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Abstract. Predicting user behavior is an important issue in Human Computer 
Interaction ([5]) research, having an essential role when developing intelligent 
user interfaces.  A possible solution to deal with this challenge is to build an 
intelligent interface agent ([8]) that learns to identify patterns in users behavior. 
The aim of this paper is to introduce a new agent based approach in predicting 
users behavior, using a probabilistic model. We propose an intelligent interface 
agent that uses a supervised learning technique in order to achieve the desired 
goal. We have used Aspect Oriented Programming ([7]) in the development of 
the agent in order to benefit of the advantages of this paradigm. Based on a 
newly defined evaluation measure, we have determined the accuracy of the 
agent's prediction on a case study. 
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1   Introduction 

Nowadays, computers pervade more and more aspects of our lives, that is why an 
interactive software system has to be able to adapt to its users. Adaptability is possible 
to achieve by intelligent interface agents that learn by “watching over the shoulder” 
([8]) of the user and by detecting regularities in the user's behavior. 

Human-Computer Interaction ([5]) is a discipline that deals with improving user 
interfaces. Graphical user interfaces are still hard to learn for inexperienced users. 
Intelligent User Interface agents are a way of solving this problem, for example by 
guiding users through a given task. 

Interface agents are autonomous semi-intelligent systems that employ artificial 
intelligence techniques in order to provide assistance to a user dealing with a 
particular application. Their autonomy is provided by the capability of learning from 
their environment. 

Aspect Oriented Programming (AOP) is a new programming paradigm that 
addresses the issues of crosscutting concerns ([7]). A crosscutting concern is a feature 
of a software system whose implementation is spread all over the system. An aspect is 
a new modularization unit that corresponds to a crosscutting concern. The aspects are 
integrated into the system using a special tool called weaver. 
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In this paper we propose a new approach in predicting users behavior (sequences 
of user actions) using an interface agent, called LIA (Learning Interface Agent), that 
learns by supervision. In the training step, LIA agent monitors the behavior of a set of 
real users, and captures information that will be stored in its knowledge base, using 
Aspect Oriented Programming. Aspect Oriented Programming is used in order to 
separate the agent from the software system. 

Based on the knowledge acquired in the training step, LIA will learn to predict the 
sequence of actions for a particular user. Finally, this prediction could be used for 
assisting users in their interaction with a specific system. Currently, we are focusing 
only on determining accurate predictions. Future improvements of our approach will 
deal with enhancing LIA with assistance capability, too. 

The main contributions of this paper are: 

• To develop an intelligent interface agent that learns using an original 
supervised learning method. 

• To present a theoretical model on which our approach is based. 
•  To define an evaluation measure for determining the precision of the agent's 

prediction. 
•  To use Aspect Oriented Programming in the agent development.  

The paper is structured as follows. Section 2 presents our approach in developing a 
learning interface agent for predicting users behavior. An experimental evaluation on 
a case study is described in Section 3.  Section 4 compares our approach with existing 
ones. Conclusions and further work are given in Section 5. 

2   Our Approach 

In this section we present our approach in developing a learning interface agent (LIA) 
for predicting users behavior. Subsection 2.1 introduces the theoretical model needed 
in order to describe the agent behavior given in Subsection 2.2. The overall 
architecture of LIA agent is proposed in Subsection 2.3.  

2.1   Theoretical Model   

In the following, we will consider that LIA agent monitors the interaction of users 
with a software application SA, while performing a given task T.  We denote by A the 
set {a1, a2, …, an} of all possible actions that might appear during the interaction with 
SA. An action can be: pushing a button, selecting a menu item, filling in a text  
field, etc.  

During the users interaction with SA in order to perform T, user traces are 
generated. A user trace is a sequence of user actions. We consider a user trace 
successful if the given task is accomplished. Otherwise, we deal with an unsuccessful 
trace. 

Currently, in our approach we are focusing only on successful traces, that is why 
we formally define, in the following, this term. 
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Definition 1. Successful user trace 
Let us consider a software application SA and a given task T that can be performed 
using SA. A sequence 1 2, , ,

tkt x x x=< … >   , where 

• tk ∈N , and 

• xj∈A,  1 tj k∀ ≤ ≤  

which accomplishes the task T  is called a successful user trace.   

