
Finding State Solutions to Temporal Logic Queries

Mihaela Gheorghiu, Arie Gurfinkel, and Marsha Chechik

Department of Computer Science, University of Toronto,
Toronto, ON M5S 3G4, Canada.

Email:
�
mg,arie,chechik � @cs.toronto.edu

Abstract. Different analysis problems for state-transition models can be uni-
formly treated as instances of temporal logic query-checking, where only states
are sought as solutions to the queries. In this paper, we propose a symbolic query-
checking algorithm that finds exactly the state solutions to any query. We show
that our approach generalizes previous ad-hoc techniques, and this generality al-
lows us to find new and interesting applications, such as finding stable states. Our
algorithm is linear in the size of the state space and in the cost of model checking,
and has been implemented on top of the model checker NuSMV, using the latter
as a black box. We show the effectiveness of our approach by comparing it, on a
gene network example, to the naive algorithm in which all possible state solutions
are checked separately.

1 Introduction

In the analysis of state-transition models, many problems reduce to questions of the
type: “What are all the states that satisfy a property � ?”. Symbolic model checking
can answer some of these questions, provided that the property � can be formulated in
an appropriate temporal logic. For example, suppose the erroneous states of a program
are characterized by the program counter (���) being at a line labeled �����
	�� . Then
the states that may lead to error can be discovered by model checking the property���� �����������
	���� , formalized in the branching temporal logic CTL [10].

There are many interesting questions which are not readily expressed in temporal
logic and require specialized algorithms. One example is finding the reachable states,
which is often needed in a pre-analysis step to restrict further analysis only to those
states. These states are typically found by computing a forward transitive closure of the
transition relation [8]. Another example is the computation of “procedure summaries”.
A procedure summary is a relation between states, representing the input/output behav-
ior of a procedure. The summary answers the question of which inputs lead to which
outputs as a result of executing the procedure. They are computed in the form of “sum-
mary edges” in the control-flow graphs of programs [21, 2]. Yet another example is the
algorithm for finding dominators/postdominators in program analysis, proposed in [1].
A state � is a postdominator of a state � if all paths from � eventually reach � , and � is a
dominator of � if all paths to � pass through � .

Although these problems are similar, their solutions are quite different. Unifying
them into a common framework allows reuse of specific techniques proposed for each
problem, and opens a way for creating efficient implementations to other problems of

a similar kind. We see all these problems as instances of model exploration, where
properties of a model are discovered, rather than checked. A common framework for
model exploration has been proposed under the name of query checking [5].

Query checking finds which formulas hold in a model. For instance, a query
����

is
intended to find all propositional formulas that hold in the reachable states. In general, a
CTL query is a CTL formula with a missing propositional subformula, designated by a
placeholder (“

�
”). A solution to the query is any propositional formula that, when sub-

stituted for the placeholder, makes a CTL formula that holds in the model. The general
query checking problem is: given a CTL query on a model, find all of its propositional
solutions. For example, consider the model in Figure 1(a), where each state is labeled
by the atomic propositions that hold in it. Here, some solutions to

����
are �������	��
 ,

representing the reachable state �� , and ����
 , representing the set of states � ���� ����� .
On the other hand, ��
 is not a solution:

�� ��
 does not hold, since no states where

 is false are reachable. Query checking can be solved by repeatedly substituting each
possible propositional formula for the placeholder, and returning those for which the
resulting CTL formula holds. In the worst case, this approach is exponential in the size
of the state space and linear in the cost of CTL model checking.

Each of the analysis questions described above can be formulated as a query. Reach-
able states are solutions to

����
. Procedure summaries can be obtained by solving�� � � ��� �����
	�� � �"!��#� � � , where ��� �$���
	�� �"�"! holds in the return statement of

the procedure. Dominators/postdominators are solutions to the query % &�
(i.e., what

propositional formulas eventually hold on all paths). This insight gives us a uniform
formulation of these problems and allows for easy creation of solutions to other, sim-
ilar, problems. For example, a problem reported in genetics research [4, 12] called for
finding stable states of a model, that are those states which, once reached, are never left
by the system. This is easily formulated as

�� %�' �
, meaning “what are the reachable

states in which the system will remain forever?”.

These analysis problems further require that solutions to their queries be states of the
model. For example, a query % ��

on the model in Figure 1(a) has solutions �#�(���)�*

and �+�,
 . The first corresponds to the state �� and is a state solution. The second cor-
responds to a set of states � ���-� ���-� but neither �-� nor ��� is a solution by itself. When
only state solutions are needed, we can formulate a restricted state query-checking prob-
lem by constraining the solutions to be single states, rather than arbitrary propositional
formulas (that represent sets of states). A naive state query checking algorithm is to
repeatedly substitute each state of the model for the placeholder, and return those for
which the resulting CTL formula holds. This approach is linear in the size of the state
space and in the cost of CTL model checking. While of significantly more efficient than
general query checking, this approach is not “fully” symbolic, since it requires many
runs of a model-checker.

