formula. A SAT solver is then applied to the CNF formula, to find a satisfying
assignment. Such a satisfying assignment, if found, demonstrates an error in the
model of the concurrent system.

Description Logic (DL) is a family of knowledge representation formalisms, for
which reasoning is based on tableaux techniques. We show how Description
Logic can serve as a natural setting for representing and solving a BMC prob-
lem. We formulate a bounded model checking problem as a consistency problem
in the DL dialectALCZ. Our formulation results in a compact representation of
the model, one that is linear in the size of the model description, and does not
involve any unfolding of the model. Experimental results, using the DL reasoner
FaCT++, significantly improve on a previous approach that used DL reasoning
for model checking.

1 Introduction

Model checking ([8, 20], c.f.[9]) is a technique for verifying finite-state con-
current systems, that has been proven to be very effective in the verification of
hardware and software programs. In model checking, a mddaiven as a set

of state variable$” and their next-state relations, is verified against a temporal
logic formulap. Essentially, verification of the formulaon a modelM/, checks

that the tree of all computations &f satisfiesp.

The main challenge in model checking is known asdtage space explo-
sion problem, where the number of states in the model grows exponentially in
the number of variables describing it. To cope with this problem, model check-
ing is donesymbolically by representing the system under verification as sets
of states and transitions, and by using Boolean functions to manipulate those
sets. Two main symbolic methods are used to perform model checking. The
first, known asSMV [17], is based on Binary Decision Diagrams (BDDs) [6]
for representing the state space as well as for performing the model checking



procedure. The second is known as Bounded Model ChecBNML] [5]. Us-

ing this method, the model under verification is unfoldetimes (for a given
boundk), and translated into a propositional CNF formula. A SAT solver is then
applied to the formula, to find a satisfying assignment. Such an assignment, if
found, demonstrates an error in the model.

Description Logic (DL) ([2]) is a family of knowledge representation for-
malisms mainly used for specifying ontologies for information systems. An on-
tology 7 is called aterminologyor more simply arbox and corresponds to a
set of concept inclusion dependencies. Each inclusion dependency has the form
C, C G, and asserts containment properties of relevant concepts in an underly-
ing domain, e.g., thahanagersare included iremployees

MANAGER C EMPOYEE
and also irthose things that hire only employees
MANAGER LC VhiresEMPLOYEE

In this latter casehiresis an example of ele. In DLs, a role is always a binary
relation over the underlying domain.

The main reasoning service provided by a DL systemaiscept consis-
tency that is, for a given terminology” and concept, to determine if there
is a non-empty interpretation of the concept that also satisfies each inclusion
dependency i, written7 =4 C. Most DL systems implement this service by
employing some form of tableaux or model building techniques. The examples
illustrate that these techniques manifest both propositional and modal reason-
ing (wherehiresis viewed as an event), which makes using a DL system an
attractive possibility for model checking.

To explore this, we consider a goal directed embedding of BMC problems
as concept consistency problems in the DL diald€}CZ. Our encoding of a
model description as a terminology #.C7 results in a naturadymbolicrep-
resentation of the sets of states and state transitions. Specifically, given a model
descriptionM D and a bound:, we formulate 8MC problem as a terminology
7L 1, over ALCZ. Our formulation is compact, and does not involugolding
of the model. Rather, the size of the terminology is the same as the size of the
description of the model plus a set bfconcept inclusions that are needed for
the bounded verification. In contrast, the knoBMC method that uses a SAT
solver for this task needs copies of the model description. This produces a
representation that i8 times larger than ours. For simplicity, we assume the
formula to be verified expressesafetyproperty (anAG(b) type formula), al-
though more complex formulas can also be supported.



Let M be a model defined by a s&t of Boolean state variables and their
next-state transition®. We represent each variahlee V' as a concep¥; and
the transition relation as a single rdke We then introduce concept inclusions
of the type

C CVRG

stating that if the current state satisfies the condition represent€g, ltiyen all

the next-states that can be reached in one step, Inyust satisfy the condition

C,. Note that interpretations for this set of concept inclusions correspond to
sub-models of the given modaf.

