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Abstract. This contribution presents our approach for an instrumented 
automatic gesture recognition system for use in Augmented Reality, which is 
able to differentiate static and dynamic gestures. Basing on an infrared tracking 
system, infrared targets mounted at the users thumbs and index fingers are used 
to retrieve information about position and orientation of each finger. Our 
system receives this information and extracts static gestures by distance 
classifiers and dynamic gestures by statistical models. The concluded gesture is 
provided to any connected application. We introduce a small demonstration as 
basis for a short evaluation. In this we compare interaction in a real 
environment, Augmented Reality with a mouse/keyboard, and our gesture 
recognition system concerning properties, such as task execution time or 
intuitiveness of interaction. The results show that tasks executed by interaction 
with our gesture recognition system are faster than using the mouse/keyboard. 
However, this enhancement entails a slightly lowered wearing comfort. 

Keywords: Augmented Reality, Gesture Recognition, Human Computer 
Interaction. 

1   Introduction 

Augmented Reality (AR) aims at a combination of reality and virtuality in a 
coordinated way. Major goal is the integration of virtual content embedded into the 
user's real environment as realistic as possible. Commonly, interaction between user 
and AR application occurs by use of non-natural interaction techniques (e.g. mice or 
keyboards). To achieve a fully immersive AR application, the system's output (e.g. 
visualization) as well as system's input has to adapt to the user's reality. Thus, AR 
applications have to comprehend the human's natural interaction techniques, e.g. 
speech or gestures. For this reason, our contribution focuses on the integration of a 
static and dynamic gesture recognition system for the use within AR applications. 

2   Motivation and Previous Work 

The most common way, which humans use for interaction in reality, is using speech 
or gestures. For the manipulation of a real object (e.g. translation) the user employs 
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one or two hands. This natural technique directly associates user's action and object's 
reaction. Manipulation of virtual objects in commonly used AR systems is 
accomplished by non natural interaction techniques (using mice or keyboards). 
However, this artificial technique does not directly associate user's action and object's 
reaction. Thus the user has to transfer abstract paradigms to actions (e.g. predefined 
mouse and keyboard input combinations resulting to a specific interaction). For 
eliminating this abstract interaction, AR systems should be able to offer natural 
interaction techniques, such as interaction by hand reducing the user's cognitive load 
and increasing the immersive character of AR. Therefore, our contribution focuses the 
integration of an automatic hand gesture recognition system in Augmented Reality.  

In general, there are two major approaches to implement automatic gesture 
recognition systems. Non-instrumented systems work with computer vision based 
algorithms, which extract information about the user's hand gestures from a visually 
captured stream (camera). This technique does not need additional hardware mounted 
at the user's hands, which have to be divided from the scene’s background robustly. In 
a second step, the position of the hand and its fingers are calculated and used for 
recognizing predefined gestures by use of statistical methods. Instrumented systems 
on the other side need additional hardware mounted at the user's hand. This hardware 
as part of a tracking system provides information about the hand position and 
orientation from which gestures are calculated. 

 In [3], a non-instrumented gesture recognition interface, which differentiates 
pointing, clicking and five static gestures, has been developed. Advantage of this 
approach is the non-intrusive nature of recognition, as there is no need for the user to 
wear any hardware. On the negative side, the hand has to be permanently visible 
inside the user's personal field of view (FOV) for recognition. An instrumented 
gesture recognition system using optical markers mounted at the user's hand, as 
developed by [1] implies the same disadvantage. Instrumented systems basing on 
non-optical tracking systems, such as those used in [4], eliminate the necessity of 
visible hands, but entail that additional hardware has to be worn by the user. 

As the non-instrumented approach does not depend on additional hardware, worn 
by the user, the interaction with the AR system is not limited. But this approach leads 
to the necessity of the visibility of the user's hand during interaction. When the user's 
hand within the camera's view is lost, no gesture information is available, which 
disables the user to interact with the AR system. This disadvantage entails big 
computational efforts and a limited radius of action for the user. Additionally, such 
systems are sensitive for changing environmental parameters such as lighting 
conditions or objects similar to a human hand. 

