
Challenges in Exception Handling in Multi-Agent Systems

Eric Platon1,2 and Shinichi Honiden1

1National Institute of Informatics, Sokendai
2-1-2 Hitotsubashi, Chiyoda

101-8430, Tokyo, Japan

{platon,honiden}@nii.ac.jp

Nicolas Sabouret2
2Laboratoire d’Informatique de Paris 6

8, Rue du Capitaine Scott
75015 Paris, France

nicolas.sabouret@lip6.fr

ABSTRACT
Exception handling has received little interest in the agent
community despite its challenges to build more reliable agent
systems. In this paper, we survey existing work on exception
handling for Multi-Agent Systems. We tried to identify in
the present literature what research directions are required
and likely to improve current techniques. In particular, we
think that the agent proactivity and context in the systems
are potential characteristics to exploit for agent-level excep-
tion handling.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Distributed Artific-
ial Intelligence—Multiagent systems; D.2.2 [Software]: De-
sign Tools and Techniques

General Terms
Design, Reliability, Theory

Keywords
Agent-Oriented Software Engineering, Exception handling,
Multi-Agent Systems

1. INTRODUCTION
Exception handling in Multi-Agent Systems (MAS) dif-
fers in many ways from exception handling in sequential
and traditional distributed systems. Tripathi and Miller ex-
posed the case of mobile agents in a MAS context. Excep-
tions conditions can be raised for ‘standard reasons’ (e.g.,
zero divide), but also due to agent host node failure, secu-
rity, and communication issues [21]. Beyond, the study of
MAS sets forth the need to distinguish other types of ex-
ceptions that lie at a different abstraction level. Agents are
indeed thought of as autonomous entities. The autonomy at-
tribute entails some form of intelligent behaviors that must
be engineered in applications. Such behaviors introduced

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SELMAS’06, May 22–23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

by the designer in agents are source of both standard and
agent-specific exception conditions. Although the definition
of agent-level exception handling has not been formally de-
termined yet, typical examples are inconsistencies in agent
reasoning mechanisms, flawed knowledge, opportunities, or
unexpected exchanges in interaction protocols [9].
The issue in this paper is that current work and exception
handling facilities in MAS appear insufficient in facing the
agent paradigm and the requirements of flexibility, robust-
ness, and reliability. Little work recognizes the importance
of exception handling in MAS, and the existing research has
two shortcomings: work is either too pragmatic and misses,
in our sense, part of the agent paradigm; or work is too the-
oretic and does not meet computing and programming con-
straints. Also, exceptions are mostly thought of as problems
in the execution of the system, even though they were con-
sidered early as opportunities for monitoring [3]. In MAS,
exceptions as opportunities are actually frequent and some-
times desired to improve the performance and flexibility of
the system [15].
In this paper, we propose an explanation of what excep-
tion handling should be in MAS and why current achieve-
ments are unadapted. Our approach relies on a survey of the
exception handling literature in the perspective of the agent
paradigm. Although our survey cannot claim to be exhaus-
tive, we think it encompasses most of the relevant research.
We exploit this survey to identify the issues of current excep-
tion handling techniques in MAS, and we present research
directions of interest based on our analysis.
The organization of the paper is as follows. Section 2 sur-
veys the related or relevant literature for exception handling
in MAS. Based on this survey, we identify agent proactiv-
ity and context as relevant research directions in section 3.
In section 4, we describe a series of experiments we con-
ducted to illustrate agent-level exception handling in an ex-
ample application. Finally, we summarize in section 5 the
challenges for exception handling in MAS and explain our
intentions for future work.

2. RELATED WORK
The literature on exception handling for MAS remains
scarce despite the challenges identified by Tripathi and
Miller [21] and Klein et al. [7]. We discuss hereafter
research work along two dimensions to emphasize the
characteristics that we consider important in exception
handling.

• Degree of distribution of the exception handling frame-
work: MAS are typically distributed (physically or log-

45

ically), but both central and distributed frameworks
were designed.

• A scale that ranges from object (passive units of an
application) to agents (autonomous units), inspired by
the view on autonomy from Odell [12].