In Definition 1, we have denoted by tk  the number of user actions in trace t . We 

denote by ST  the set of all successful user traces. 
In order to predict the user behavior, LIA agent stores a collection of successful 

user traces during the training step. In our view, this collection represents the 
knowledge base of the agent.   

 

Definition 2. LIA's Knowledge base – KB 
Let us consider a software application SA and a given task T that can be performed 
using SA. A collection KB = {t1, t2, …, tm} of successful user traces, where 

• it ∈  ST, 1 i m∀ ≤ ≤ ,  

• 1 2,  ,  ,  ,
i

i i i i
i k jt x x x x=< … > ∀ ∈A, 1 ij k≤ ≤  

represents the knowledge base of LIA agent.  
We mention that m  represents the cardinality of KB and ik  represents the number of 

actions in trace ( 1 )it i m∀ ≤ ≤ . 
 

Definition 3. Subtrace of a user trace 
Let 1 2,  ,  ,  kt s s s=< … > be a trace in the knowledge base KB. We say that 

1( ,  ) ,  , ,   (  )t i j i i jsub s s s s s i j+=< … > ≤  is a subtrace of t  starting from action is  

and ending with action js . 

In the following we will denote by t  the number of actions (length) of (sub) trace  

t . We mention that for two given actions is  and js  ( )i j≠  there can be many 

subtraces in trace t starting from is  and ending with js . We will denote by SUB(si,sj) 

the set of all these subtraces. 

2.2   LIA Agent Behavior 

The goal is to make LIA agent capable to predict, at a given moment, the appropriate 
action that a user should perform in order to accomplish T. 

In order to provide LIA with the above-mentioned behavior, we propose a 
supervised learning technique that consists of two steps: 

1. Training Step 
During this step, LIA agent monitors the interaction of a set of real users while 
performing task T using application SA and builds its knowledge base KB (Definition 
2). The interaction is monitored using AOP. 
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In a more general approach, two knowledge bases could be built during the training 
step: one for the successful user traces and the second for the unsuccessful ones.        
 
2. Prediction Step 
The goal of this step is to predict the behavior of a new user U, based on the data 
acquired during the training step, using a probabilistic model. After each action act 
performed by U, excepting his/her starting action, LIA will predict the next action, 
ar (1 )r n≤ ≤ , to be performed, with a given probability ( , )rP act a , using KB.   

The probability ( , )rP act a  is given by Equation (1).  
 

( , ) max{ ( , ), 1 }r iP act a P act a i n= ≤ ≤ . (1) 

  
In order to compute these probabilities, we introduce the concept of scores 

between two actions. The score between actions ai and aj, denoted by score(ai, aj) 
indicates the degree to which aj must follow ai in a successful performance of T.  This 
means that the value of score(ai, aj)  is the greatest when aj should immediately follow 
ai in a successful task performance. 

The score between a given action act of a user and an action aq, 1 q n≤ ≤ , 

score(act, aq), is computed as in Equation (2). 

1
( , ) max  ,  1   

( ,  ,  )q
i q

score act a i m
dist t act a

⎧ ⎫⎪ ⎪= ≤ ≤⎨ ⎬
⎪ ⎪⎩ ⎭

, (2) 

where ( ,  ,  )i qdist t act a  represents, in our view, the distance between two actions act 

and aq in a trace ti, computed based on  KB.  

( , , ) -1 ( , )
 ( ,  ,  ) ii q t q

i q

length t act a if sub act a
dist t act a

otherwise

∃⎧⎪= ⎨
∞⎪⎩

. (3) 

( , , )i qlength t act a defines the minimum distance between act and aq in trace ti. 

length(ti, act, aq)=min{ s  | s∈ SUB ( ,  )
it qact a }. (4) 

In our view, ( ,  ,  )i qlength t act a  represents the minimum number of actions 

performed by the user U in trace ti, in order to get from action act to action aq, i.e., the 
minimum length of all possible subtraces ( , )

it qsub act a . 