An instrumented approach limits the user by the necessity of wearing additional 
hardware. But this hardware increases the recognition rate of the user's hand, because 
tracking systems are optimized to track this hardware and gather information about 
their position and orientation. Those systems are more resistant for changing 
environmental parameters. Instrumented approaches, using non vision based tracking 
systems offer the advantage that the hand has not to be visible for a camera 
permanently. Such non vision based systems come with larger hardware cutting down 
the radius of interaction and wearing comfort of the user. 
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3   Implementation 

To avoid occlusions endangering the continuous visibility of user's hands, our 
approach bases on an instrumented infrared (IR) tracking system (ITS) containing a 
six camera array [2]. Originally, this tracking system has been implemented for 
measuring the user's position and orientation for AR applications. Now this ITS setup 
enables additional tracking of the user's hands at the same time. To keep down the 
intrusive character of instrumented systems, we use two light-weighted IR-tracking 
targets (IRTTs). These IRTTs are mounted at the user's finger to receive the position 
and orientation. Our ITS delivers tracking data in temporally and spationally high 
resolution. For a more flexible interaction, both hands are used for gesture 
recognition. Due to the human's way of gesturing, static (e.g. pointing) as well as 
dynamic gestures (e.g. clapping) will be recognized. 

For our gesture recognition system, we differentiate static and dynamic gestures. 
Static and dynamic gestures differ in the angle between the user's fingers. Static 
gestures are defined by the angle between the fingers and do not vary in time, e.g. 
pointing or grasping. Dynamic gestures are marked by changing angles between 
fingers during elapsed time, e.g. waving or drawing letters in the air. The position of 
the hand can vary both in static and dynamic gestures during the time. 

Our gesture recognition system is able to differentiate static and dynamic gestures. 
In our demonstration application, the user is able to point, grasp and scale by using 
static gestures. Pointing and grasping is performed by using one hand (either right or 
left), scaling by using both hands. Pointing implies a right angle between user's thumb 
and index finger (index finger points on the object), while other fingers are angled. 
Thumb and index finger are formed to an “O” (tips of both fingers are touching) for 
grasping an object, other fingers are angled again. For scaling, the user grasps the 
object with both hands in a defined minimum distance and pulls them apart.  

Currently our demonstration application only recognizes two dynamic gestures, 
which are performed by either right or left hand drawing a symbol “X” or “O” in the air. 

The subsequent gesture recognition systems bases on a master-client architecture 
and consists of three main parts (see Fig. 1.). 
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Fig. 1.  Schematic Overview                Fig. 2. IRTTs mounted at user’s fingers 
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The ITS delivers information (position and orientation) about IRTTs worn by the 
user via UDP messages to the client. These IRTTs consist of four reflecting spheres 
fixed at a flexible tape. This tape ensures wearing comfort for the user. The first IRTT 
is worn at the thumb and the second at the index finger of the right hand (see Fig. 2.). 
The third and fourth is worn at the left hand arranged in the same way.  

The Gesture Caption and Recognition Module (GCRM) acting as client receives 
this information and classifies observed data into static and dynamic gestures. Static 
gestures, such as pointing, can efficiently be classified by applying an Euclidean 
Distance measure. If the absolute mean difference of at least two position vectors is 
above a certain threshold, the recording of a dynamic observation is started. It is 
stopped if this difference is under the threshold again. In order to smooth the 
observation with variable length, a spline interpolation is applied. Hereafter an 
unknown gesture can be identified by finding the Hidden Markov Model (HMM) with 
the highest likelihood [5]. 

For the training phase of the above mentioned reference vectors and HMMs, a set 
of several samples from ten people has been gathered. Thus, the resulting gesture 
recognition system can be considered as person independent. Due to its low 
dimensionality and marginal preprocessing the entire recognition is running in real-
time and has a very low latency so that it can be used on-line within the demonstrator. 
Any recognized gesture is sent as an UDP message to the Event Manager (EM) acting 
as master, implemented as a C# class. Depending on to recognized gesture, the EM 
raises an event, not only containing information about the gesture but also its 
confidence. This event can be processed by any connected application. 

