
J. Jacko (Ed.): Human-Computer Interaction, Part III, HCII 2007, LNCS 4552, pp. 508–517, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Learning Interface Agent for User Behavior
Prediction

Gabriela Şerban, Adriana Tarţa, and Grigoreta Sofia Moldovan

Department of Computer Science
Babeş-Bolyai University,

1, M. Kogălniceanu Street, Cluj-Napoca, Romania
{gabis,adriana,grigo}@cs.ubbcluj.ro

Abstract. Predicting user behavior is an important issue in Human Computer
Interaction ([5]) research, having an essential role when developing intelligent
user interfaces. A possible solution to deal with this challenge is to build an
intelligent interface agent ([8]) that learns to identify patterns in users behavior.
The aim of this paper is to introduce a new agent based approach in predicting
users behavior, using a probabilistic model. We propose an intelligent interface
agent that uses a supervised learning technique in order to achieve the desired
goal. We have used Aspect Oriented Programming ([7]) in the development of
the agent in order to benefit of the advantages of this paradigm. Based on a
newly defined evaluation measure, we have determined the accuracy of the
agent's prediction on a case study.

Keywords: user interface, interface agent, supervised learning, aspect oriented
programming.

1 Introduction

Nowadays, computers pervade more and more aspects of our lives, that is why an
interactive software system has to be able to adapt to its users. Adaptability is possible
to achieve by intelligent interface agents that learn by “watching over the shoulder”
([8]) of the user and by detecting regularities in the user's behavior.

Human-Computer Interaction ([5]) is a discipline that deals with improving user
interfaces. Graphical user interfaces are still hard to learn for inexperienced users.
Intelligent User Interface agents are a way of solving this problem, for example by
guiding users through a given task.

Interface agents are autonomous semi-intelligent systems that employ artificial
intelligence techniques in order to provide assistance to a user dealing with a
particular application. Their autonomy is provided by the capability of learning from
their environment.

Aspect Oriented Programming (AOP) is a new programming paradigm that
addresses the issues of crosscutting concerns ([7]). A crosscutting concern is a feature
of a software system whose implementation is spread all over the system. An aspect is
a new modularization unit that corresponds to a crosscutting concern. The aspects are
integrated into the system using a special tool called weaver.

 A Learning Interface Agent for User Behavior Prediction 509

In this paper we propose a new approach in predicting users behavior (sequences
of user actions) using an interface agent, called LIA (Learning Interface Agent), that
learns by supervision. In the training step, LIA agent monitors the behavior of a set of
real users, and captures information that will be stored in its knowledge base, using
Aspect Oriented Programming. Aspect Oriented Programming is used in order to
separate the agent from the software system.

Based on the knowledge acquired in the training step, LIA will learn to predict the
sequence of actions for a particular user. Finally, this prediction could be used for
assisting users in their interaction with a specific system. Currently, we are focusing
only on determining accurate predictions. Future improvements of our approach will
deal with enhancing LIA with assistance capability, too.

The main contributions of this paper are:

• To develop an intelligent interface agent that learns using an original
supervised learning method.

• To present a theoretical model on which our approach is based.
• To define an evaluation measure for determining the precision of the agent's

prediction.
• To use Aspect Oriented Programming in the agent development.

The paper is structured as follows. Section 2 presents our approach in developing a
learning interface agent for predicting users behavior. An experimental evaluation on
a case study is described in Section 3. Section 4 compares our approach with existing
ones. Conclusions and further work are given in Section 5.

2 Our Approach

In this section we present our approach in developing a learning interface agent (LIA)
for predicting users behavior. Subsection 2.1 introduces the theoretical model needed
in order to describe the agent behavior given in Subsection 2.2. The overall
architecture of LIA agent is proposed in Subsection 2.3.

2.1 Theoretical Model

In the following, we will consider that LIA agent monitors the interaction of users
with a software application SA, while performing a given task T. We denote by A the
set {a1, a2, …, an} of all possible actions that might appear during the interaction with
SA. An action can be: pushing a button, selecting a menu item, filling in a text
field, etc.

During the users interaction with SA in order to perform T, user traces are
generated. A user trace is a sequence of user actions. We consider a user trace
successful if the given task is accomplished. Otherwise, we deal with an unsuccessful
trace.

Currently, in our approach we are focusing only on successful traces, that is why
we formally define, in the following, this term.

510 G. Şerban, A. Tarţa, and G.S. Moldovan

Definition 1. Successful user trace
Let us consider a software application SA and a given task T that can be performed
using SA. A sequence 1 2, , ,

tkt x x x=< … > , where

• tk ∈N , and

• xj∈A, 1 tj k∀ ≤ ≤

which accomplishes the task T is called a successful user trace.