From Equation (2), we have that score(act, aq) ∈ [0,1] and the value of score(act, 
aq) increases as the distance between act and aq in traces from  KB decreases. 

Based on the above scores, ( , ), 1iP act a i n≤ ≤ , is computed as follows: 

( ,  )
( , )

max{ ( , )|1 }
i

i
j

score act a
P act a

score act a j n
=

≤ ≤
. (5) 
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In our view, based on Equation (5), higher probabilities are assigned to actions that 
are the most appropriate to be executed. 

The result of the agent's prediction is the action ar that satisfies Equation (1). We 
mention that in a non-deterministic case (when there are more actions having the 
same maximum probability P) an additional selection technique can be used. 

2.3   LIA Agent Architecture 

In Fig. 1 we present the architecture of LIA agent having the behavior described in 
Section 2.2.  

In the current version of our approach, the predictions of LIA are sent to an 
Evaluation Module that evaluates the accuracy of the results (Fig. 1). We intend to 
improve our work in order to transform the agent in a personal assistant of the user. In 
this case the result of the agent's prediction will be sent directly to the user. 

 
Fig. 1. LIA agent architecture 

The agent uses AOP in order to gather information about its environment. The 
AOP module is used for capturing user's actions: mouse clicking, text entering, menu 
choosing, etc. These actions are received by LIA agent and are used both in the 
training step (to build the knowledge base KB) and in the prediction step (to determine 
the most probable next user action). 

We have decided to use AOP in developing the learning agent in order to take 
advantage of the following: 

• Clear separation between the software system  SA and the agent. 
• The agent can be easily adapted and integrated with other software systems. 
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• The software system SA does not need to be modified in order to obtain the user 
input. 

• The source code corresponding to input actions gathering is not spread all over 
the system, it appears in only one place, the aspect. 

• If new information about the user software system interaction is required, only 
the corresponding aspect has to be modified. 

3   Experimental Evaluation 

In order to evaluate LIA's prediction accuracy, we compare the sequence of actions 
performed by the user U with the sequence of actions predicted by the agent. We 
consider an action prediction accurate if the probability of the prediction is greater 
than a given threshold. 

For this purpose, we have defined a quality measure, ( ,  )ACC ULIA , called 

ACCuracy. The evaluation will be made on a case study and the results will be 
presented in Subsection 3.3. 

3.1   Evaluation Measure 

In the following we will consider that the training step for LIA agent was completed. 
We are focusing on evaluating how accurate are the agent's predictions during the 
interaction between a given user U and the software application SA. Let us consider 

that the user trace is 1 2,  , ,  
U

U U U
U kt y y y=< … > and the trace corresponding to the 

agent's prediction is the following: 2( ) , ,
U

U U
LIA U kt t z z=< … > . For each 2  Uj k≤ ≤ , 

LIA agent predicts the most probable next user action, U
jz , with the probability 

1( ,  )U U
j jP y z−  (Section 2.2). The following definition evaluates the accuracy of LIA 

agent's prediction with respect to the user trace tU. 
 
Definition 4. ACCuracy of LIA agent prediction - ACC 
The accuracy of the prediction with respect to the user trace tU  is given by Equation 
(6). 

2
( ,  y )

( ) 
-1

Uk
U U
j j

j
U

U

acc z

ACC t
k

=
∑

= , 
(6) 

where  

11 ( , )
( , )

0

U U U U
j j j jU U

j j

if z y and P y z
acc z y

otherwise

α−⎧ = >⎪= ⎨
⎪⎩

. (7) 
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In our view, ( ,  )U U
j jacc z y indicates if the prediction U

jz was made with a probability 

greater than a given thresholdα , with respect to the user's action 1
U
jy − . Consequently, 

( )UACC t  estimates the overall precision of the agent's prediction regarding the user 

trace tU. 
Based on Definition 4 it can be proved that ( )UACC t takes values in [0, 1]. Larger 

values for ACC indicate better predictions. 
We mention that the accuracy measure can be extended in order to illustrate the 

precision of LIA's prediction for multiple users, as given in Definition 5. 
 