3.1   Gesture Caption and Recognition Module 

The GCRM is the core recognition module receiving its data from the ITS tracking 
system and sending the decoded gestures to the EM via network (see Fig. 1). 

As a consequence of the obeyed IRTT system, the fingers' positions and angles can 
be observed directly, i.e. the x-, y- and z coordinate as well as the three angles roll, 
azimuth and elevation. Thus no feature extraction technique has to be applied 
enabling a fast preprocessing. However, aiming at robust features including position 
and velocity, a Hermitian Spline Interpolation (HSI) is performed on the measured 
tracking data. 

Besides a feature smoothing, this step is motivated in order to fill an invalid or 
missing tracking feature 

interp.P mainly caused by occluded infrared markers. These 

faulty observations arise when not both fingers' targets are visible in more than one 
camera. Otherwise these faulty observations would harm the confidence of the 
subsequent recognizers. 

Aiming at filling a hole by reconstructing a valid gesture trajectory, a curve 
between the ends of the last visible observations is computed on the basis of the two 
points (

21, PP ) and their tangents (
21,TT ). 

The velocity can also be reconstructed correctly, since a distance change is 
represented by the lengths of the tangents. 
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The HSI bases on a linear combination of four cubical elemental functions with 
start and end points and can be expressed in the following matrix expression, where 
s  ranges from 0 in 

1P  to 1 in 
2P : 
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Since gestures are represented by their dynamic properties, the absolute position or 
rotation of the finger or hand is not significant and carries no further information. 
Therefore the feature vector has to be normalized by transforming it into the global 
origin. This can be achieved by deriving the relative position and angle change of all 
further samples with respect to the first sample. 

In a next step this improved feature stream has to be segmented and classified into 
static and dynamic gestures. In order to decide if a relevant dynamic gesture starts, 
respectively ends, a threshold based decision is derived from the continuous data 
stream. If the magnitude of the difference of two previous positions is above the speed 
threshold cm/s 18speed =T  at least the next ms350duration =T  are considered to be 

a separate feature. When the gesture velocity is below the threshold 
speedT  the segment 

is assumed to have ended. 

3.1.1   Dynamic Gestures 
Continuous classical left to right Hidden Markov Models (HMMs) with their 
excellent dynamical time warping capabilities and recognition performance are 
utilized to handle dynamic gestures [6]. With this paradigm the robust recognition of 
gestures is guaranteed no matter how fast or slow they are expressed. 

An arbitrary HMM λ  representing one certain gesture class is completely 
described by its number J  of internal emitting states 

jq , a state transition matrix 

(
ija ) including the non emitting start and end state (

0q and
1+Jq ):, and the (continuous) 

production probability vector [ ]T
Jbbb ...1= . 

The elements of the matrix A , 
)1( +jqjqa  represent the probabilities of being in state 

)1( +jq  after having been in state 
jq  (1st order Markov Model). 

The elements 
jb  in a certain state j  for a D -dimensional observation 

jx  are given 

by a multivariate Gaussian distribution consisting of a mean value vector 
jμ  and a 

covariance matrix ∑ j
: ( )

( )
( ) ( )∑=

−
−−−

∑
∑

1

2

1

2

1
, j jj

T
jj xx

j

Djjjj exb
μμ

π
μ

, describing the 

probability of a given observation or feature x  being in a certain state 
jq . 

In our case, a dynamic gesture is represented by an observation sequence X . This 
feature sequence X  has to be at least a piecewise stationary signal and consists of the 
single observations or feature elements [ ]TxxX ...1= . 
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The unknown parameters in A and b  have to be estimated prior to the recognition 
process. For this purpose the well-known Baum-Welch-Estimation procedure [6] can 
be applied together with an appropriate amount of positive examples, here 30 from 10 
different subjects for each class. 