The two dimensions allow us to classify related work as
shown in figure 1. The classification distributes the work
that we consider representative. The star mark highlights
work that focuses on benevolent agents (i.e., willing to co-
operate and not malicious).

2.1 The Guardian
In the bottom left corner, Miller and Tripathi occupy the
area of work dedicated to object-oriented and reactive agent
systems in a centralized way. Their approach named ‘the
guardian’ is a set of software constructs represented as an
agent to handle exceptions in a distributed-object system,
with applications in the mobile agent context [21]. The ap-
proach is centralized as all agents refer to the guardian in
case of problem. It is not totally centralized though, since
a set of guardians can be allocated a subset of agents only
(consequently the box on figure 1 is raised toward distrib-
uted approaches), but this model does not refer to any co-
ordination mechanism among guardians.
The advantage of the guardian is to deal with exceptions
in a similar way as for sequential systems. It focuses on the
software aspect of the agent and it lets aside the reasoning
parts (that is why the approach does not deal with proac-
tive agents). A detailed example of exception handling is
presented by Miller and Tripathi where the direct relation-
ship with Java facilities can be observed [10]. The guardian
assists a client-server system that implements the ‘primary-
backup’ approach to deal with server-side failures [20]. If
the primary server fails, a ‘global exception’ is raised, so
that the guardian handles the error by asking the backup to
take the role of primary, and by starting a new backup.
We think the guardian does not capture the characteristics
of openness and agent encapsulation in the MAS paradigm.
Open MAS accept at runtime the addition and removal of
agents or any other elements in the system. There are min-
imal assumptions on agents and other elements that only
need to verify a set of interfaces. In particular, the agent
architecture can be of any kind, provided the interfaces are
verified. One technical consequence is that open MAS are
loosely coupled systems. The guardian initially targets dis-
tributed objects, so that it appears too tightly coupled for
an agent system architecture. Another consequence of open-
ness is the spectrum of ‘agent profiles’. Malicious agents can
be part of open MAS (which makes research on MAS diffi-
cult in general), along with benevolent agents. The guardian
approach assumes that agents are benevolent, although secu-
rity concerns are considered, and it does not cope currently
with arbitrary agent profiles.
The encapsulation is a closely related matter as it guaran-
tees some autonomy to the agent, which can ignore messages
explicitly or answer false results. In other words, agents have
a private state and they appear as ‘black boxes’ to others. In
the guardian approach, access to the agent state is granted.
Typically, the guardian is allowed to ‘command’ an agent,
e.g. to wait or to restart a task, which does not verify the
encapsulation and autonomy of agents.

2.2 The Sentinels
In the bottom right corner of figure 1, the sentinels ap-
proach from Haegg is applicable to agents with more proac-
tive behaviors than the guardian [4]. Sentinels are agents in-
troduced in a MAS application to provide a fault-tolerance
service layer. The approach has been extended in the work of
Klein et al. with an exception handler repository [6, 7]. The
sentinels appear as a centralized solution, as explained by
Haegg in its original work. However, it adds communication
capabilities among agents that extend the guardian model
toward a distributed framework. The sentinels were devel-
oped in a MAS research and it features more agent-specific
exception handling capabilities. For example, sentinels are
able to deal with problems in the agent beliefs, whereas the
guardian focuses on software aspects. A detailed application
from Haegg is a system and its sentinels for a power distri-
bution company. Application agents negotiate energy con-
sumption credits for load-balancing on an electric grid. Sen-
tinels can detect and remedy to erroneous behaviors in ne-
gotiation processes by inspecting ‘checkpoints’ in the agent
code.
Nevertheless, sentinels also violate assumptions of the
agent paradigm. Encapsulation is not respected since
sentinels can access and execute code in the so-called
‘agent-head’ [4], which should be a black-box. Similarly to
the Guardian, agents are supposed benevolent and this
hypothesis does not scale to open MAS.