While several approaches have been proposed to solve general query checking, none
are effective for solving the state query-checking problem. The original algorithm of
Chan [5] was very efficient (same cost as CTL model checking), but was restricted
to valid queries, i.e., queries whose solutions can be characterized by a single propo-
sitional formula. This is too restrictive for our purposes. For example, neither of the
queries

� ��
, % $�

, nor the stable states query
�� %�' �

are valid. Bruns and Gode-

2

froid [3] generalized query checking to all CTL queries by proposing an automata-based
CTL model checking algorithm over a lattice of sets of all possible solutions. This al-
gorithm is exponential in the size of the state space. Gurfinkel and Chechik [15] have
also provided a symbolic algorithm for general query checking. The algorithm is based
on reducing query checking to multi-valued model checking and is implemented in a
tool TLQSolver [7]. While empirically faster than the corresponding naive approach of
substituting every propositional formula for the placeholder, this algorithm still has the
same worst-case complexity as that in [3], and remains applicable only to modest-sized
query-checking problems. An algorithm proposed by Hornus and Schnoebelen [17]
finds solutions to any query, one by one, with increasing complexity: a first solution is
found in time linear in the size of the state space, a second, in quadratic time, and so on.
However, since the search for solutions is not controlled by their shape, finding all state
solutions can still take exponential time. Other query-checking work is not directly ap-
plicable to our state query-checking problem, as it is exclusively concerned either with
syntactic characterizations of queries, or with extensions, rather than restrictions, of
query checking [23, 25].

In this paper, we provide a symbolic algorithm for solving the state query-checking
problem, and describe an implementation using the state-of-the-art model-checker NuSMV [8].
The algorithm is formulated as model checking over a lattice of sets of states, but its
implementation is done by modifying only the interface of NuSMV. Manipulation of
the lattice sets is done directly by NuSMV. While the running time of this approach is
the same as in the corresponding naive approach, we show empirical evidence that our
implementation can perform better than the naive, using a case study from genetics [12].

The algorithms proposed for the program analysis problems described above are
special cases of ours, that solve only

��&�
and % �

queries, whereas our algorithm
solves any CTL query. We prove our algorithm correct by showing that it approximates
general query checking, in the sense that it computes exactly those solutions, among
all given by general query checking, that are states. We also generalize our results to
an approximation framework that can potentially apply to other extensions of model
checking, e.g., vacuity detection, and point to further applications of our technique,
e.g., to querying XML documents.

There is a also a very close connection between query-checking and sanity checks
such as vacuity and coverage [19]. Both problems require checking several “mutants” of
the property to obtain the final solution. In fact, the algorithm for solving state-queries
presented in this paper bears many similarities to the coverage algorithms described
in [19]. Since query-checking is a more general approach, we believe it can provide a
uniform framework for studying all these problems.

The rest of the paper is organized as follows. Section 2 provides the model checking
background. Section 3 describes the general query-checking algorithm. We formally
define the state query-checking problem and describe our implementation in Section 4.
Section 5 presents the general approximation technique for model checking over lattices
of sets. We present our case study in Section 6, and conclude in Section 7.

3

(a)

�����
� � ��

� ��

��� �	�

��

(b)

� � �� �� ����� �
, for

��� �
true � false �� � �� �� ����� ������� ��� , for
�����

� � � �� �� ����� �"!����� ��� , for
�����

� � #%$�&' �� ����� � � #()� �*� $+� � &�)� ���� � #%,�&' �� ����� � � #()� �*� ,+� � &�)� ���� � -/.0#(�� �����21436587�9;:<36= � � #(�� �?>@�� � �A.0#(�� �����2B436587�9;:<36= � � #(�� � > �� � -DCE#(�� ����� � � FHGJI #K$L-M.NGJ)� ���� � �OCE#(�� ����� � � FHGJI #K$L��.PGQ)� �*�� � -�� #"RS&'< �� ����� � � T;GUI &V,P�)#%$�-/.PG �)� ���� � �W� #"RS&'< �� ����� � � T;GUI &V,P�)#%$���.PG �)� ���

Fig. 1. (a) A simple Kripke structure; (b) CTL semantics.

2 Background

In this section, we review some notions of lattice theory, minterms, CTL model check-
ing, and multi-valued model checking.

Lattice theory. A finite lattice is a pair (X , Y), where X is a finite set and Y is a
partial order on X , such that every finite subset Z\[]X has a least upper bound (called
join and written ^_Z) and a greatest lower bound (called meet and written `_Z). Since
the lattice is finite, there exist a �b^�X and c �b`�X , that are the maximum and
respectively minimum elements in the lattice. When the ordering Y is clear from the
context, we simply refer to the lattice as X . A lattice if distributive if meet and join
distribute over each other. In this paper, we work with lattices of propositional formulas.
For a set of atomic propositions d , let e � d�� be the set of propositional formulas over
d . For example, e � � � � � � � true � false � � � � � � . This set forms a finite lattice ordered
by implication (see Figure 2(a)). Since �gf true, � is under true in this lattice. Meet
and join in this lattice correspond to logical operators � and � , respectively.

A subset Zh[iX is called upward closed or an upset, if for any j �lk�mnX , if k�mgZ
and kNYoj , then jgmEZ . In that case, Z can be identified by the set p of its minimal
elements (kgmqZ is minimal if rsjLm0Z � � � jKYtk �), and we write Z �vuwp . For
example, for the lattice

� e � � � � � �xf � shown in Figure 2(a), u � �)� � � ��� � � � � � � true � .
The set � �)� � � � is not an upset, whereas � � � � �)� true � is. For singletons, we write uyj
for u �	j � . We write z � X � for the set of all upsets of X , i.e., %{[|X iff u�%{m2z � X � .
z � X � is closed under union and intersection, and therefore forms a lattice ordered by
set inclusion. We call

� z � X � �*[� the upset lattice of X . The upset lattice of e � � � � � is
shown in Figure 2(b).

An element } in a lattice X is join-irreducible if }�~�Lc and } cannot be decomposed
as the join of other lattice elements, i.e., for any � and � in X , } �]��^+� implies } ���
or } �0� [11]. For example, the join-irreducible elements of the lattice in Figure 2(a)
are � and � � , and of the one in Figure 2(b) — u true, u � , u"� � , and u false.

