
J. Jacko (Ed.): Human-Computer Interaction, Part III, HCII 2007, LNCS 4552, pp. 124–133, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Multi-word Expression Recognition Integrated
with Two-Level Finite State Transducer

Keunyong Lee, Ki-Soen Park, and Yong-Seok Lee

Division of Electronics and Information Engineering, Chonbuk National University,
Jeonju 561-756, South Korea

cpher.inu@gmail.com, {icarus,yslee}@chonbuk.ac.kr

Abstract. This paper proposes another two-level finite state transducer to rec-
ognize the multi-word expression (MWE) in two-level morphological parsing
environment. In our proposed the Finite State Transducer with Bridge State
(FSTBS), we defined Bridge State (concerned with connection of multi-word),
Bridge Character (used in connection of multi-word expression) and two-level
rule to extend existing FST. FSTBS could recognize both Fixed Type MWE
and Flexible Type MWE which are expressible as regular expression, because
FSTBS recognizes MWE in morphological parsing.

Keywords: Multi-word Expression, Two-level morphological parsing, Finite
State Transducer.

1 Introduction

Multi-word Expression (MWE) is a sequence of several words has an idiosyncratic
meaning [1], [2]: all over, be able to. If all over appears in the sentence sequentially,
its meaning can be different from the composed meaning of all and over. Two-level
morphological parsing that uses finite state transducer (FST) is composed with two-
level rules and lexicon [3], [4]. Tokenization helps you to break an input sentence up
into a number of tokens by the delimiter (white space). It is not easy for MWE to be
used as an input directly, because MWE contains delimiter. MWE has a special con-
nection between words, in other words, all over has special connection between all
and over. We regard this special connection as a bridge to connect individual word. In
surface form, usually a bridge is a white space. We use a symbol ‘+’ in lexical form
instead of white space in surface form, and we denominate it Bridge Character (BC).
BC enables FST to move another word.

Two-level morphological parsing uses FST. FST needs following two conditions to
accept morphemes. 1) FST reaches finial state and 2) there is no remain input string.
Also, FST starts from initial state in finite state network (FSN) to analyze a mor-
pheme, and FST does not use previous analysis result. For this reason, FST has a limi-
tation in MWE recognition.

In this paper, we propose extended FST, Finite State Transducer with Bridge State
(FSTBS), to recognize MWE in morphological parsing. For FSTBS, we define the
special state named Bridge State (BS) and special symbol Bridge Character (BC)

 MWE Recognition Integrated with Two-Level Finite State Transducer 125

related with BS. We describe expression method of MWE using the XEROX lexc rule
and two-level rule using the XEROX xfst [5], [6], [7].

The rest of this paper is organized as follows; in the next section, we present re-
lated work to our research. The third section deals with the Multi-word Expression. In
the fourth section, we present Finite State Transducer with Bridge State. The fifth sec-
tion illustrates how to recognize MWE in two-level morphological parsing. In the
sixth section, we analyze our method with samples and experiments. The final section
summarizes the overall discussion.

2 Related Work and Motivation

The existing research to recognize MWE has been made on great three fields; classifi-
cation MWE, how to represent MWE, how to recognize MWE.

One research classified MWE into four sections; Fixed Expressions, Semi-Fixed
Expressions, Syntactically-Flexible Expression, Institutionalized phrases [1]. The
other research classified MWE into Lexicalized Collocations, Semi-lexicalized Collo-
cations, Non-lexicalize Collocations, Named-entities to recognize in Turkish [8].
Now, we can divide above classification of MWE into Fixed Type (without any varia-
tion in the connected words) and Flexible Type (with variation in the connected
words).

According to [Ann], “LinGO English Resource Grammar (ERG) has a lexical da-
tabase structure which essentially just encodes a triple: orthography, type, semantic
predicate” [2]. The other method is to use regular expression [9], [10].

Usually, two methods have been used to recognize MWE, one of these, the MWE
recognition is finished in tokenization before morphological parsing [5], and another
one, it finished in postprocessing after morphological parsing [1], [8]. MWE recogni-
tion of Fixed Type is main issue of the preprocessing because preprossesing does not
adopt morphological parsing. Sometimes, numeric processing is considered as a field
of MWE recognition [5]. In postprocessing by contrast with preprocessing, Flexible
Type MWE can be recognized, but there are some overhead to analyze MWE, it
should totally rescan the result of morphological parsing and require another rule for
the WME.