2.3 Stigmergic systems
The upper central part of figure 1 refers to stigmergic sys-
tems [1]. Stigmergy is an interaction model where agents
put marks in the environment (messages with no intended
recipient) that other agents exploit to determine their next
actions. Stigmergy models and allows to simulate the be-
havior of some social insects such as termites. One termite
starts to build a nest by putting a piece of material on the
ground (a mark). Other termites use this information to
determine where to pile the piece they carry. Stigmergy is
thus an indirect interaction model as there is no direct mes-
sage passing. Stigmergic systems are shown to be particu-
larly robust to exceptions such as the death or the failure of
agents [13]. The robustness of these systems is mostly due
to the high redundancy of agents, which reminds the choice
for modularity of software architectures that could limit the
impact of exceptions in sequential systems. There is little
work on stigmergic systems that discusses robustness issues,
and no work on exception handling to our knowledge. Al-
though the robustness inherent to such systems entails that
no significant advance might be expected in exception han-
dling, recent extensions of stigmergic systems to proactive
agents are to be demanding for such techniques [14] (that is
why the box on figure 1 stretches toward proactive agents).

2.4 SaGE
The upper left part of figure 1 groups approaches that
deal with objects and reactive agent exceptions in a distrib-
uted way. In the case of agents, Souchon et al. proposed the
SaGE1 framework [18]. SaGE completes the exception han-
dling system of Java with facilities to handle agent-specific
issues. In particular, SaGE provides a mechanism for ‘con-
certed exception handling’ to resolve errors depending on

1We could not figure out whether SaGE is an acronym or
not.

46

Object Reactive agents Proactive agents

Centralized
approaches

Distributed
approaches

Miller and Singh

Potential
For Stigmergy

Haegg
Klein et al.

Mallya et al.Souchon et al.

Figure 1: Related work over two dimensions: (x-axis) object to agent scale, (y-axis) degree of distribution.
The star marks approaches for benevolent agents.

several and distributed agents. Souchon describes an exam-
ple of such exceptions in a travel reservation scenario where
service providers encounter a failure. When few providers
fail, limited results can be generated in a degraded mode.
Too many failures compared to the number of providers trig-
ger a specific method in the agent code for concerted excep-
tion handling to terminate the transaction for the reserva-
tion properly.
Although proactive agents can leverage this approach (as
demonstrated in the aforementioned paper), we classify this
work for reactive agent exceptions only, since SaGE targets
agents as software components rather than proactive enti-
ties. In this perspective, SaGE does not address agent spe-
cific issues due to their proactive abilities. Compared to
the previous work presented in this section, SaGE complies
further with the agent encapsulation hypothesis. However,
SaGE does not scale to open system issues as it also assumes
benevolent agents only.

2.5 Proactive agent exceptions
The last case we could distinguish in the literature is in the
top-right corner of figure 1. The work of Mallya and Singh
represents the little work that has been done in this area.
They deal with exception handling for proactive agents in a
fully distributed way [9]. This approach relies on agent in-
teraction protocols named ‘commitment protocols’. When
such a protocol is not respected along agent interactions,
an exception is raised and two formal methods allow agents
to handle expected and unexpected ones. Expected excep-
tions are foreseen by the designer who could write a specific
handler (here, another protocol), which is the most common
construct if we consider, e.g., the try{}catch() statements
in Java. Unexpected exceptions are not coded beforehand
and some constructs allows to dynamically build a handler
from a basic set.
This method has been illustrated for a hotel reservation
protocol. An expected exception can be the case where there
is no vacancy in the hotel. The system design usually foresee
this issue and a specific handler is available in the system to
deal with it. An unexpected exception can be the delegation
of a reservation to another hotel in case of fire. At design
time, the handling of such an exception might not have been
prepared. Mallya and Singh propose to rely on an external

exception handler repository to fetch a specific handler and
merge it automatically with adequate system protocols.
Although this approach is very attractive and verifies the
agent paradigm (encapsulation and openness), it still re-
mains theoretical and it does not rely yet on validated re-
sults, even in later work [8]. The current issues seem the
computational complexity of an handler selection and the
dynamic assembly of new handlers.

2.6 Survey conclusion
Fig. 1 shows the spread of endeavors in dealing with ex-
ception handling in the MAS community, and the potential
of some approaches. In the broader research on exception
handling in Software Engineering, the approach for MAS
can be compared, for instance, to the work of Murata and
Borgida, where agents and humans are equivalent [11]. In
the present paper, we rely on this body of work to identify
research directions for MAS, toward a distributed approach
for proactive agents that both respects the agent paradigm,
as Mallya’s work, and remains practical, with the experience
gained from the other papers cited in this section.