4

true

false

� � �

�����
�

true

� � � � �
��� ��� � � �

�
false

� ��� � � �

�
� � � � � � �

(a) (b) (c)

Fig. 2. Lattices for �
	 ��� � : (a)
��%� � � ��� � ; (b)

���4���� � � � ��� � ; (c)
����� :�� = ��� � .

Minterms. In the lattice of propositional formulas e � d�� , a join-irreducible element is a
conjunction in which every atomic proposition of d appears, positive or negated. Such
conjunctions are called minterms and we denote their set by � � d�� . For example,� � ��� ��� � � 	 ���W$ �y� �W$%� � � ���W$ � � ���D$�� � � I

CTL Model Checking. CTL model checking is an automatic technique for verifying
temporal properties of systems expressed in a propositional branching-time temporal
logic called Computation Tree Logic (CTL) [9]. A system model is a Kripke structure� � �! �#"(� � ��� %*�#$�� , where

is a set of states, " [&%'

is a (left-total) transition
relation, � �Pm is the initial state, % is a set of atomic propositions, and $)(+*-,/.
is a labeling function, providing the set of atomic propositions that are true in each
state. CTL formulas are evaluated in the states of

�
. Their semantics can be described

in terms of infinite execution paths of the model. For instance, a formula %#' � holds
in a state � if � holds in every state, on every infinite execution path ��� � � � � � ��0�010 start-
ing at � ; % � (

� �) holds in � if � holds in some state, on every (some) infi-
nite execution path ��� � � � � � ��010�0 . The formal semantics of CTL is given in Figure 1(b).
Without loss of generality we consider only CTL formulas in negation normal form,
where negation is applied only to atomic propositions [9]. In Figure 1(b), the function2 2 �43 35(6* � true � false � indicates the result of checking a formula � in state � ; the
set of successors for a state � is " � � �87 � �:9<; � ��� ��9 � m="�� ; >4?@0BA � ? � and CD?E0 A � ? � are
least and greatest fixpoints of A , respectively, where >4?@0BA � ? ���GFIHKJ � A H � false � and
CD?@0BA � ? � �MLNHKJ � A H � true � . Other temporal operators are derived from the given ones,
for example:

�� � � � 2
true O �43 , % � �&% 2 true O �43 . The operators in pairs� %EP�� � P � � � %#' � � � � � % � � '�� �10�0�0 are duals of each other.

A formula � holds in a Kripke structure
�

, written
� ; � � , if it holds in the

initial state, i.e.,
2 2 �43 3 � � � � � true. For example, on the model in Figure 1(a), where

% � � � � �"�
 � , properties %�' � � ��� � and % � are true, whereas %EP � is not. The
complexity of model-checking a CTL formula � on a Kripke structure

�
is Q � ; � ; % ; �R; � ,

where ; � ; �6; ;�ST; "U; .
Multi-valued model checking. Multi-valued CTL model checking [6] is a general-
ization of model checking from a classical logic to an arbitrary De Morgan algebra� X#� Y � � � , where

� X#� Y � is a finite distributive lattice and � is any operation that is an
involution (� �4V �WV) and satisfies De Morgan laws. Conjunction and disjunction are the
meet and join operations of

� X#� Y � , respectively. When the ordering and the negation

5

operation of an algebra
� X��*Y � � � are clear from the context, we refer to it as X . In this

paper, we only use a version of multi-valued model checking where the model remains
classical, i.e., both the transition relation and the atomic propositions are two-valued,
but properties are specified in a multi-valued extension of CTL over a given De Morgan
algebra X , called � CTL(X). The logic � CTL(X) has the same syntax as CTL, except
that the allowed constants are all V m]X . Boolean values true and false are replaced
by the a and c of X , respectively. The semantics of � CTL(X) is the same as of CTL,
except

2 2 �43 3 is extended to
2 2 �43 3 (* X and the interpretation of constants is: for all

V4m X ,
2 2 V 3 3 � � � 7WV . The other operations are defined as their CTL counterparts (see Fig-

ure 1(b)), where � and � are interpreted as lattice operators ^ and ` , respectively. The
complexity of model checking a � CTL(X) formula � on a Kripke structure

�
is still

Q � ; � ; % ; �@; � , provided that meet, join, and quantification can be computed in constant
time [6], which depends on the lattice.

3 Query Checking

In this section, we review the query-checking problem and a symbolic method for solv-
ing it.

Background. Let
�

be a Kripke structure with a set % of atomic propositions. A CTL
query, denoted by � 2 � 3 , is a CTL formula containing a placeholder “

�
” for a proposi-

tional subformula (over the atomic propositions in %). The CTL formula obtained by
substituting the placeholder in � 2 � 3 by a formula �2m�e � % � is denoted by � 2 � 3 . A for-
mula � is a solution to a query if its substitution into the query results in a CTL formula
that holds on

�
, i.e., if

� ; � � 2 � 3 . For example, ���������
 and � �
 are among the
solutions to the query % �

on the model of Figure 1(a), whereas ��
 is not.
In this paper, we consider queries in negation normal form where negation is ap-

plied only to the atomic propositions, or to the placeholder. We further restrict our
attention to queries with a single placeholder, although perhaps with multiple occur-
rences. For a query � 2 � 3 , a substitution � 2 � 3 means that all occurrences of the place-
holder are replaced by � . For example, if � 2 � 3 � �� � � � %EP � � , then � 2 � ����3 ��� � � � ��� � � %EP � � ��� � � . We assume that occurrences of the placeholder are ei-
ther non-negated everywhere, or negated everywhere, i.e., the query is either positive or
negative, respectively. Here, we limit our presentation to positive queries; see Section 5
for the treatment of negative queries.