Let the conceps, represent the set of initial states bf. If S; represents
states that can be reached in one step f8nthen the concept inclusid®y, C
JR~.Sy must hold (that is, the s&; is a subset of all the states that can reach
Sp by going one step backwards using the rela®nSimilarly, we denote by
S; subsets of the states reachablé:isteps from the set of initial states, and
introduce the inclusions

SSCIR .S,

for 0 < i < k. Letp = AG(b) be the specification to be verified, and let
B be the concept representibgicomposed of a Boolean combination of the
concepts/ representing the state variables). Model checking is now carried out
by asking the query: “does there exist an interpretation for the above set of
concept inclusions, such th@t,(= =B 'S;) is not empty for some;?”. A
positive answer from the DL reasoner indicates an errddin

We relate the consistency of the conc€ptwith respect to the terminology
7L to the satisfaction of in the model)M, by proving thatM, = ¢ if and

only if 7, =4 C,, is consistent.

Note that this formulation of a model checking probleng@al directed
That is, the DL reasoner begins from a description of buggy statB$1(S;),
and proceeds from there to find a legal backward path to a description of initial
states. In earlier preliminary work using a DL for model checking [4], we ex-
plored a synchronous forward reasoning approach. In comparison to this earlier
approach, our experimental results confirm that goal directed encodings per-
form far better, indeed outperforming a BDD-based technology for the sample
safety property considered. However, the combination of our current encoding
and current DL reasoning technology [14] is still not competitive with SAT-
based approaches. We give some suggestions for future work to address this in
our concluding remarks.

The rest of the paper is organized as follows. The next section provides
the necessary background definitions. Our main contributions then follow in
Section 3 in which we formally define our translation and prove its correctness,
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and in which we report on some preliminary experimental results. In Section 4
we discuss related work. Summary comments and conclusions then follow in
Section 5.

2 Background and Definitions

2.1 Description Logic

Description Logics [2] come in different dialects. The basic DL dialect is called
Attributive Languagevith Complementsor ALC. For our purposes we need the
more expressive dialegt LCZ, allowing the use of role inverse. Its definition is
given below.

Definition 1 (Description Logic ALCZ) LetNC andNR be sets of atomic con-
cepts{Aj, As, ...} and atomic role Ry, Ry, ...} respectively. The set adles
R of the description logicALCZ is the smallest set includingR that satisfies
the following.

— If Ry € Rthensoisk; .

The set o€oncept< of the description logicALCZ is the smallest set including
NC that satisfies the following.

— If C1,Cy € Cthen so are~C7 andC; M Cs.
— IfC € CandR € RthendR.C € C.

Additional concepts are defined as syntactic sugaring of those above:

— T =AU A for someAd
— VR.C = -3R.-C

An inclusion dependendg an expression of the for'; T Cs. A termi-
nology7 consists of a finite set of inclusion dependencies.

The semanticsof expressions is defined with respect to a structire-
(AT, 1), where A is a non-empty set, and is a function mapping every
concept to a subset ai” and every role to a subset df’ x AZ such that the
following conditions are satisfied.

- (R)F ={(z,y) € AT x AT | (y,2) € R" }

~ (HO)F = AT\

- (ClﬂCQ)I:C%—HCQI

—~JRC ={xc AT |y e Al sit.(z,y) € RE Ay € CF}
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A structuresatisfies an inclusion depender@y C C, if C¥ C C%. Theconsis-
tency problem fotdALCT asks ifT =4 C holds? that is, if there existg such
thatC? is non-empty and such thatf C CZ holds for eacC; C Cy in 7.

2.2 Symbolic Model Checking

Definition 2 (Kripke Structure) LetV be a set of Boolean variables K&ipke
structureM overV is a four tupleM = (S, I, R, L) where

1. Sis afinite set of states.

2. I C Sisthe set of initial states.

3. R C S x Sis atransition relation that must be total, that is, for every state
s € Sthereis a state’ € S such thatR(s, s').

4. L : S — 2V is afunction that labels each state with the set of variables true
in that state.

We view each state as a truth assignment to the variablésWe view a set of
states as a Boolean function ovér characterizing the set. For example, The
set of initial stateqd is considered as a Boolean function overThus, if a state

s belongs tal, we writes |= 1. Similarly, if v; € L(s) we writes = v;, and if

v; & L(s) we writes = —wv;. We say thatv = sg, s1, ..., si IS a path in)M if Vi,
0<i <k, (Siasi-i-l) € R andsg ': 1.

In practice, the full Kripke structure of a system is not explicitly given.
Rather, a model is given as a set of Boolean variables {v1,...,v,}, their
initial values and their next-state assignments. The definition we give below is
an abstraction of the input languageSWV [17].