3. CHALLENGE AND RESEARCH
DIRECTIONS

MAS call for specific exception handling to deal with the
autonomy of agents and their distribution. In this section,
we elaborate on the major characteristics of MAS to identify
challenges and research directions in proposing an appropri-
ate handling facility.

3.1 Full-fledged MAS
In this paper, we consider full-fledged MAS as follows.

• Agent paradigm respect: The two main characteristics
of agents are encapsulation (the black-box image) and
autonomy.

• Distributed systems: The general case refers to multi-
process systems that span over an arbitrary number
of machines, or to multi-threaded systems that run on
one machine.

• Open systems: Agents are not supposed to be collab-
orative or benevolent, encapsulation is enforced, and

47

the system infrastructure is reduced to a minimal set
of services and their (standard) interfaces.

In Fig. 1, such properties define systems that would lie in
the upper right corner. From our survey of related work,
it appears that no approach exists that can deal with such
system properties simultaneously and concretely. The sur-
vey refers to these three properties, but the current achieve-
ments are either abstract and difficult to engineer, or lack
of generality as would be expected for a work similar to
Goodenough [3]. In other words, the techniques exposed on
figure 1 should be a foundation for the development of excep-
tion handling mechanisms that address full-fledged systems.

3.2 Characteristics of exception handling for
MAS

In order to comply with the properties of MAS and their
engineering, appropriate exception handling mechanisms
should verify explicitly with the following properties.

• Generic: At first a set of recommendations for excep-
tion handling in MAS so as to be instantiated for dif-
ferent system requirements (e.g. business process, sim-
ulation) and languages.

• Concrete: The technique should allow to engineer con-
crete systems. MAS often rely on social or biological
metaphors that should be interpreted in engineering
terms.

• Non intrusive: Respect of the agent paradigm. Excep-
tion mechanisms external to agents should not control
or inspect freely agent internals.

• Distributed: Agents are autonomous and they should
handle exceptions by themselves or among groups of
agents. Centralized handling can also be considered
when necessary and compatible with the other prop-
erties of this list.

• Redundant: The presence of non-collaborative agents
in open systems entails a need for heuristics to find
‘alternatives’ when one cannot handle an exception.

Concerning the two first requirements, we tend to think
that an appropriate work would be similar to the approach
of Goodenough with the development of extensions to ex-
isting agent frameworks, similarly to Souchon et al. [3, 18].
The agent community already proposes several languages
and platforms whose exception handling facilities are mostly
limited to usual mechanisms inherited from Java for the es-
sential part [2, 5]. Genericness and concreteness are thus to
be potentially useful to extend them. These two first ones
are left for future work as they directly refer to the expected
achievements a MAS exception handling solution.
The three last requirements are specific to MAS and our
study led us to considering two characteristics of agents to
treat exceptions at their level, namely their proactivity and
their contexts. In the remainder of this section, we focus on
the three last requirements.
Non-intrusive mechanisms lead to exploit the proactivity
of agents for handling agent-level exceptions. The example
of the guardian exemplifies an approach that is intrusive in
the sense the guardian selects the behavior of agents. A
mechanism that relies on the agent capability to reason on

exceptions (proactivity) seems appropriate to verify the non-
intrusion property.
Considering the properties of distribution and
redundancy, history of exception handling shows that an
important system feature is modularity, as the syntactic
units of Goodenough or, later, the object-oriented
design [3]. Modularity in MAS is due to agents having only
partial knowledge about the whole system. This agent
‘local scope’ means that agents have only access to a
subset of their environment that we call agent context. The
work of Miller and Tripathi on the guardian and the
work of Haegg on the sentinels show that the context
can be efficiently exploited in distributed systems to
determine appropriate exception handlers [10, 4]. In their
models, the context refers to the information available to
executing processes (e.g. fields of an object). In the agent
paradigm, the notion of context is related to information
and resources available in the agent environment [22]. In
other words, a MAS exception handling mechanisms
should allow agents to leverage information and resources
in their contexts. Agent proactivity then permits to reason
with extended data and potentially be able to handle or
delegate an exception.