Our proposed FSTBS has two major significant features. One is FSTBS can recog-
nize MWE without distinction whether fixed or Flexible Type. The other is FSTBS
can recognize MWE is integrated with morphological parsing, because lexicon in-
cludes MWE which is expressed as regular expression.

3 Multi-word Expression

In our research, we classified MWE by next two types instead of Fixed Type or
Flexible Type. One is the expressible MWE as regular expression [5], [11], [12], [13].
The other is the non-expressible MWE as regular expression. Below Table 1 shows
the example of the two types.

126 K.Y. Lee, K.-S. Park, and Y.-S. Lee

Table 1. Two types of the MWE

The type of MWE Example
Ad hoc, as it were, for ages, seeing that, …. Expressible MWE

as regular expression abide by, ask for, at one’s finger(s’) ends, be going
to, devote oneself to, take one’s time, try to,….

Non-expressible MWE
as regular expression

compare sth/sb to, know sth/sb from, learn ~ by
heart, ….

Without special remark, we use MWE as the expressible MWE with regular ex-
pression in this paper. We will discuss the regular expression for MWE in the follow-
ing section. Now we consider that MWE has a special connection state between word
and word.

Fig. 1. (a) when A B is not MWE, A and B has no any connection, (b) when A B is a MWE, a
bridge exists between A and B

If A B is not a MWE as Fig. 1 (a), A and B are recognized as individual words
without any connection between each other, and if A B is a MWE as Fig. 1 (b), there
is special connection between A and B, and call this connection bridge to connect A
and B. When A = {at, try}, B = {most, to}, there is a bridge between at and most, and
between try and to, because Fixed Type at most and Flexible Type try to are MWE,
but at to and try most are not MWE, so there is no bridge between at and to, try and
most. That is, surface form MWE at most is appeared as “at most” with a blank space
but lexical form is “at BridgeCharacter most.” In second case, A B is MWE. Input
sentence is A B. Tokenizer makes two tokens A and B with delimiter (blank space).
FST recognizes that the first token A is one word A and the part of MWE with BS.
But, FST can not use the information that A is the part of MWE. If FST knows this in-
formation, it will know that the next token B is the part of MWE. FSTBS that uses
Bridge State can recognize MWE. Our proposed FSTBS can recognize expressible
MWE as regular expression shown above table. That is, non-expressible MWE as
regular expression is not treated our FSTBS yet.

3.1 How to Express MWE as Regular Expression

We used XEROX lexc to express MWE as regular expression. Now, we introduce
how to express MWE as regular expression. Above Table 1, expressible MWE as
regular expression have Fixed Type and Flexible Type. It is easy to express Fixed
Type MWE as regular expression. Following code is some regular expressions for
Fixed Type MWE, for example, Ad hoc, as it were and for ages are shown.

 MWE Recognition Integrated with Two-Level Finite State Transducer 127

Regular expression for Fixed Type MWE

LEXICON Root
 FIXED_MWE #
LEXICON FIXED_MWE
 < Ad ”+” hoc > #;
 < as ”+” it ”+” were > #;
 < for ”+” ages > #;

The regular expressions of Fixed Type MWEs are so simple, because they are
comprised of words without variation. However, the regular expressions of the Flexi-
ble Type MWEs have more complexity than Fixed Type MWEs. Words comprising
Flexible Type MWE can variable. More over, words are replaced any some words and
can be deleted. Take be going to for example, there are two sentences “I am (not)
going to school” and “I will be going to school.” Two sentences have same MWE be
going to, but not is optional and be is variable. In the case of devote oneself to, lexical
form oneself appears myself, yourself, himself, herself, themselves, or itself in surface
form. Following code is some regular expression for Flexible Type MWE, for exam-
ple be going to, devote oneself to are shown.

Regular expression for Flexible Type MWE

Definitions
BeV=[{be}:{am}|{be}:{was}|{be}:{were}|{be}:{being}] ;
OneSelf=[{oneself}:{myself}|{oneself}:{himself}
 |{oneself}:{himself}|{oneself}:{themselves}
 |{oneself}:{itself}];
VEnd="+Bare":0|"+Pres":s|"+Prog":{ing}|"+Past":{ed} ;
LEXICON Root
 FLEXIBLE_MWE #
LEXICON FLEXIBLE_MWE
< BeV (not) ”+” going ”+” to > #;
< devote VEnd ”+” OneSelf ”+” to > #;

Although, above code is omitted the meaning of some symbols, but it is sufficient
for description of regular expression for Flexible Type MWE. Above mentioned it,
such as one's and oneself are used restrictively in sentence, so we could express these
as regular expression. However, sth and sb are appeared in non-expressible MWE as
regular expression can be replaced by any kinds of noun or phrase, so we could not
express them as regular expression yet.