Definition 3 (Model Description) LetV = {vy,...,v,} be a set of Boolean
variables. A tupleM D = (Iyp, [{c1,¢}), ..., {cn, c),)]) IS @ Model Description
overV wherelyp, ¢;, ¢; are Boolean expressions over

The semantics of a model description is a Kripke strucddigp = (.S, Iy, R, L),
whereS = 2V, L(s) = s, Iy = {s|s = Iyp}, andR = {(s,s') : V1 < i <
n, s = ¢;impliess’ = —w; ands = ¢, A —¢; impliess’ = v;}.

Intuitively, a pair{c;, ¢;) defines the next-state assignment of variablie
terms of the current values ¢, ..., v, }. That s,

0 If C;
next;) =< 1 if C; Ao
{0,1} otherwise

L In the DL worlds, the sigr= is used to indicate consistency. However, this same sign is used

also in model checking to indicate a formula is satisfied in a model. We therefore-ygeo
indicate consistency in DL.
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where the assignmei0, 1} indicates that for every possible next-state value of
variablesvy, ...v;—1, vi11, ..., Uy, there must exist a next-state with= 1, and a
next-state withy; = 0.

Safety Formulas The formulas we consider asafetyformulas, given aslG(b)

in CTL [8], or G(b) in LTL [19]. Such formulas state that the Boolean expres-
siond holds on all reachable states of the model under verification. We note that
a large and useful subset of CTL and LTL can be translated Aigb) type
formulas [3].

Bounded Model Checking Given a Kripke structuré//, a formulay, and a
boundk, Bounded Model Checking (BMC) tries to refulé = ¢ by proving
the existence of a witness to the negationgofof lengthk or less. Forp =
AG(b) we say thatM* |£ ¢ if and only if there exists a paty = s, ..., s,
such thatj < k ands; = —b.

The original BMC method [5] generates a propositional formula that is sat-
isfiable if and only ifA/* [~ ¢. We show how to achieve this using Description
Logic.

3 Bounded Model Checking using Description Logic

We give a linear reduction of a bounded model checking problem into a con-
sistency check ovedLCZ. Our method performs bounded reachability on the
given model, and thus resembles the BMC [5] method. However, classical BMC
methods unfold the modél times (for a bound), introducingk copies of the

state variables, as well as the transition relation. Our method in contrast, uses
only onecopy of each state variable, and defines reachability of béwada set

of k£ concept inclusions. Thus our method resembles the reachability algorithm
performed in BDD-based symbolic model checking [17]. Our method can there-
fore be seen as a combination of the two major approaches currently existing for
symbolic model checking.

In the next section we present the translation into a DL terminology. We
demonstrate the translation using an example in section 3.2, and then prove the
correctness of the translation in section 3.3. In section 3.4 we discuss implemen-
tation and experimental results.

3.1 Constructing a Terminology overALCZ

Let MD = (I,[{c1,c}), .., (e, c,)]) be a model description for the model
Myp = (S,I,R,L), overV = {vy,...,v,}. Let k be the bound and lgp
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be a safety formula. We generate a terminolagy,, linear in the size of/D,
and a concept, such tha %, = C,, is consistent if and only iV/%,, F~ ¢.

For each variable; € V we introduce one primitive concept, whereV;
denotesy; = 1 and —V; denotesy; = 0. We introduce one primitive rol&®
corresponding to the transition relation of the model.

We construct the terminologdgj; , as the union of two terminologie%;:,, =
Tup U Ti, where the terminolog¥,,p depends on the model description, and
7, depends only on the bourdof the number of cycles searched. The con-
struction of7,,p and7;, are given below.

Constructing Typ Let MD = (I, [{c1,¢}), ..., {cn, c,,)]) be a model descrip-
tion, wherel, ¢;, ¢, are Boolean expressions over the varialles {v1, ..., v, }.
We define the conce, to represent, by replacing each; in I with the con-
ceptV;, and the connectives, v, — with M, LI, —.

Let the pair(c;, ¢;) describe the next state behavior of the variableThat
is,

0 If C;
next@;) =< 1 if ¢ A —e;
{0,1} otherwise

where{0, 1} is a non-deterministic assignment, allowingto assume botl
and1 in the next state. LeE; be the concept generated by replacing evgiin
¢; with the concepV;, andA with M. Let C, be the concept correspondingdo
in the same way. We introduce the following concept inclusions.

G C VR-V;
(-G;NC) C VRV,

In total, two concept inclusions are introduced for each variapie A D (cor-
responding to the pai;, ¢})).