The general CTL query-checking problem is: given a CTL query on a model, find
all its propositional solutions. For instance, the answer to the query % �

on the model
in Figure 1(a) is the set consisting of � � ��� �
 , � ��
 and every other formula implied
by these, including � , � ��
 , and true. If � is a solution to a query, then any � such
that �2f�� (i.e., any weaker �) is also a solution, due to the monotonicity of positive
queries [5]. Thus, the set of all possible solutions is an upset; it is sufficient for the
query-checker to output the strongest solutions, since the rest can be inferred from them.

One can restrict a query to a subset dq[% [3]. We then denote the query by � 2 � d 3 ,
and its solutions become formulas in e � d�� . For instance, checking % �� � �)� � � on the
model of Figure 1(a) should result in � � ��� and � as the strongest solutions, together
with all those implied by them. We write � 2 � 3 for � 2 � %@3 .

6

If d consists of � atomic propositions, there are
, ��� possible distinct solutions to

� 2 � d 3 . A “naive” method for finding all solutions would model check � 2 � 3 for every
possible propositional formula � over d , and collect all those � ’s for which � 2 � 3 holds
in the model. The complexity of this naive approach is

, ��� times that of usual model-
checking.

Symbolic Algorithm. A symbolic algorithm for solving the general query-checking
problem was described in [15] and has been implemented in the TLQSolver tool [7].
We review this approach below.

Since an answer to � 2 � d 3 is an upset, the upset lattice z � e � d�� � is the space of all
possible answers [3]. For instance, the lattice for % � � � � is shown in Figure 2(b). In
the model in Figure 1(a), the answer to this query is � � � true � , encoded as u � � � , since
� is the strongest solution.

Symbolic query checking is implemented by model checking over the upset lattice.
The algorithm is based on a state semantics of the placeholder. Suppose query

� � � � is
evaluated in a state � . Either � holds in � , in which case the answer to the query should
be u � , or � � holds, in which case the answer is u � � . Thus we have:

� � � ��� � �� ��� 	 ��� �
if
������� ��� ,� ���

if
�	������ ��� .

This case analysis can be logically encoded by the formula
� �*�"u ��� � � � ���+u � � � .

Let us now consider a general query
� d in a state � (where

�
ranges over a set of

atomic propositions d). We note that the case analysis corresponding to the one above
can be given in terms of minterms. Minterms are the strongest formulas that may hold
in a state; they also are mutually exclusive and complete — exactly one minterm } holds
in any state � , and then u } is the answer to

� d at � . This semantics is encoded in the
following translation of the placeholder:

��� � � 	 � 7 � :�� = ���A$ � � � I
The symbolic algorithm is defined as follows: given a query � 2 � d 3 , first obtain

� 2 � � � d���3 , which is a � CTL formula (over the lattice z � e � d�� �), and then model check
this formula. The semantics of the formula is given by a function from

to z � e � d�� � ,

as described in Section 2. Thus model checking this formula results in a value from
z � e � d�� � . That value was shown in [15] to represent all propositional solutions to
� 2 � d 3 . For example, the query % $�

on the model of Figure 1(a) becomes
���i� �B�D$ � $��Q$ � �B�W$ � $�� � � ,�B�D$ � $����U$ � �B�W$ � $���� � � ,�B�D$�� � $��U$ � �B�W$�� � $�� � � ,�B�D$�� � $����U$ � �B�D$�� � $���� � � ,I?I?I � I

The result of model-checking this formula is u � � �,��� �
-� � �
�� .
The complexity of this algorithm is the same as in the naive approach. In practice,

however, TLQSolver was shown to perform better than the naive algorithm [15, 7].

7

4 State Solutions to Queries

Let
�

be a Kripke structure with a set % of atomic propositions. In general query check-
ing, solutions to queries are arbitrary propositional formulas. On the other hand, in state
query checking, solutions are restricted to be single states. To represent a single state, a
propositional formula needs to be a minterm over % . In symbolic model checking, any
state � of

�
is uniquely represented by the minterm that holds in � . For example, in the

model of Figure 1(a), state � � is represented by � � ��� �
 , � � by � ��� �
 , etc. Thus, for
state query checking, an answer to a query is a set of minterms, rather than an upset of
propositional formulas. For instance, for the query % �

, on the model of Figure 1(a),
the state query-checking answer is � �(� ���#�
�� , whereas the general query checking
one is u ��
 � �"� � � ��� ��
 � . While it is still true that if } is a solution, everything in
u	} is also a solution, we no longer view answers as upsets, since we are interested only
in minterms, and } is the only minterm in the set u	} (minterms are incomparable by
implication). We can thus formulate state query checking as minterm query checking:
given a CTL query on a model, find all its minterm solutions. We show how to solve
this for any query � 2 � d 3 , and any subset d0[% . When d � % , the minterms obtained
are the state solutions.

Given a query � 2 � d 3 , a naive algorithm would model check � 2 � 3 for every minterm
� . If � is the number of atomic propositions in d , there are

,��
possible minterms,

and this algorithm has complexity
, �

times that of model-checking. Minterm query
checking is thus much easier to solve than general query checking.

Of course, any algorithm solving general query checking, such as the symbolic
approach described in Section 3, solves minterm query checking as well: from all solu-
tions, we can extract only those which are minterms. This approach, however, is much
more expensive than needed. Below, we propose a method that is tailored to solve just
minterm query checking, while remaining symbolic.