In Definition 1, we have denoted by tk the number of user actions in trace t . We

denote by ST the set of all successful user traces.
In order to predict the user behavior, LIA agent stores a collection of successful

user traces during the training step. In our view, this collection represents the
knowledge base of the agent.

Definition 2. LIA's Knowledge base – KB
Let us consider a software application SA and a given task T that can be performed
using SA. A collection KB = {t1, t2, …, tm} of successful user traces, where

• it ∈ ST, 1 i m∀ ≤ ≤ ,

• 1 2, , , ,
i

i i i i
i k jt x x x x=< … > ∀ ∈A, 1 ij k≤ ≤

represents the knowledge base of LIA agent.
We mention that m represents the cardinality of KB and ik represents the number of

actions in trace (1)it i m∀ ≤ ≤ .

Definition 3. Subtrace of a user trace
Let 1 2, , , kt s s s=< … > be a trace in the knowledge base KB. We say that

1(,) , , , ()t i j i i jsub s s s s s i j+=< … > ≤ is a subtrace of t starting from action is

and ending with action js .

In the following we will denote by t the number of actions (length) of (sub) trace

t . We mention that for two given actions is and js ()i j≠ there can be many

subtraces in trace t starting from is and ending with js . We will denote by SUB(si,sj)

the set of all these subtraces.

2.2 LIA Agent Behavior

The goal is to make LIA agent capable to predict, at a given moment, the appropriate
action that a user should perform in order to accomplish T.

In order to provide LIA with the above-mentioned behavior, we propose a
supervised learning technique that consists of two steps:

1. Training Step
During this step, LIA agent monitors the interaction of a set of real users while
performing task T using application SA and builds its knowledge base KB (Definition
2). The interaction is monitored using AOP.

 A Learning Interface Agent for User Behavior Prediction 511

In a more general approach, two knowledge bases could be built during the training
step: one for the successful user traces and the second for the unsuccessful ones.

2. Prediction Step
The goal of this step is to predict the behavior of a new user U, based on the data
acquired during the training step, using a probabilistic model. After each action act
performed by U, excepting his/her starting action, LIA will predict the next action,
ar (1)r n≤ ≤ , to be performed, with a given probability (,)rP act a , using KB.

The probability (,)rP act a is given by Equation (1).

(,) max{ (,), 1 }r iP act a P act a i n= ≤ ≤ . (1)

In order to compute these probabilities, we introduce the concept of scores

between two actions. The score between actions ai and aj, denoted by score(ai, aj)
indicates the degree to which aj must follow ai in a successful performance of T. This
means that the value of score(ai, aj) is the greatest when aj should immediately follow
ai in a successful task performance.

The score between a given action act of a user and an action aq, 1 q n≤ ≤ ,

score(act, aq), is computed as in Equation (2).

1
(,) max , 1

(, ,)q
i q

score act a i m
dist t act a

⎧ ⎫⎪ ⎪= ≤ ≤⎨ ⎬
⎪ ⎪⎩ ⎭

, (2)

where (, ,)i qdist t act a represents, in our view, the distance between two actions act

and aq in a trace ti, computed based on KB.

(, ,) -1 (,)
 (, ,) ii q t q

i q

length t act a if sub act a
dist t act a

otherwise

∃⎧⎪= ⎨
∞⎪⎩

. (3)

(, ,)i qlength t act a defines the minimum distance between act and aq in trace ti.

length(ti, act, aq)=min{ s | s∈ SUB (,)
it qact a }. (4)

In our view, (, ,)i qlength t act a represents the minimum number of actions

performed by the user U in trace ti, in order to get from action act to action aq, i.e., the
minimum length of all possible subtraces (,)

it qsub act a .

From Equation (2), we have that score(act, aq) ∈ [0,1] and the value of score(act,
aq) increases as the distance between act and aq in traces from KB decreases.

Based on the above scores, (,), 1iP act a i n≤ ≤ , is computed as follows:

(,)
(,)

max{ (,)|1 }
i

i
j

score act a
P act a

score act a j n
=

≤ ≤
. (5)

512 G. Şerban, A. Tarţa, and G.S. Moldovan

In our view, based on Equation (5), higher probabilities are assigned to actions that
are the most appropriate to be executed.

The result of the agent's prediction is the action ar that satisfies Equation (1). We
mention that in a non-deterministic case (when there are more actions having the
same maximum probability P) an additional selection technique can be used.

2.3 LIA Agent Architecture

In Fig. 1 we present the architecture of LIA agent having the behavior described in
Section 2.2.

In the current version of our approach, the predictions of LIA are sent to an
Evaluation Module that evaluates the accuracy of the results (Fig. 1). We intend to
improve our work in order to transform the agent in a personal assistant of the user. In
this case the result of the agent's prediction will be sent directly to the user.