Constructing 7. For a boundk, we introducet primitive conceptsSy, ..., Sg.
For1 < ¢ < k, we introducek inclusions:

S, C IR.S;,

Note that the concept inclusionsTp are purely syntactic and do not depend on
the model description under verificatid D. In fact, the same set of inclusions
shall appear in the verification (of bouidl of any model.



Constructing C,. Let ¢ be the specification to be verified. As mentioned be-
fore, we are concerned with safety formulas, assertiig'(b)”, with b being a
Boolean formula over the variables, ..., v,,. To show that such a formula does
not hold, it is enough to find one statef the Kripke structure, reachable from
the initial state, such that = —b. We translate the Boolean formulanto a
conceptB in the usual way, where each variablgis translated to the concept
V;, and the Boolean connectivesA into their correspondents, M.

We define the conce@, = -Br(SyuUS; U...UUSy). If C, is consistent with
respect to the terminolog¥y,, = 7; U Typ it means that-b holds in some
state, with distance less thanfrom the initial state. Verification is therefore
reduced to the quengZy, =g C,.

3.2 Example
Consider the model description
Exmp= (I, [<’U1 N U2, ’U3>, <—|'l}27 v1 A —\’Ul>, <—|’U1, ’U1>D

overV = {v1, v, v3} With I = —wv; A v A —ws. Figure 1 draws the states and
transitions of the Kripke structut®/gxmp described bfxmp, where the label
of each state is the value of the vector, vo, v3). Let the formula to be verified

Fig. 1. A Kripke structure for Exmp

bey = AG(-wz V —w3). Note thatMExmp = ¢, as can be seen in Figure 1,
since the stat€0, 1, 1), that contradicts, can be reached in two steps from the
initial state. We choose the bound tobe- 4.



9

In order to build a terminology foExmpwe introduce one primitive rolR
and three primitive concepts, Vs, V3. We first build the terminolog¥Exmp.
For the initial state, represented by the conc@&ptwe introduce the following
concept inclusion:

So E (=ViMV2l1=Vs)

The rest ofJExmpis composed of the transition relation of the model, as given
below.

(Vl M VQ) C VRV,

(—|(V1 M V2) M V3) C VRV,
=y C VRV,
-V; C VR-V3

Vi C VRV;3

Note that for simplicity, we omitted the inclusigm—Vs MV M=V, ) C VRV,
(corresponding te-C;M1C, C VR.V; for i = 2, since the prefix-—Va MV, M-V,
is actually equivalent ta_. Similarly, the concept—V; MV, (corresponding to
—C3 1M C; ) was replaced by the equivalevi.

In order to “unfold” the model four times (for the chosen boung 4), we
introduce the primitive concep$, So, S3, S4, and the concept inclusions:

dR™.Sy
JR™.S;
dR™.S,
JR™.S3

wn
w
M Ir I

For the specificationp = AG(—wve V —w3) we getB = -V, U =V3, and
C, =-BM(SoUS; US; LUS3US,). We can now present the full terminology
Téfxmp, as shown in Figure 2 below. Verification is then carried out by asking
the query: Is thg conceflt, consistent Wi'_[h respect tﬁéxmp_?
In the next section we prove the correction of our translation.

3.3 Correctness

We relate the consistency of the conc€ptwith respect toZ%, to the satis-
faction of ¢ in the modelMyp. Let MD = (I, [{c1,c}), ..., (cn, c,,)]) denote
a model description for a modélly;p = (S, I, R, L), and letp = AG(b)
be a safety formula. LeTA’}D be the terminology built forl/ D, as defined in
section 3.1, and le€, be the concept representing

Theorem 4. M¥%,,, b~ ¢ if and only if 7}, =4 C,, is consistent.
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So C (—\V1 M Vs —|V3)
(V1 [l VQ) C VR-V;

(—\(V1 [l V2) Il V3) C VR.V1

—Va C  VRAV,

%1 C  VR-V;3

V1 C VR.V3

S C dR™.Sy

S, C JR™.S;

S3 C JR™.S,

Sy C dR™.S3

Fig. 2. The terminologyZ;,,,,,, over ALCT

For the proof of the theorem, we need the following definition and lemma.
LetZ = (AZ,T) be an interpretation fof % ,. We define a function from the
elements of to states inS in the following way.

Definition 5 F fromZ to S is a function such thaF' (o) = s if V1 < i < n,
o € V;ifandonly ifs = v;.

Note that the functiort” is well defined, since a stateis determined by the
value of the variablesy, ..., v,.