3.3 Potential Research Directions
The result of our current analysis is that research on
the agent context would benefit to exception handling tech-
niques in MAS. The current agent context is in practice
reduced to information received by message-passing, which
is the usual way of interacting among agents. However, the
number of messages passed to an agent is decided by the
protocols authorized for this agent. It means that a given
agent only knows about its context through such a restricted
set of messages. Although these messages are usually suf-
ficient for activities under normal conditions, they contain
little extra information that agents can exploit in case of ex-
ception (either reactively or pro-actively) to try to terminate
properly or resume their execution.
For the above reasons, we think that a potential research
direction is the design of techniques to enrich the agent con-
text automatically at runtime with application-dependent
information. Enriching the context with care should yield
timely information to treat some exception conditions or or-
ganize a concerted resolution [10, 18]. A simple example
of enriching the context is an agent-based supply chain sys-
tem. An agent A of the chain receives orders from several
agents and delegates some sub-tasks to some others. A ba-
sic context of A consists of information on the identity of
acquaintances. In case of failure of one acquaintance, A
cannot deduce such an event from the context and it must
be explicitly informed by another agent or a service of the
infrastructure. A mechanism could however automatically
enrich the context with agent state information, so that A
would just check it. Such an approach would verify the cri-
teria we identified for full-fledge MAS. The issues for such
direction would then be how to build the right context dy-
namically, and how agents can exploit it in an efficient man-
ner. We think that exception handling in MAS should con-
tinue this line of work: Exception handling in MAS would
be the combination of exception handling for sequential and
distributed systems [21], and the exploitation of a context
with a rich semantics adapted to agents.
A second research direction is closely related to the first

48

one. When the context provides extra information, agents
must be able to exploit them, so that adapted reasoning
mechanisms are necessary. Several architectures have been
proposed for proactive agents and it seems that none inte-
grates such mechanisms, even though the KGP model allows
to treat ‘unexpected messages’ that could be thought of as
exceptions [19]. Another area of work focuses on goal-driven
agents that execute hierarchies of plans. When a plan fails
in realizing a goal, alternative plans are deduced by explor-
ing the hierarchy. In addition, exceptions can be faults as
in any software, but the cases of opportunities are frequent
in MAS [15] and it requires specific reasoning schemes to
distinguish them from errors to exploit them adequately.
Agent proactivity is therefore a relevant research direction
to explore advanced but efficient mechanisms for exploiting
opportunities.
The last research direction is an issue of integration of
different exception techniques. The related work shows sev-
eral endeavors for extending the techniques for sequential
and distributed systems with agent-specific ones. However,
the requirements we presented in this section emphasize the
paradigm shift between agents and traditional techniques.
For example, the technique of Mallya and Singh [9] appears
difficult to integrate with traditional ones. Furthermore, an
interesting research direction would be to study when some
exceptions at the agent-level can imply lower-level excep-
tions, and conversely (e.g., when exceptions are raised, they
are sometimes wrapped or transformed into more adapted
exceptions). Multi-level exceptions might create intricate
and powerful situations, but we envision that formal meth-
ods such as process algebra may be necessary to deal with
such cases.

4. PRELIMINARY EXPERIMENTS
Our ongoing work follows the research directions identi-
fied in this paper since recently. We are convinced that
some important results can be obtained from these possi-
ble tracks. In our latest endeavors, we developed an agent-
oriented event notification system that enriches the context
of each agent with ‘potentially relevant information’ for their
activities. Early results in preliminary experiments show
that agents can leverage the enriched context to take ad-
vantage of some situations [15].
The experiments were conducted on an electronic market
place developed for trading agents (type ‘bazaar’). The pur-
pose of the system was to show how often agents can face
exceptional events and how they can exploit these events
for their own benefits. In the market, buyer and seller
agents follow the Contract Net protocol (CNet) to trade
some items [17]. This protocol has a strict order: Agents
cannot join a running protocol and they must either create
their own CNet or wait for being invited. The agent context
is limited to the information received by the messages spec-
ified in the protocol. Our experiments first runs the system
with this capabilities only.
In another series of runs, the agent context is enriched
with two types of information. Overheard messages and
agent states are introduced dynamically by a specific service
depending on the market topology (called environment [16]).
The topology defines how agents are related, i.e. agents that
trade the same type of items (either buyer or seller) are in
the same neighborhood of the topology. An agent can thus
access in its context to the information in messages from