4.1 Solving minterm query checking

Since an answer to minterm query checking is a set of minterms, the space of all answers
is the powerset

,������	�
that forms a lattice ordered by set inclusion. For example, the

lattice
, ��� � � � �

is shown in Figure 2(c). Our symbolic algorithm evaluates queries over
this lattice. We first adjust the semantics of the placeholder to minterms. Suppose we
evaluate

� � � � in a state � . Either � holds in � , and then the answer should be � � � , or � �
holds, and then the answer is �-� � � . Thus, we have

� � � ��� �)� ��� 	 � ��� � if
������� ��� ,� ��� � if
�	������ ��� .

This is encoded by the formula
� ��� � � � ��� � � ��� �� � � � . In general, for a query� d , exactly one minterm } holds in � , and in that case �?} � is the answer to the query.

This gives the following translation of placeholder:

�� ��� � �'� 1 7 � :�� = ���A$ � � � � I
8

Our minterm query-checking algorithm is now defined as follows: given a query
� 2 � d 3 on a model

�
, compute � 2 ��� � � d���3 , and then model check this over

, � � �	�
.

For example, for % $�
, on the model of Figure 1(a), we model check

���]� �B�4$ � $��J$ ���W$ � $�� � � ,�B�4$ � $����U$ ���W$ � $%��� � � ,�B�4$%� � $��J$ ���W$�� � $�� � � ,�B�4$%� � $����U$ ���W$�� � $���� � � ,I?IxI � �
and obtain the answer � � � ���#�
 � , that is indeed the only minterm solution for this
model.

To prove our algorithm correct, we need to show that its answer is the set of all
minterm solutions. We prove this claim by relating our algorithm to the general al-
gorithm in Section 3. We show that, while the general algorithm computes the set
Z\m�z � e � d�� � of all solutions, ours results in the subset p [Z that consists of only
the minterms from Z . We first establish an “approximation” mapping from z � e � d�� �
to
, � � �	�

that, for any upset Z mPz � e � d�� � , returns the subset p [Z of minterms.

Definition 1 (Minterm approximation). Let d be a set of atomic propositions. Minterm
approximation A � (/z � e � d�� � * , � � �	�

is A � � Z � 7 Z��=� � d�� , for any Z m
z � e � d�� � .
With this definition,

��� � � d�� is obtained from
� � � d�� by replacing u	} with A � � u }�� �

�?} � . The minterm approximation preserves set operations; this can be proven using the
fact that any set of propositional formulas can be partitioned into minterms and non-
minterms.

Proposition 1. The minterm approximation A � (Hz � e � d�� � * ,���� � �
is a lattice ho-

momorphism, i.e., it preserves the set operations: for any Z � ZU9smPz � e � d�� � , A � � Z ���
A � � Z 9 � �&A � � Z�� Z 9 � and A � � Z ��� A � � Z 9 � �TA � � Z�� Z 9 � .
By Proposition 1, and since model checking is performed using only set operations,
we can show that the approximation preserves model-checking results. Model check-
ing � 2 �	� � � d���3 is the minterm approximation of checking � 2 � � � d���3 . In other words,
our algorithm results in set of all minterm solutions, which concludes the correctness
argument.

Theorem 1 (Correctness of minterm approximation). For any state � of
�

,

 � � � � #_�

��� � � <)� ��� � 	 � � #_�
 � ��� � �)� ��� I

In summary, for d � % , we have the following correct symbolic state query-
checking algorithm : given a query � 2 � 3 on a model

�
, translate it to � 2 ��� � � % ��3 , and

then model check this over
, ��� . �

.
The worst-case complexity of our algorithm is the same as that of the naive ap-

proach. With an efficient encoding of the approximate lattice, however, our approach
can outperform the naive one in practice, as we show in Section 6.

9

4.2 Implementation

Although our minterm query-checking algorithm is defined as model checking over a
lattice, we can implement it using a classical symbolic model checker. This in done by
encoding the lattice elements in

, ��� � �
such that lattice operations are already imple-

mented by a symbolic model checker. The key observation is that the lattice
�<, � � �	� � [�

is isomorphic to the lattice of propositional formulas
� e � d�� �xf � . This can be seen,

for instance, by comparing the lattices in Figures 2(a) and 2(c). Thus, the elements of, � � �	�
can be encoded as propositional formulas, and the operations become proposi-

tional disjunction and conjunction. A symbolic model checker, such as NuSMV [8],
which we used in our implementation, already has data structures for representing
propositional formulas and algorithms to compute their disjunction and conjunction
— BDDs [24]. The only modifications we made to NuSMV were parsing the input and
reporting the result.

While parsing the queries, we implemented the translation
� �

defined in Sec-
tion 4.1. In this translation, for every minterm } , we give a propositional encoding
to �x} � . We cannot simply use } to encode �x} � . The lattice elements need to be con-
stants with respect to the model, and } is not a constant — it is a propositional formula
that contains model variables. We can, however, obtain an encoding for �?} � , by renam-
ing } to a similar propositional formula over fresh variables. For instance, we encode
� �*�,��� �
 � as ���,�_� � � . Thus, our query translation results in a CTL formula with
double the number of propositional variables compared to the model. For example, the
translation of % � � �)� � � is

� �L� �B�D$ � $��D$�� � ,�B�D$%� � $��D$���� � ,�)���D$ � $%���4$�� � ,�)���D$�� � $%���W$%��� � � I

We input this formula into NuSMV, and obtain the set of minterm solutions as a propo-
sitional formula over the encoding variables � ��� �10�0�0 . For % � � � � � � , on the model in
Figure 1(a), we obtain the result � � �_� , corresponding to the only minterm solution
�*� ��� .