Lemma6. LetZ = (AZ,-T) be an interpretation fof%,,. Letc be a Boolean
expression overy, ..., v,,, and C its corresponding concept derived by replacing
each variablev; by the concepV;, and the Boolean connectives A, — by
L,M, . Leto € A be an element in the interpretatiah and lets = F(o).
Theno € CT if and only ifs |= c.

Proof. By induction on the structure of the Boolean expresgion O

Proof. (of Theorem 4)

(=) Assume thatM?¥,, %~ ». Then there exists a path iW%,,, w =
50, .-, 5, wherej < k, such thatsg = I, V0 < I < j,(si_1,s) € R, and
sj = —b. We build a finite interpretatio = (AZ,-Z) based onw. The set
AT includesj + 1 elementsoy, ..., oj. Each of the primitive concept; is
interpreted as a s&f’, such thatv0 < I < j, 0; € VZ if and only if s; |= v;.
Note that for this interpretatiorf(o;) = s;.

We interpret each primitive concept as{o;} for 0 <! < j. The primitive
conceptsS; 1, ..., Sy, are interpreted a@. The interpretatiorR? of the roleR
is a set of pairgo;,0;11), 0 < I < j. It remains to show that all concept
inclusions of7};, hold under this interpretation, and tH@, the interpretation
of the concepC, is not empty.
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— Inclusions fromZy: Forl > j, Sf = (), and are thus included in any other
set. In order for§; C JdR™.S;_; to hold, for! < j, we need to show
thatS! C {z € AT | Iy € AT sit.(y,2) € REAy € ST, }. Indeed,
St = {0}, St | = {01-1},(01-1,01) € R, and(oy—1, ;) is the only pair
(z,y) € RE such thatr € ST . Thus the inclusion holds.

— Inclusions from7y,p: We need to show that inclusions of the tyfe C
VR-V; and—-C; M C, C VRV, for 1 < i < n, hold under the interpretation
Z. We know that/0 < I < j,(s;—1,s;) € R. According to the definition of
model description, it means thed < i < n, s;_1 | ¢; impliess; = —w;
ands;_; = —¢; A ¢, impliess; = v;. By lemma 6 we get that,_; € CF
implieso; ¢ V andoy_; € (AT \ CF) n CF implieso; € VE. Since no
pairs other thaiio;_, 0;) belong toR” in the interpretatiof, the inclusions
hold.

— CL is not empty: We shall show that, € CZ. Recall that

C,=-BN(SouSiU...US)
and therefore under the interpretatibn
CL=(A"\BH)n(sfusfu..usj)

SinceS; = {o;}, we getthat; € (S§ UST U...USE). Sinces; = —b, we
get by Lemma 6 that; ¢ B”. Thuso; € A” \ B, and therefore; € C.

(=) Let T = (AZ,T) be an interpretation showing th@l,, =4 C, is
consistent. We have to show thiak}, , [~ . SinceCl = (A% \ BY) N (S U
St U...USE) is not empty inZ, it must be the case that for some) < j < k,
(AT \ BT) N ST is not empty. Lew; be an element ifiA” \ BY) N ST. Then
oj € (AT \ BY) and alsas; € SF.

SinceT};, includes the concept inclusid®; C 3R™.S; 1, andST is not
empty, we deduce tha&! | is not empty, and thafo; ; € S7_;, such that
(cj—1,0) € RE. By similar considerations, there must exist a sequence of ele-
mentsoy, ..., 0; € AZ, such that fo < I < j, (07,0,11) € RE, andog € SE.
We define a sequence of statgs..., s; from Mj;p according to the function
F from Definition 5: F(0;) = s.

We need to prove that far < I < j, (s;,s141) € R, so = 1, sj = —b.
These follow easily from Lemma 6 as shown below.

— so = I. Recall that the conce8, corresponds to the conditiahof the
model M,;p, which is a Boolean combination of the variables Thus
sinceoy € St we get by Lemma 6 thaty = 1.
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— s; = —b. As shown abovey; € (A \ BY) and thereforer; ¢ BZ. By
Lemma 6,50 [~ b, that iss; = —b.

— (s1,s141) € R. Since all concept inclusions GTA’}D hold under the interpre-
tationZ, we know thatvl < ¢ < n,
ClC{zeA?|vye AL (z,y) e RE —ye AT\ V;} and also
(AT\ChHuCt C{zxe Al |Vye AT (2,y) e RE -y e V;}.
Thus if o, € CF it must be the case that,; ¢ V/, and similarly if
o1 € (-CF n C?) it must be the case that, ; € VZ. Because of the corre-
spondence between ands;, we have that; = ¢; impliess;;1 = —wv; and
Sy li Cé A —c; impliess; g li v;. Thus by definition(sl, si+1) € R.