4 Finite State Transducer with Bride State

Given a general FST is a hextuple <Σ, Γ, S, s0, δ, ω>, where:

i. Σ denotes the input alphabet.
ii. Γ denotes the output alphabet.

iii. S denotes the set of states, a finite nonempty set.
iv. s0 denotes the start (or initial) state; s0∈S.
v. δ denotes the state transition function; δ: S x Σ Æ S.

vi. ω denotes the output function; ω: S x Σ Æ Γ.

128 K.Y. Lee, K.-S. Park, and Y.-S. Lee

Given a FSTBS is a octuple <Σ, Γ, S, BS, s0, δ, ω, έ>, where: from the first to the
sixth elements have same meaning in FST.

vii. BS denotes the set of Bridge State; BS∈S.
viii. έ denotes function related BS; Add Temporal Bridge (ATB), Remove Tem-

poral Bridge (RTB).

4.1 Bridge State and Bridge Character

We define Bridge State, Bridge Character and Add Temporal Bridge (ATB) function,
Remove Temporal Bridge (RTB) function which are related with Bridge State, to rec-
ognize MWE connected by a bridge.

Bridge State (BS): BS connects each word in MWE. If a word is the part of MWE,
FSTBS can reach BS from it to by Bridge Character. FSTBS shall suspend to resolve
its state which is either accepted or rejected until succeeding token is given, and
FSTBS operates ATB or RTB selectively.

Bridge Character (BC): Generally, BC is a blank space in surface form and it can be
replaced into blank symbol or other symbol in lexical form. On the selection of BC,
FSTBS is satisfied by restrictive conditions as follows:

1. BC is just used to connect a word and word in the MWE. That is, a
word ∈ (Σ - {BC})+.

2. Initially, any state does not existing moved by BC from the initial state.
That is, state  δ(s0, BC), state ∉ S.

4.2 Add Temporal Bridge Function and Remove Temporal Bridge Function

When some state is moved to BS by BC, FSTBS should operate either ATB or RTB.

Add Temporal Bridge (ATB)
ATB is the function that makes movement from initial state to current BS reached
by FSTBS with BC. After FSTBS reaches to BS from any state which is not initial
state by next input BC, ATB is a called function. This function makes a temporal
bridge and FSTBS uses it in a succeeding token.

Remove Temporal Bridge (RTB)
RTB is the function to delete temporal bridge after moving temporal bridge which
is added by ATB. FSTBS calls this function in every initial state to show that finite
state network has temporal bridge.

5 MWE in Two-Level Morphological Parsing

Given an alphabet Σ, we define Σ = {a, b, …, z, “+”1 } and BC = “+”. Let A = (Σ –
{“+”})+, B = (Σ-{“+”})+, then L1 = {A, B} for Words, and L2 = {A“+”B}

1 In regular expression, + has special meaning that is Kleene plus. If you choose + as BC then

you should use “+” that denotes symbol plus [5], [11].

 MWE Recognition Integrated with Two-Level Finite State Transducer 129

for MWE. L is a language L = L1 ∪ L2. Following two regular expressions are for
the L1 and L2.

RegEx1 = A | B
RegEx2 = A “+” B

Regular expression RegEx is for language L.

RegEx = RegEx1 ∪ RegEx2

Rule0 is two-level replacement rule [6], [7].

Rule02: “+” -> “ ”

Finite State Network (FSN) of Rule0 shown in Fig. 2.

Fig. 2. Two-level replacement rule, ? is a special symbol denote any symbol. This state trans-
ducer can recognize input such as Σ* ∪ {“ ”, +: “ ”}. In two-level rule +: “ ” denotes that “ ” in
surface form is replaced with + in lexical form.

FST0 in Fig. 3 shows FSN0 of RegEx for Language L.

Fig. 3. FSN0 of the RegEx for the Language L. BC = + and s3 ∈ BS.

FSN1 = RegEx .o.3 Rule0. Below showed Fig. 4 is FSN1. FSTBS which uses
FSN1 analyzes morpheme. FSN1 is composed two-level rule with lexicon. If the FST
uses FSN1 as Fig. 4 and is supplied with A B as token by tokenizer, it can recognize
A+B as MWE from token. However, tokenizer separates input A B into two parts A
and B and gives them to FST. For this reason, FST can not recognize A+B because A
and B was recognized individually.