Definition 5. ACCuracy of LIA agent prediction for Multiple users - ACCM 
Let us consider a set of users, U= 1{ , , }lU U… . Let us denote by  

UT=
1 2

{ , , , }
lU U Ut t t… the set of successful user traces corresponding to the users from 

U. The accuracy of the prediction with respect to the user Ui and his/her trace 
iUt  is 

given by Equation (8): 

ACCM(UT)= 1
( )

 
i

l

U
i

ACC t

l
=
∑

. 
(8) 

where ( )
iUACC t  is the prediction accuracy for user trace 

iUt given in Equation (6). 

3.2   Case Study 

In this subsection we describe a case study that is used for evaluating LIA 
predictions, based on the evaluation measure introduced in Subsection 3.1. 

We have chosen for evaluation a medium size interactive software system 
developed for faculty admission.  The main functionalities of the system are:  

 
• Recording admission applications (filling in personal data, grades, options, 

particular situations, etc.). 
• Recording fee payments. 
• Generating admission results. 
• Generating reports and statistics. 

 
For this case study, the set of possible actions A consists of around 50 elements, 

i.e., 50n ≈ . Some of the possible actions are: filling in text fields (like first name, 
surname, grades, etc.), choosing options, selecting an option from an options list, 
pressing a button (save, modify, cancel, etc.), printing registration forms and reports.  

The task T that we intend to accomplish is to complete the registration of a student. 
We have trained LIA on different training sets and we have evaluated the results for 
different users that have successfully accomplished task T.   
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3.3   Results 

We mention that, for our evaluation we have used the value 0.75 for the thresholdα . 
For each pair (training set, testing set) we have computed ACC measure as given in 
Equation (6). In Table 1 we present the results obtained for our case study. We 
mention that we have chosen 20 user traces in the testing set. We have obtained 
accuracy values around 0.96. 

Table 1. Case study results 

Training dimension ACCM 
67 0.987142 
63 0.987142 
60 0.987142 
50 0.982857 
42 0.96 

 
As shown in Table 1, the accuracy of the prediction grows with the size of the 

training set. The influence of the training set dimension on the accuracy is illustrated 
in Fig. 2. 

 

Fig. 2. Influence of the training set dimension on the accuracy 

4   Related Work 

There are some approaches in the literature that address the problem of predicting 
user behavior. The following works approach the issue of user action prediction, but 
without using intelligent interface agents and AOP. 

The authors of [1-3] present a simple predictive method for determining the next 
user command from a sequence of Unix commands, based on the Markov assumption 
that each command depends only on the previous command. The paper [6] presents 
an approach similar to [3] taking into consideration the time between two commands. 
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Our approach differs from [3] and [6] in the following ways: we are focusing on 
desktop applications (while [3] and [6] focus on predicting Unix commands) and we 
have proposed a theoretical model and evaluation measures for our approach.  

Techniques from machine learning (neural nets and inductive learning) have 
already been applied to user traces analysis in [4], but these are limited to fixed size 
patterns. 

In [10] another approach for predicting user behaviors on a Web site is presented. 
It is based on Web server log files processing and focuses on predicting the page that 
a user will access next, when navigating through a Web site. The prediction is made 
using a training set of user logs and the evaluation is made by applying two measures. 
Comparing with this approach, we use a probabilistic model for prediction, meaning 
that a prediction is always made.  

5   Conclusions and Further Work 

We have presented in this paper an agent-based approach for predicting users 
behavior. We have proposed a theoretical model on which the prediction is based and 
we have evaluated our approach on a case study. Aspect Oriented Programming was 
used in the development of our agent.  

We are currently working on evaluating the accuracy of our approach on a more 
complex case study. 

We intend to extend our approach towards: 

• Considering more than one task that can be performed by a user. 
• Adding in the training step a second knowledge base for unsuccessful 

executions and adapting correspondingly the proposed model.  
• Identifying suitable values for the thresholdα . 
• Adapting our approach for Web applications. 
• Applying other supervised learning techniques (neural networks, decision 

trees, etc.) ([9]) for our approach and comparing them. 
• Extending our approach to a multiagent system. 
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