the agents in the CNet it has joined, to information in mes-
sages of other agents in the neighborhood (overhearing), and
to state information of nearby agents. Overheard messages
allow agents to be aware of opportunities. If a deal fails
exceptionally, an agent is further aware of potential agents
to contact. State information is the list of items an agent
is interested in. In particular, seller agents can know which
buyers should be contacted after a too long and exceptional
idle period.
In these experiments, agents process in order the messages
they receive. The reasoning capabilities of agents are reac-
tion rules adapted to the CNet and to the enriched context.
For example, sellers react respectively to a message and an
overheard message with the following rules.

Algorithm 1 Two example rules of seller agents

if message received &
I am recipient then
send offer

end if

if message received & I
am not recipient then
remember alternative

end if

The left rule is a standard message in the CNet, whereas
the right rule aims at storing information that can be ex-
ploited in case of exception. In this experiment, the capa-
bilities are fixed by design and agents can only deal with ex-
pected exceptions. This work only simulates an open MAS,
even though agents autonomously exit the market, enter,
and trade on the market (behavior specified as a state ma-
chine). Agents have the rational behavior to try to maximize
the number of successful deal with the lowest price they can
negotiate.
In this series of experiments, exceptions can be interest-
ingly opportunities of interactions. In fact, this scenario has
been designed to show that agents can frequently face such
cases in some settings (statistically). The following Fig. 2
shows the number of failed deals in different market con-
figurations, i.e. different number of buyers B and sellers
S. Failures to deal items in the market can be of different
kinds, including receiving better offers and canceling other
negotiations, or lacking time to contract some clients.

Figure 2: Number of failed deals in different market
configurations

The graph values rely on statistical averages of several
runs in different configurations. In most cases, the sys-
tem with event notification allows reducing significantly the
number of failed deals by offering opportunities and initia-
tive mechanisms to the agents. In this experiments, we did
not allow agents to resume negotiations. The B20-S20 run
differs from others as the event notification system does not

49

perform better. Our interpretation is that in such a bal-
anced and ‘crowded’ market the number of agents is such
that the probability of failure is lower than other settings.
The event notification has a communication cost to enrich
the context with overheard messages and state information.
The overhead cost becomes higher than the benefit gained
from the event notification, which causes a slightly worse
performance.

5. CONCLUSION AND OPENING
This paper attempts to identify challenges and research
directions of exception handling in MAS. We consider MAS
as open, distributed, and strongly abiding by the agent par-
adigm. As such, our survey in the field shows that the way
to go is still long to reach the goal of exception-safe and
reliable MAS that can be compared to traditional systems.
Our current analysis identified so far three research direc-
tions that are potentially relevant to achieve better excep-
tion handling techniques.

• Enriching the agent context to be able to deal with
exceptions

• Exploiting accordingly the agent proactivity, either for
faults or opportunities handling

• Integrating agent-level exceptions with traditional
ones

Our future work aims at pursuing these research direc-
tions and to propose a generic and concrete agent-oriented
exception handling approach. The genericness is expected to
be validated by applying the approach to an existing agent
architecture.

Acknowledgment
The authors would like to thank the anonymous reviewers
of this paper who participated in improving significantly the
initial version of this work.

6. REFERENCES
[1] Brueckner, S. Return from the Ant — Synthetic Ecosystems

for Manufacturing Control. PhD thesis, Humboldt University,
Berlin, Germany, 2000.

[2] El-Fallah-Seghrouchni, A., and Suna, A. Claim and sympa: A
programming environment for intelligent and mobile agents. In
Multi-Agent Programming, R. H. Bordini, M. Dastani, J. Dix,
and A. El-Fallah-Seghrouchni, Eds., vol. 15 of Multiagent
Systems, Artificial Societies, and Simulated Organizations.
Springer, 2005, pp. 95–122.

[3] Goodenough, J. B. Exception handling: Issues and a proposed
notation. Commun. ACM 18, 12 (1975), 683–696.