2 -> is the unconditional replacement operator. A -> B denotes that A is lexical form and B is

surface form. Surface form B replaces into lexical form A [5].
3 .o. is the binary operator, which compose two regular expressions. This operator is associative

but commutative. FST0 .o. Rule0 is not equal Rule0 .o. RST0 [5].

130 K.Y. Lee, K.-S. Park, and Y.-S. Lee

If tokenizer can know that A B is a MWE, it can give proper single token “A B”
without separating to FST. That is, tokenzier will know all of MWE and give it to
FST. FST can recognize MWE by two-level rule which only Rule0 is added to. How-
ever, it is not easy because tokenizer does not process morphological parsing, so to-
kenizer can not know Flexible Type MWE, for instance be going to, are going to, etc.
As it were, tokenizer can know only Fixed Type MWE, for example all most, and so
on, etc.

Fig. 4. FSN1 = RegEx .o. Rule0: BC = +:“ ” and s3 ∈ BS.

5.1 The Movement to the Bridge State

We define the Rule1 to recognize MWE A+B of language L by FST instead of Rule 0.

Rule1: “+” -> 0

Rule 0 is applied to blank space of surface form. Instead of Rule1 is applied to empty
symbol of surface form. FSN of Rule1 shown in Fig. 5.

Fig. 5. FSN of the Rule1 (“+” -> 0)

Fig. 6. FSN2: RegEx .o. Rule1. BC = +:0 and s3 ∈ BS.

Above shown Fig. 6 is the result FSN of RegEx .o. Rule1. We can see that MWE
which can be recognized by FSN2, is the state of moved from A by BC. However,
when succeeding token B is given to FST, FST can not know that precede token move
to BS, so FST requires extra function. Extra function ATB is introduced following
section.

 MWE Recognition Integrated with Two-Level Finite State Transducer 131

5.2 The Role of ATB and RTB

Above Fig. 6, we can see that FSN2 has BC = +:0 and BS includes s3. The Rule1 and
proper tokens make FST recognize MWE. As has been point out, it is not easy to
make proper tokens for MWE. FST just knows whether a bridge exists or not from
current recognized word with given token. Moreover, when succeeding token is sup-
plied for FST, it does not remember previous circumstance whether a bridge is de-
tected or is not. To solve this problem, if a state reaches to BS (s3), ATB function is
performed. Called ATB function connects temporal movement (bridge) to current BS
(s3) using BC for the transition. Fig. 7 shows FSN3 that temporal connection is added
by ATB function from current BS.

Fig. 7. FSN3: FSN with temporal bridge to BS (s3). Dotted arrow indicates temporal bridge is
added by ATB function.

Such as Fig. 7, when succeeding token is given to FST, transition function moves
to s3 directly: δ (s0, +:0) Æ s3. After crossing a bridge using BC, FST arrives at BS(s3)
and calls RTB which removes a bridge: δ(s0, +:0)  0. If a bridge is removed, FST3
returns to FST2. Reached state by input B from BS (s3) is the final (s2), and since
there is no remain input for further recognition, A+B is recognized as a MWE. Below
code is the brief pseudo code of FSTBS.

Brief Pseudo Code of FSTBS

FSTBS(token){
 //token ∈ (Σ - {BC})+, token = ck(0<k<n+1)
 //c0 is the left token boundary
 //cn+1 is the right token boundary
 //that real surface form is ck(1≤k≤n)
 state  s0
 for(k=0; k≤n+1;k++){

 while(code  NextTwoLevelCode(ck)){
 oldState  state
 state  δ(state, code)
 if(state ∈ BS and oldState≠s0)
 // k == n+1 and code == BC
 AddTemporalBridge(state)
 else if(state ∈ BS and oldState≠s0)
 // k == 0 and code == BC

132 K.Y. Lee, K.-S. Park, and Y.-S. Lee

 RemoveTemporalBridge(state)
 else
 do process as a general FST.
 }
 }
}
// AddTmporalBridge is similar to stack push operator
// RemoveTemporalBridge is similar to stack pop
// operator

6 Results and Discussion

We performed experiment for English to recognize MWE in two-level morphological
parsing using the proposed FSTBS. We included single word and MWE in one Lexi-
con. We used single word in the lexicon. Such as Table 2, we collected single words
from PC-KIMMO’s eng.lex and 731 MWEs without named-entity.