An unknown gesture can be classified by the following maximum-likelihood 

decision using all previously trained models λ : ( )λλ
λ

XP
GESTURES

* maxarg
∈

= . 

Herein X  represents the unknown gesture, λ  one class out of the set of all prior 
trained gestures and *λ  the best matching model out of this set, which is the winner.   

3.1.2   Static Gestures  
Static gestures, such as pointing or grasping, are represented by the distance and the 
angle between the thumb and the index finger. They can efficiently be classified by 
applying the Euclidean Distance measure.  

In order to train the prior defined set of classes, the static finger positions of several 
subjects are captured. The class is then represented by the mean of these reference 
examples. Unknown vectors can be classified by finding the class with the minimal 
distance to it.  

 

Fig. 3. Gestures used in our recognition system (grasp, point, dynamic X, dynamic O) 

3.2   Event Manager 

The EM is implemented in form of a C# class, which can be integrated in any 
application. The EM provides an event driven architecture as well as general 
functions and properties concerning the gesture recognition. High level functions, 
such as connecting to the GCRM, are provided for easy use of any developer. If a 
UDP connection between EM and GCRM is established, any information of the 
GCRM is sent by a UDP message to the EM. 

Thus, the application is able to connect to events raised by the EM, if any gesture is 
recognized by the GCRM. Any gesture of the left or right hand (static and dynamic) 
as well as any position and orientation of any finger can be retrieved by the 
application in real-time. 

Basing on this data the subsequent application logic can be controlled by our 
gesture recognition system. 
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4   Evaluation 

Aiming at evaluating our system we performed a short system evaluation, which 
focused on the comparison of three interaction paradigms: interacting in the real world, 
AR with a mouse/keyboard, and AR with our gesture recognition system. Our main 
attention was to compare the execution time of similar tasks, the intuitiveness of the 
underlying system and the interaction comfort. In order to keep the evaluation 
straightforward, we decided, to only examine interaction by using the grasping gesture. 

4.1   Evaluation Setup and Procedure 

For testing our developed recognition system we designed a demonstration 
application, which integrates the system capabilities and acts as an evaluation 
procedure. 

This demonstration application offers virtual building blocks integrated in AR 
(similar to kid's toys, see Fig. 4.). As in a real kit our virtual kit offers different 
building blocks, which can be used to compose a complex figure. 

Manipulation of real building blocks is done by using hands, thus our system can 
be used in a reasonable way. All virtual building blocks can be manipulated by using 
the real hand simulating manipulation of a real kit in a realistic way. 

This virtual kit consists of eight virtual building blocks separated in four different 
kinds of building blocks. At the beginning of the demonstration application these blocks 
are arranged side by side. All blocks can be grasped and displaced by using the grasping 
gesture of our system. At the moment of grasping a block is bound to the hand adopting 
movement and orientation of the hand. After releasing, the block is bound again to the 
world coordinate system. In that way, manipulation of each building block is possible. 
As the real kit, our virtual kit offers the opportunity to create complex models by using 
the hands only. All building blocks can be reset by use of the dynamic gesture “O”, in 
case of deleting all blocks, gesture “X” can be used. For a better depth perception the 
fingers are covered with occlusion models. In that way, the user is able to differentiate 
hand position before and behind the virtual object (see fig. 5.). 

 

    

Fig. 4. Virtual building blocks composing           Fig. 5. Grasped virtual building block with 
a complex model                                               occluding thumb 
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For our evaluation, the demonstration application was limited to grasping only, 
since there is no possibility for resizing the real building blocks or the manipulation 
by dynamic gestures (e.g. deletion). 