This concludes the proof. O

3.4 Experiments

We implemented our method and experimented with it using the Description
Logic reasoneFACT™ [14]. We present two sets of results. In Table 1 we
compare our method with the one reported in [4], where a different encoding
of model checking in DL is described. The method in [4] applideravard

Table 1.Forward vs. backward model checking using DL

Forward Search Backward Search

Model Sizeconceptsnclusions time |conceptsinclusionstime
10 32 104 0.07 22 25 0

20 62 204 |> 1200 32 40 |0.01

50 152 514 |> 1200 62 110 |0.02

search, as opposed to the backward search proposed in this paper. We compare
the two methods on a very simple model, parameterized so we can run it with
increasing numbers of state variables. For the backward method we chose the
bound to be20. Table 1 shows the number of concepts and concept inclusions
needed to describe the model for each method, and the time in seconds it takes
to execute. We set a timeout of 1200 seconds. The results demonstrate that the
backward search, described in this paper, significantly outperforms the forward
search approach.

In Table 2 we present results comparing our method (backward search)
to two symbolic model checking tool®dNuSMV [7] as a BDD-based model
checker, andzChaff [18] as a SAT solver for bounded model checking. The
model we use for comparison is derived from the NuUSMV example “dme1-16",
taken from [1] and parameterized to have different numbers of cells. The for-
mula verified is a safety one, that holds in the model. We did not attempt to
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Table 2.DL Model Checking Vs. SMV and SAT

Model SizeBoundDL-BackwardNuSMV|zChaff
85 5 4 > 1200 1
85 10 > 1200 > 1200| 0.9
272 5 202 > 1200| 1.2
272 10 > 1200 > 1200| 3.9
425 5 335 > 1200| 2.4
425 10 > 1200 > 1200| 6.7

optimize the run of any tool (many options are available), but rather, ran them in
their default mode. Although our method performs better than NuSMV on the
given examples, it still falls far behind the performance of zChaff. In particular
we note that the DL method seems to be very sensitive to the bowmdthe
depth of the search.

4 Related Work

A connection between knowledge-base reasoning and model checking has been
explored before. Gottlob et al in [12, 13] analyzed the expressive povizatof

alog statements, and compared them to known temporal logics. Sahasrabudhe
in [21] has performed model checking of telephony feature interactions using
SQL, and compared the results with model checking of the same system us-
ing the model checker SMV [17]. Both these works however, used an explicit
representation of the model, as opposed to the symbolic representation that we
propose. This difference is crucial, since in many cases the Kripke structure for
the model is too big to be built, and symbolic methods must be used. Dovier
and Quintarelli in [11] were interested in the opposite direction: they translated
a knowledge-base into a Kripke structure, and a query into a temporal logic for-
mula. They then used a model checker to make inferences about the knowledge-
base.

In a previous paper [4] we gave a first formulation of a model checking
problem as a terminology in Description logic. The formulation there has some
advantages over the current: it performs unbounded model checking rather than
bounded model checking that we propose here; it supports safety as well as live-
ness formulas, and it uses the simpler dialdglC, rather thend£CZ that we
use here. However, the terminology built for a given model description three
times as many concepts and five times as many concept inclusions. In addition,
the reasoning involved synchronizing the progress of the different state vari-
ables. Thus the performance of that method, as shown in section 3.4, was much
worse than the one presented in this paper.
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Finally, a compact representation of a BMC problem, with size similar to
the one described in this paper, is also achieved when presenting the model
description as a Quantified Boolean Formula (QBF). Recent activity in this area
[10, 16] suggest though, that this too does not perform as well as SAT solvers.

5 Conclusions and Future Work

We have shown how Description Logic can serve as a natural setting for rep-
resenting a BMC problem, avoiding the need to unfold the model. Thus for a
given model descriptiod/ D and a bound, the size of the representation is
|MD| + k, as opposed toV/ D| x k when translating\/ D to a propositional
formula. Experimental results show a significant improvement over a different
method of model checking using DL, and comparable performance with BDD-
based model checking.

While performance is still not competitive with SAT-based approach, we
believe that model checking using DL reasoning is worth exploring. One future
direction is to better exploiabsorption[15]. Absorption is a pre-processing
technique that allows the elimination of some forms of concept inclusions by
converting them into augmented concept definitions. Our current translation into
DL does not allow absorption for most of the concept inclusions.
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