[4] Haegg, S. A sentinel approach to fault handling in multi-agent
systems. In DAI (1996), C. Zhang and D. Lukose, Eds.,
vol. 1286 of Lecture Notes in Computer Science, Springer,
pp. 181–195.

[5] Jade agent framework. http://jade.tilab.com/, ver. 2005.

[6] Klein, M., and Dellarocas, C. Exception handling in agent
systems. In Agents (1999), pp. 62–68.

[7] Klein, M., Rodŕıguez-Aguilar, J. A., and Dellarocas, C.

Using domain-independent exception handling services to
enable robust open multi-agent systems: The case of agent
death. Autonomous Agents and Multi-Agent Systems 7, 1-2
(2003), 179–189.

[8] Mallya, A. U. Modeling and Enacting Business Processes via
Commitment Protocols among Agents. PhD thesis, North
Carolina State University, Raleigh, United States, 2005.

[9] Mallya, A. U., and Singh, M. P. Modeling exceptions via
commitment protocols. In Autonomous Agents and
Multi–Agent Systems (New York, NY, USA, 2005), ACM
Press, pp. 122–129.

[10] Miller, R., and Tripathi, A. The Guardian Model and
Primitives for Exception Handling in Distributed Systems.
IEEE Trans. Software Eng. 30, 12 (2004), 1008–1022.

[11] Murata, T., and Borgida, A. Handling of irregularities in
human centered systems: A unified framework for data and
processes. IEEE Trans. Software Eng. 26, 10 (2000), 959–977.

[12] Odell, J. Objects and agents compared. Journal of Object
Technology 1, 1 (May-June 2002), 41–53.

[13] Parunak, H. V. D. “Go to the Ant”: Engineering Principles
from Natural Multi-Agent Systems. Annals of Operation
Research 75 (1997), 69–101.

[14] Parunak, H. V. D. Expert Assessment of Human-Human
Stigmergy. Analysis for the Canadian Defence Organization,
Altarum Institute, Ann Arbor, Michigan, May 2005.

[15] Platon, E. Artificial intelligence in the environment: Smart
environment for smarter agents in open e-markets. In
Proceedings of the Florida Artificial Intelligence Research
Society (2006), AAAI.

[16] Platon, E., Sabouret, N., and Honiden, S. Overhearing and
Direct Interactions: Point of View of an Active Environment, a
Preliminary Study. In Proceedings of Environment for
Multi–Agent Systems at AAMAS’05 (2005), D. Weyns,
H. V. D. Parunak, and F. Michel, Eds.

[17] Smith, R. G. The contract net protocol: High-level
communication and control in a distributed problem solver.
IEEE Trans. Computers 29, 12 (1980), 1104–1113.

[18] Souchon, F., Dony, C., Urtado, C., and Vauttier, S.

Improving exception handling in multi-agent systems. In
SELMAS (2003), C. J. P. de Lucena, A. F. Garcia, A. B.
Romanovsky, J. Castro, and P. S. C. Alencar, Eds., vol. 2940
of Lecture Notes in Computer Science, Springer, pp. 167–188.

[19] Stathis, K., Lu, W., Kakas, A. C., Demetriou, N., Endriss, U.,

and Bracciali, A. PROSOCS: A platform for programming
software agents in computational logic. In From Agent Theory
to Agent Implementation (2004).

[20] Tanenbaum, A. S. Distributed Operating Systems. Prentice
Hall, 1994.

[21] Tripathi, A., and Miller, R. Exception handling in
agent-oriented systems. In Advances in Exception Handling
Techniques (2000), A. B. Romanovsky, C. Dony, J. L.
Knudsen, and A. Tripathi, Eds., vol. 2022 of Lecture Notes in
Computer Science, Springer, pp. 128–146.

[22] Weyns, D., Parunak, H. V. D., Michel, F., Holvoet, T., and

Ferber, J. Environments for Multiagent Systems,
State-of-the-Art and Research Challenges. In Environment for
Multi–Agent Systems’04 (2005), D. Weyns, H. V. D. Parunak,
and F. Michel, Eds., vol. 3374 of LNAI, Springer, pp. 1–47.

50