4.3 Exactness of minterm approximation

In this section, we address the applicability of minterm query checking to general query
checking. When the minterm solutions are the strongest solutions to a query, minterm
query checking solves the general query-checking problem as well, as all solutions to
that query can be inferred from the minterms. In that case, we say that the minterm
approximation is exact. We would like to identify those CTL queries that admit exact
minterm approximations, independently of the model. The following can be proven
using the fact that any propositional formula is a disjunction of minterms.

Proposition 2. A positive query � 2 � d 3 has an exact minterm approximation in any
model iff � 2 � d 3 is distributive over disjunction, i.e., � 2 � � � 3 � � 2 � 3 � � 2 � 3 .

10

An example of a query that admits an exact approximation is
� �

; its strongest solu-
tions are always minterms, representing the reachable states. In [5], Chan showed that
deciding whether a query is distributive over conjunction is EXPTIME-complete. We
obtain a similar result by duality.

Theorem 2. Deciding whether a CTL query is distributive over disjunction is EXPTIME-
complete.

Since the decision problem is hard, it would be useful to have a grammar that is guaran-
teed to generate queries which distribute over disjunction. Chan defined a grammar for
queries distributive over conjunction, that was later corrected by Samer and Veith [22].
We can obtain a grammar for queries distributive over disjunction, from the grammar
in [22], by duality.

5 Approximations

The efficiency of model checking over a lattice is determined by the size of the lattice.
In the case of query checking, by restricting the problem and approximating answers,
we have obtained a more manageable lattice. In this section, we show that our minterm
approximation is an instance of a more general approximation framework for reasoning
over any lattice of sets. Having a more general framework makes it easier to accom-
modate other approximations that may be needed in query checking. For example, we
use it to derive an approximation to negative queries. This framework may also apply
to other analysis problems that involve model checking over lattices of sets, such as
vacuity detection [14].

We first define general approximations that map larger lattices into smaller ones.
Let O be any finite set. Its powerset lattice is

�!,�� �*[� . Let
� X��*[� be any sublattice of

the powerset lattice, i.e., X�[,��
.

Definition 2 (Approximation). A function A'(X * ,��
is an approximation if:

1. it satisfies A � Z �M[]Z for any Z\m X (i.e., A � Z � is an under-approximation of Z),
and

2. it is a lattice homomorphism, i.e., it respects the lattice operations: A � Z � � ���
A � Z ��� A � � � , and A � Z � � � �&A � Z ��� A � � � .

From the definition of A , the image A � X � of X through A is a sublattice of
,��

, having
A � a � and A � c � as its maximum and minimum elements, respectively.

We consider an approximation to be correct if it is preserved by model checking:
reasoning over the smaller lattice is the approximation of reasoning over the larger
one. Let � be a � CTL(X) formula. We define its translation

� � � � into A � X � to be the
� CTL(A � X � � formula obtained from � by replacing any constant Z mqX occurring
in � by A � Z � . The following theorem simply states that the result of model checking� � � � is the approximation of the result of model checking � . Its proof follows by
structural induction from the semantics of � CTL, and uses the fact that approximations
are homomorphisms. [18] proves a similar result, albeit in a somewhat different context.

11

Theorem 3 (Correctness of approximations). Let
�

be a classical Kripke structure,
X be a De Morgan algebra of sets, A be an approximation function on X , and � be a
� CTL(X) formula. Let

� � � � be the translation of � into A � X � . Then for any state � of�
,

 � � � #()� �*� � 	 � �
 �)# �)� ��� I
Theorem 1 is a corollary to Theorem 3. Our minterm approximation satisfies condi-

tion (1) of Definition 2, since A � � Z � �]Z � � � d�� [Z , and it also satisfies condition
(2) by Proposition 1. Thus, A � is an approximation to which Theorem 3 applies, yield-
ing Theorem 1.

The minterm approximation defined in Section 4.1 was restricted to positive queries.
The general approximation framework defined above makes it easy to derive a minterm
approximation for negative queries. We denote a negative query by � 2 � � d 3 . To obtain
the minterm solutions to � 2 � � d 3 , we can check � 2 � d 3 , that is, ignore the negation and
treat the query as positive. For example, to check the negative query % � � � � � � � , we
check % � � �)� � � instead. The minterm solutions to the original negative query are
the duals of the maxterm solutions to � 2 � d 3 . A maxterm is a disjunction where all the
atomic propositions are, positive or negated. We denote by � � d�� the set of maxterms
over a set d of atomic propositions. For example, � � � � � � � ��� � � ���"� � �����"� � � �
�"� � � � ��� � . A minterm } is a solution to � 2 � � d 3 iff its negation �s} is a maxterm
solution to � 2 � d 3 . We thus need to define a maxterm approximation A�� (yz � e � d�� � *,�� ���	�

for positive queries. We define A�� such that, for any upset Z , it returns the subset
of maxterms in that set, i.e., A�� � Z � �oZ ��� � d�� . According to Definition 2, A�� is an
approximation: (1) holds by A�� ’s definition, and (1) follows from the fact that any set of
propositional formulas can be partitioned into maxterms and non-maxterms. We define
the translation:

�� ��� � �'� � 7 � :�� = ��� $
 � � � � � � I
Then, by Theorem 3, model-checking � 2 � � � � d���3 results in all the maxterm solutions
to � 2 � d 3 . By negating every resulting maxterm, we obtain all minterm solutions to
� 2 � � d 3 . For example, maxterm solutions to % � � � � � � for the model of Figure 1(a)
is the set � � � �)� � � � ; thus, the minterm solutions to % � � � � � � � are the entire set
� � � �)� � � � .