Fig. 1. LIA agent architecture

The agent uses AOP in order to gather information about its environment. The
AOP module is used for capturing user's actions: mouse clicking, text entering, menu
choosing, etc. These actions are received by LIA agent and are used both in the
training step (to build the knowledge base KB) and in the prediction step (to determine
the most probable next user action).

We have decided to use AOP in developing the learning agent in order to take
advantage of the following:

• Clear separation between the software system SA and the agent.
• The agent can be easily adapted and integrated with other software systems.

 A Learning Interface Agent for User Behavior Prediction 513

• The software system SA does not need to be modified in order to obtain the user
input.

• The source code corresponding to input actions gathering is not spread all over
the system, it appears in only one place, the aspect.

• If new information about the user software system interaction is required, only
the corresponding aspect has to be modified.

3 Experimental Evaluation

In order to evaluate LIA's prediction accuracy, we compare the sequence of actions
performed by the user U with the sequence of actions predicted by the agent. We
consider an action prediction accurate if the probability of the prediction is greater
than a given threshold.

For this purpose, we have defined a quality measure, (,)ACC ULIA , called

ACCuracy. The evaluation will be made on a case study and the results will be
presented in Subsection 3.3.

3.1 Evaluation Measure

In the following we will consider that the training step for LIA agent was completed.
We are focusing on evaluating how accurate are the agent's predictions during the
interaction between a given user U and the software application SA. Let us consider

that the user trace is 1 2, , ,
U

U U U
U kt y y y=< … > and the trace corresponding to the

agent's prediction is the following: 2() , ,
U

U U
LIA U kt t z z=< … > . For each 2 Uj k≤ ≤ ,

LIA agent predicts the most probable next user action, U
jz , with the probability

1(,)U U
j jP y z− (Section 2.2). The following definition evaluates the accuracy of LIA

agent's prediction with respect to the user trace tU.

Definition 4. ACCuracy of LIA agent prediction - ACC
The accuracy of the prediction with respect to the user trace tU is given by Equation
(6).

2
(, y)

()
-1

Uk
U U
j j

j
U

U

acc z

ACC t
k

=
∑

= ,
(6)

where

11 (,)
(,)

0

U U U U
j j j jU U

j j

if z y and P y z
acc z y

otherwise

α−⎧ = >⎪= ⎨
⎪⎩

. (7)

514 G. Şerban, A. Tarţa, and G.S. Moldovan

In our view, (,)U U
j jacc z y indicates if the prediction U

jz was made with a probability

greater than a given thresholdα , with respect to the user's action 1
U
jy − . Consequently,

()UACC t estimates the overall precision of the agent's prediction regarding the user

trace tU.
Based on Definition 4 it can be proved that ()UACC t takes values in [0, 1]. Larger

values for ACC indicate better predictions.
We mention that the accuracy measure can be extended in order to illustrate the

precision of LIA's prediction for multiple users, as given in Definition 5.

Definition 5. ACCuracy of LIA agent prediction for Multiple users - ACCM
Let us consider a set of users, U= 1{ , , }lU U… . Let us denote by

UT=
1 2

{ , , , }
lU U Ut t t… the set of successful user traces corresponding to the users from

U. The accuracy of the prediction with respect to the user Ui and his/her trace
iUt is

given by Equation (8):

ACCM(UT)= 1
()

i

l

U
i

ACC t

l
=
∑

.
(8)

where ()
iUACC t is the prediction accuracy for user trace

iUt given in Equation (6).

3.2 Case Study

In this subsection we describe a case study that is used for evaluating LIA
predictions, based on the evaluation measure introduced in Subsection 3.1.

We have chosen for evaluation a medium size interactive software system
developed for faculty admission. The main functionalities of the system are:

• Recording admission applications (filling in personal data, grades, options,

particular situations, etc.).
• Recording fee payments.
• Generating admission results.
• Generating reports and statistics.

For this case study, the set of possible actions A consists of around 50 elements,

i.e., 50n ≈ . Some of the possible actions are: filling in text fields (like first name,
surname, grades, etc.), choosing options, selecting an option from an options list,
pressing a button (save, modify, cancel, etc.), printing registration forms and reports.

The task T that we intend to accomplish is to complete the registration of a student.
We have trained LIA on different training sets and we have evaluated the results for
different users that have successfully accomplished task T.

 A Learning Interface Agent for User Behavior Prediction 515

3.3 Results

We mention that, for our evaluation we have used the value 0.75 for the thresholdα .
For each pair (training set, testing set) we have computed ACC measure as given in
Equation (6). In Table 1 we present the results obtained for our case study. We
mention that we have chosen 20 user traces in the testing set. We have obtained
accuracy values around 0.96.