Table 2. Lexical Entry

Type Count Example
Fixed Type MWE 308 at most, of course, …
Flexible Type MWE 423 above all, act for, try to, …

Lexicon file was compiled as one finite state using lexc of XEROX. English two-
level rule and proposed two-level rule (Rule0, Rule1) for MWE was complied using
xfst of XEROX. We made one finite state of each complied lexicon finite state and
rule finite state by composition. For the evaluation, we used 731 sentences which con-
tained MWE, and tokenizer divided input into tokens without any other processing for
MWE.

FSTBS is good to recognition MWE. MWEs were expressed by regular expres-
sion, and they are translated finite state network. As good as FST using FSN, FSTBS
uses FSN and recognize well too.

7 Conclusions

Morphological parsing system using FST, MWE is recognized preprocessing or post-
processing. They are isolated from morphological parsing. Preprocessing can recog-
nize only Fixed Type without variation. Postprocessing can recognize Fixed Type and
Flexible Type. However, it requires additional data.

In this paper, we proposed usable Finite State Transducer with Bridge State to rec-
ognize MWE in two-level morphological parsing model. We added Bridge States,
Bridge Character and two functions (one is Add Temporal Bridge the other is Remove
Temporal Bridge) to FST for definition of FSTBS.

 MWE Recognition Integrated with Two-Level Finite State Transducer 133

We classify two types of MWE. They are the expressible/non-expressible MWE as
regular expression. Our proposed FSTBS can recognize all expressible MWE as
regular expression.

Acknowledgments. This work was supported by the second stage of Brain Korea 21
Project.

References

1. Sag, I.A., Baldwin, T., Bond, F., et al.: Multiword Expression: A Pain in the Neck for
NLP. In: Gelbukh, A. (ed.) CICLing 2002. LNCS, vol. 2276, pp. 1–15. Springer, Heidel-
berg (2002)

2. Copestake, A., Lambeau, F. et al.: Multiword Expression: linguistics precision and reus-
ability. In: Proceedings of the 3rd International Conference on Language Resources and
Evaluation (LREC), pp. 1941–1947 (2002)

3. Antworth, Evan, L.: PC-KIMMO: A Two-level Processor for Morphological Processor for
Morphological Analysis. Summer Institute of Linguistics, Dallas Texas (1990)

4. Karttunen, L.: Constructing Lexical Transducers. In: Proceeding, 16th International Con-
ference on Computational Linguistics, pp. 406–411 (1994)

5. Beesley, K.R., Karttunen, L.: Finite State Morphology. CSLI Publications (2003)
6. Kartunnen, L.: The Replace Operator. In: the Proceeding of the 33rd Annual Meeting of

the Association for Computational Linguistics (1995)
7. Kartunnen, L.: Directed Replacement. In: the Proceeding of the 34rd Annual Meeting of

the Association for Computational Linguistics, pp. 108–115 (1996)
8. Oflazer, K., Çentinoğlu, Ö., Say, B.: Integrating Morphology with Multi-word Expression

Processing in Turkish. In: Second ACL Workshop on Multiword Expressions: Integrating
Processing, pp. 64–71 (2004)

9. Segond, F., Breidth, E.: IDAREX: Formal Description of German and French Multi-word
Expression with Finite State Technology. Technical Report MLTT-022, Rank Xerox Re-
search Centre, Grenoble Laboratory

10. Segond, F., Tapanainen, P.: Technical Report MLTT-019, Rank Xerox Research Centre,
Grenoble Laboratory (1995)

11. Carroll, J., Long, D.: Theory of Finite Automata with an introduction to formal languages.
Prentice-Hall International Editions (1989)

12. Cooper, K.D., Torczon, L.: ENGINEERING A COMPILER. Morgan Kaufmann Publish-
ers, San Francisco (2004)

13. Holub, A.I.: Holub: Compiler Design in C. Prentice-Hall, Englewood Cliffs (1990)

	Introduction
	Related Work and Motivation
	Multi-word Expression
	How to Express MWE as Regular Expression

	Finite State Transducer with Bride State
	Bridge State and Bridge Character
	Add Temporal Bridge Function and Remove Temporal Bridge Function

	MWE in Two-Level Morphological Parsing
	The Movement to the Bridge State
	The Role of ATB and RTB

	Results and Discussion
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