In summary, we have shown that minterm approximations can be generalized to an
approximation framework over any lattices of sets, which is applicable, for instance, to
finding minterm solutions to negative queries.

6 Case Study

In this section, we study the problem of finding stable states of a model, and evaluate
the performance of our implementation by comparing it to the naive approach to state
query checking.

In a study published in plant research, a model of gene interaction has been pro-
posed to compute the “stable states” of a system of genes [12]. This work defined stable

12

Algorithms
Model Query Ours Naive

1 original
- � �OC �

117 145
2 mutant 1

- � �OC �
116 144

3 mutant 2
- � �OC �

117 145
4 mutant 3

- � �OC �
117 146

5 original
� C �

116 145
6 original

- � �
118 146

7 original
� � �

117 145

paper

author

Chandra Merlin

title

“A Paper Title”

(a) (b)

Fig. 3. (a) Experimental results; (b) An XML example (adapted from [13]).

states as reachable gene configurations that no longer change, and used discrete dy-
namical systems to find such states. A different publication, [4], advocated the use of
Kripke structures as appropriate models of biological systems, where model checking
can answer some of the relevant questions about their behaviour. [4] also noted that
query-checking might be useful as well, but did not report any applications of this tech-
nique. Motivated by [4], we repeated the study of [12] using our state query-checking
approach.

The model of [12] consists of 15 genes, each with a “level of expression” that is
either boolean (� or �), or ternary (� , � , or

,
). The laws of interaction among genes have

been established experimentally and are presented as logical tables. The model was
translated into a NuSMV model with 15 variables, one per gene, of which 8 are boolean
and the rest are ternary, turning the laws into NuSMV next-state relations. The model
has 559,872 states and was submitted for review separately with our paper.

The problem of finding all stable states of the model and the initial states leading
to them is formulated as the minterm query checking of

�� %#' �
, where

�
ranges over

all variables. Performance of our symbolic algorithm (Section 4) and the naive state
query-checking algorithm for this query is summarized in the top row of the table in
Figure 3(a), where the times are reported in minutes. Our algorithm was implemented
using NuSMV as described in Section 4.2. The naive algorithm was also implemented
using NuSMV by generating all possible minterms over the model variables, replacing
each for the placeholder in

�� %�' �
and calling NuSMV to check the resulting for-

mulas. Both algorithms were run on a Pentium 4 processor with 2.8GHz and 1 GB of
RAM. Our algorithm gave an answer in under two hours, being about 20% faster than
the naive.

To have a larger basis of comparison between the two algorithms, we varied the
model (see rows 2-4), and the checked queries (see rows 5-7). Each “mutant” was ob-
tained by permanently switching a different gene off, as indicated in [12]. The perfor-
mance gain of our algorithm remained unchanged.

Discussion. Performance improvements observed in our case study may not be attain-
able for every model. If the model is sufficiently small, our algorithm is likely to be
faster. As models grow, however, the naive algorithm, which uses fewer BDD vari-
ables, will be more scalable. For more challenging models, a combination of the two
approaches may yield the best results.

13

A potentially more scalable alternative can be obtained by an iterative approach.
Suppose we are interested in checking a query % �

with two propositions, j and
k . We first check % � �	j � and % � � k�� . If no value is found for a proposition,
then the query has no minterm solutions. Otherwise, the results correspond to the val-
ues each proposition has in all minterm solutions. For example, suppose we obtain
j � false, whereas k can be either true or false. We proceed by checking a query
for each pair of propositions, using for the placeholder replacement only those val-
ues found in the previous step. For example, we check % � �	j �?k�� , replacing

�
by� �Qj ��k	� ��Qj���k�� � � � �Qj � �Jk	� �-�Qj � �Jk�� � . We continue with checking triples of

propositions using the valued obtained for pairs, and so on, until the query is checked
on all atomic propositions, or it has been established that no answer exists. In this iter-
ative process, there is place for heuristics that would switch between checking queries
by our alogrithm or the naive one, based on the resources available (time vs. memory).
We plan to evaluate this approach in future work.

7 Conclusions

We have identified and formalized the state query-checking problem, which is of prac-
tical interest and can be solved more efficiently than general query checking. We have
presented a symbolic algorithm that solves this problem, described a simple implemen-
tation using the NuSMV model checker, and showed its effectiveness on a realistic case
study. We proved our algorithm correct by introducing the notion of approximation,
which we have extended to reasoning over any lattice of sets. Our state query-checking
algorithm generalizes techniques previously proposed for computing procedure sum-
maries [2] and postdominators [1]. In essence, we generalized these algorithms, special-
ized for

�� �
and % �

queries, respectively, to arbitrary CTL queries. Our algorithm
solves general state-based queries by computing fixpoints over pre-image computations,
i.e., iterating over

� P and %EP . While some of these queries can be solved by fixpoints
over post-image computations, such as the query

�� �
for discovering the reachable

states, not every state-based CTL query can be solved that way, and this impossibility
result follows from the work in [16].

We have also presented the application of state query checking to finding stable
states in gene networks. In the rest of this section we present another possible applica-
tion, that we plan to investigate further in the future.