Table 1. Case study results

Training dimension ACCM
67 0.987142
63 0.987142
60 0.987142
50 0.982857
42 0.96

As shown in Table 1, the accuracy of the prediction grows with the size of the

training set. The influence of the training set dimension on the accuracy is illustrated
in Fig. 2.

Fig. 2. Influence of the training set dimension on the accuracy

4 Related Work

There are some approaches in the literature that address the problem of predicting
user behavior. The following works approach the issue of user action prediction, but
without using intelligent interface agents and AOP.

The authors of [1-3] present a simple predictive method for determining the next
user command from a sequence of Unix commands, based on the Markov assumption
that each command depends only on the previous command. The paper [6] presents
an approach similar to [3] taking into consideration the time between two commands.

516 G. Şerban, A. Tarţa, and G.S. Moldovan

Our approach differs from [3] and [6] in the following ways: we are focusing on
desktop applications (while [3] and [6] focus on predicting Unix commands) and we
have proposed a theoretical model and evaluation measures for our approach.

Techniques from machine learning (neural nets and inductive learning) have
already been applied to user traces analysis in [4], but these are limited to fixed size
patterns.

In [10] another approach for predicting user behaviors on a Web site is presented.
It is based on Web server log files processing and focuses on predicting the page that
a user will access next, when navigating through a Web site. The prediction is made
using a training set of user logs and the evaluation is made by applying two measures.
Comparing with this approach, we use a probabilistic model for prediction, meaning
that a prediction is always made.

5 Conclusions and Further Work

We have presented in this paper an agent-based approach for predicting users
behavior. We have proposed a theoretical model on which the prediction is based and
we have evaluated our approach on a case study. Aspect Oriented Programming was
used in the development of our agent.

We are currently working on evaluating the accuracy of our approach on a more
complex case study.

We intend to extend our approach towards:

• Considering more than one task that can be performed by a user.
• Adding in the training step a second knowledge base for unsuccessful

executions and adapting correspondingly the proposed model.
• Identifying suitable values for the thresholdα .
• Adapting our approach for Web applications.
• Applying other supervised learning techniques (neural networks, decision

trees, etc.) ([9]) for our approach and comparing them.
• Extending our approach to a multiagent system.

Acknowledgments. This work was supported by grant TP2/2006 from Babeş-Bolyai
University, Cluj-Napoca, Romania.

References

1. Davison, B.D., Hirsh, H.: Experiments in UNIX Command Prediction. In: Proceedings of
the Fourteenth National Conference on Artificial Intelligence, Providence, RI, p. 827.
AAAI Press, California (1997)

2. Davison, B.D., Hirsh, H.: Toward an Adaptive Command Line Interface. In: Proceedings
of the Seventh International Conference on Human Computer Interaction, pp. 505–508
(1997)

3. Davison, B.D., Hirsh, H.: Predicting Sequences of User Actions. In: Predicting the Future:
AI Approaches to Time-Series Problems, pp. 5–12, Madison, WI, July 1998, AAAI Press,
California. In: Proceedings of AAAI-98/ICML-98 Workshop, published as Technical
Report WS-98–07 (1998)

 A Learning Interface Agent for User Behavior Prediction 517

4. Dix, A., Finlay, J., Beale, R.: Analysis of User Behaviour as Time Series. In: Proceedings
of HCI’92: People and Computers VII, pp. 429–444. Cambridge University Press,
Cambridge (1992)

5. Dix, A., Finlay, J., Abowd, G., Beale, R.: Human-Computer Interaction, 2nd edn. Prentice-
Hall, Inc, Englewood Cliffs (1998)

6. Jacobs, N., Blockeel, H.: Sequence Prediction with Mixed Order Markov Chains. In:
Proceedings of the Belgian/Dutch Conference on Artificial Intelligence (2003)

7. Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M., Irwin,
J.: Aspect-Oriented Programming. In: Aksit, M., Matsuoka, S. (eds.) ECOOP 1997.
LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

8. Maes, P.: Social Interface Agents: Acquiring Competence by Learning from Users and
Other Agents. In: Etzioni, O. (ed.) Software Agents — Papers from the 1994 Spring
Symposium (Technical Report SS-94-03), pp. 71–78. AAAI Press, California (1994)

9. Russell, S., Norvig, P.: Artificial Intelligence - A Modern Approach. Prentice-Hall, Inc.,
Englewood Cliffs (1995)

10. Trousse, B.: Evaluation of the Prediction Capability of a User Behaviour Mining
Approach for Adaptive Web Sites. In: Proceedings of the 6th RIAO Conference —
Content-Based Multimedia Information Access, Paris, France (2000)

	Introduction
	Our Approach
	Theoretical Model
	LIA Agent Behavior
	LIA Agent Architecture

	Experimental Evaluation
	Evaluation Measure
	Case Study
	Results

	Related Work
	Conclusions and Further Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