For a comparison of the three interaction paradigms we have chosen the virtual 
building blocks application. Basing on a real kit with building blocks, used for the 
part of interaction in reality, virtual models of these blocks were created (see fig. 4.). 
These models were loaded into the AR application. The subject sat in front of a desk 
on which the real respectively the virtual blocks were arranged. During the start the 
position of the real and virtual blocks was the same in order to assure the same 
conditions for every test run. The first tested system was the interaction in reality, 
thus, no additional hardware had to be worn by the user. The second system was AR 
using a mouse/keyboard for interaction. This system offered grasping by clicking a 
button and translating by moving the mouse. For differentiation of the three axes, the 
mouse input was combined with keyboard input in order to distinguish all three axes. 
Visualization was done by a Head-Mounted Display (HMD) worn by the test person. 
The third system was our gesture system demanding additional targets, which have 
been placed on the thumb and index finger of the user. Visualization was also done 
using a HMD. 

At the beginning of the test, a short general introduction to AR was given to each 
subject. The users had five minutes to experience the functionality of each system and 
get comfortable with wearing a HMD and the targets mounted at their fingers. 

The second part was the core evaluation task, which consisted of arranging the 
building blocks to a predefined model. This task had to be performed consecutively 
with all three different systems by the user while the needed execution time was 
recorded. After each part, a short questionnaire concerning a rating of intuitiveness 
and comfort had to be filled out by the subject. 

4.2   Results 

15 subjects, with 10 males among them, participated in our study. The average age 
was 25 years. The mean values of their ratings and task execution times are 
summarized in Tab. 1. 

Table 1. Subjects’ mean rating and task execution time 

Reality Mouse/Keyboard Gesture Recognition
Task Execution time in [s] 9 89 57
Intuitivness 5 1,8 4
Comfort 5 1,9 1,5

 

The results show that the fastest way to solve the given task is the interaction in 
reality. The average task duration time was 9 seconds. Interaction by mouse/keyboard 
turned out to be slower than interaction with our gesture recognition system. Average 
time using our system was 57 seconds, whereas mouse/keyboard required 89 seconds.  

The test persons rated the interaction in reality as the most intuitive way to solve 
this task with a score of 5. Our gesture recognition system was rated with a score of 4, 
which states that gestures are more intuitive than using the mouse and keyboard. 
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Furthermore, reality turned out to be the most comfortable way of interaction. 
Interacting with mouse/keyboard and our gesture recognition system was rated rather 
low with 1.9 and 1.5 points. 

These results show that using our gesture recognition system lowers the average 
task duration time by a third for this given task compared to the mouse/keyboard. 
However, this enhancement comes along with a lack of comfort, caused by additional 
hardware, which has to be worn by the user (IRTTs and HMD). As expected, the 
interaction in reality is still by factor six much faster than interaction in an augmented 
environment. Additionally it has turned out that the interaction in reality is the most 
intuitive and comfortable way of solving the given task. 

5   Conclusion and Future Directions 

In this contribution we presented an automatic gesture recognition system. This 
system is able to recognize static gestures (e.g. pointing or grasping) as well as 
dynamic gestures (e.g. drawing letters in the air). Basing on a master-client structure 
the gesture caption and recognition module receives tracking data of a connected 
infrared tracking system originated from Augmented Reality applications. This 
combination enables an easy integration into Augmented Reality. The user wears two 
light weighted infrared tracking targets at his thumb and index finger. Based on these 
captured data, which include the position and orientation of the targets, a feature 
vector is gained by a subsequent hermitian spline interpolation. The recognition 
module classifies unknown static gestures by calculating the nearest neighbors or 
Hidden Markov Models for the classification of predefined dynamic gestures. 

Our presented system was benchmarked by a short evaluation procedure based on a 
construction task focusing on a comparison of the following three interaction 
paradigms: reality, Augmented Reality using a mouse/keyboard, and our developed 
system. The valuated parameters were average task execution time, intuitiveness, and 
comfort of interaction. As expected the results of this study proved that interaction in 
reality is the fastest, the most intuitive, and the most comfortable way of interaction. 
Using our gesture recognition system the average task duration time was lowered by a 
third compared to interaction by mouse/keyboard. It further increases the intuitiveness 
of the construction task. However, this enhancement comes with a slightly lowered 
wearing comfort, caused by additional hardware that has to be worn by the user. 
Therefore our presented way of human-machine interaction is the most preferable 
way to be used within AR applications. 
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