State query checking can be applied to querying XML documents, which are mod-
elled as trees. A simple example, of a fragment from a document containing information
about research papers and adapted from [13], is shown in Figure 3(b). An example query
is “what are the titles of all papers authored by Chandra?”. Viewing tree nodes as states
and edges as transitions yields a state-transition model, on which CTL properties can
be evaluated [20]. Unfortunately, our example, like many other XML queries, needs to
refer to both past and future, and is expressed as a CTL+Past formula as follows [13]:

-/. past � title $�-/. past � paper
$�-/. �

author
$%-/.

Chandra � � � I

Such formulas cannot be evaluated without modifying the internals of standard model-
checkers. Formulating this question as a query yields

14

paper
$%-/.|�

title
$�-M. � � $%-/. �

author
$�-/.

Chandra � �
whose desired solutions are states (here, the node labeled “A Paper Title”), and which
avoids the use of the past, and can be solved by our approach, without modifying exist-
ing model checkers.

References

1. B. Aminof, T. Ball, and O. Kupferman. ”Reasoning About Systems with Transition Fair-
ness”. In Proc. of LPAR’04, volume 3452 of LNCS, pages 194–208, 2005.

2. T. Ball and S. Rajamani. “Bebop: A Symbolic Model Checker for Boolean Programs”. In
Proc. of SPIN’00, volume 1885 of LNCS, pages 113–130, 2000.

3. G. Bruns and P. Godefroid. “Temporal Logic Query-Checking”. In Proc. of LICS’01, pages
409–417, 2001.

4. N. Chabrier-Rivier, M. Chiaverini, V. Danos, F. Fages, and V. Schachter. “Modeling and
Querying Biomolecular Interaction Networks”. Theor. Comp. Sci., 325(1):25–44, 2004.

5. W. Chan. “Temporal-Logic Queries”. In Proc. of CAV’00, volume 1855 of LNCS, pages
450–463, 2000.

6. M. Chechik, B. Devereux, S. Easterbrook, and A. Gurfinkel. “Multi-Valued Symbolic
Model-Checking”. ACM Trans. on Soft. Eng. and Methodology, 12(4):1–38, 2003.

7. M. Chechik and A. Gurfinkel. “TLQSolver: A Temporal Logic Query Checker”. In Proc. of
CAV’03, volume 2725 of LNCS, pages 210–214, 2003.

8. A. Cimatti, E.M. Clarke, , E. Giunchilia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebas-
tiani, and A. Tacchella. “NUSMV Version 2: An Open Source Tool for Symbolic Model
Checking”. In Proceedings of 14th Conference on Computer-Aided Verification (CAV’02),
volume 2404 of LNCS, pages 359–364. Springer, 2002.

9. E. Clarke, O. Grumberg, and D. Peled. Model Checking. 1999.
10. E.M. Clarke, E.A. Emerson, and A.P. Sistla. “Automatic Verification of Finite-State Con-

current Systems Using Temporal Logic Specifications”. ACM Trans. on Prog. Lang. and
Systems, 8(2):244–263, 1986.

11. B.A. Davey and H.A. Priestley. Introduction to Lattices and Order. 1990.
12. C. Espinosa-Soto, P. Padilla-Longoria, and E. R. Alvarez-Buylla. “A Gene Regulatory Net-

work Model for Cell-Fate Determination during Arabidopsis thaliana Flower Development
That Is Robust and Recovers Experimental Gene Expression Profiles”. The Plant Cell,
16:2923–2939, 2004.

13. G. Gottlob and C. Koch. “Monadic Queries over Tree-Structures Data”. In Proc. of LICS’02,
pages 189–202, 2002.

14. A. Gurfinkel and M. Chechik. “How Vacuous Is Vacuous?”. In Proc. of TACAS’04, volume
2988 of LNCS, pages 451–466, 2004.

15. A. Gurfinkel, M. Chechik, and B. Devereux. “Temporal Logic Query Checking: A Tool for
Model Exploration”. IEEE Trans. on Soft. Engineering, 29(10):898–914, 2003.

16. T. A. Henzinger, O. Kupferman, and S. Qadeer. ”From Pre-Historic to Post-Modern Sym-
bolic Model Checking”. Form. Methods Syst. Des., 23(3):303–327, 2003.

17. S. Hornus and P. Schnoebelen. “On Solving Temporal Logic Queries”. In Proc. of
AMAST’02, volume 2422 of LNCS, pages 163–177, 2002.

18. B. Konikowska and W. Penczek. “Reducing Model Checking from Multi-Valued CTL* to
CTL*”. In Proc.of CONCUR’02, LNCS, 2002.

19. O. Kupferman. “Sanity Checks in Formal Verification”. In Proc. of CONCUR’06, LNCS,
2006.

15

20. G. Miklau and D. Suciu. ”Containment and Equivalence for an XPath fragment”. In Proc.
of PODS’02, pages 65–76, 2002.

21. T. W. Reps, S. Horwitz, and M. Sagiv. “Precise Interprocedural Dataflow Analysis via Graph
Reachability”. In Proc. of POPL’95, pages 49–61, 1995.

22. M. Samer and H. Veith. “Validity of CTL Queries Revisited”. In Proc. of CSL’03, volume
2803 of LNCS, pages 470–483, 2003.

23. M. Samer and H. Veith. “Parameterized Vacuity”. In Proc. of FMCAD’04, volume 3312 of
LNCS, pages 322–336, 2004.

24. F. Somenzi. “Binary Decision Diagrams”. In Calculational System Design, volume 173 of
NATO Science Series F: Computer and Systems Sciences, pages 303–366. 1999.

25. D. Zhang and Rance Cleaveland. “Efficient Temporal-Logic Query Checking for Presburger
Systems”. In Proc. of ASE’05, pages 24–33, 2005.

16

