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Abstract. The research in augmented cognition and its practical applications 
rely heavily on the acquisition and evaluation of biometrics data. We propose 
software architecture that offers unified approach to the integration of emerging 
hardware and evaluation technologies. In this paper we focus on the software 
layers that combine the data events and offer visual representations of the 
results. In particular, we show that the common evaluation of the collected data 
as well as the commonly used graphical depictions of the results can be 
achieved using a fully modular and extendible software architecture. 
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1   Introduction 

Acquisition of biometrics data, its evaluation and visualization of the results are key 
components of the research on human cognition. One of the main reasons that after 
years of basic and applied research the current technology is still far from being 
integrated into practical applications is that experiments are very time-consuming to 
design, administer and evaluate. While new biometric sensors are being developed 
and new visualization techniques are proposed, the software environment needed to 
analyze the data is typically highly sensor-dependent and hard-coded. Moreover, the 
visualizations tend to be complex in order to depict the experimental data in various 
perspectives and thus less suitable in practical applications where simpler user 
interfaces are customary, e.g. a set of gauges that aggregate several data dimensions. 

To simplify the task of integrating all aspects of data collection, processing, and 
visualization for experimental purposes, we have been developing EventStream 
software framework that satisfies the following objectives: 

- Incorporates various sensors, e.g., equipment measuring temperature, heart rate 
and skin resistance, pressure on the mouse case and buttons, eye-tracker, 
oximeter, interactive events (keyboard events, mouse movement and clicks). 

- Supports various data sources and sinks, such as file, LAN and Internet 
(TCP/IP) streams, serial ports, interactive and software-generated events. 

- Incorporates common data evaluation and display methodologies. 
- Is based on unified software architecture that offers higher level abstractions, 

atomic building blocks as well as commonly used composite functionality. 
- Is highly extendible with Java modules that can be combined and reconfigured. 
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The software architecture that defined the input and output functionality, i.e. the 
support for the existing and emerging sensors and data sinks was described in detail in 
[1] and [2]. One of the challenges was to unify the real-time visualization of incoming 
data from interactive events with the replay of the experimental session that used data 
read from a data stream. Instead of converting this particular type of data into events 
or developing two display modules, we developed a generic solution – a set of 
conversion modules that can convert arbitrary events into data that can be deposited 
onto a stream or send data retrieved from a stream to listeners in the form of events. 
The time intervals in between two consecutive events were proportional to the time 
span originally recorded and the scaling factor could be freely chosen. The design and 
implementation of this facility was described in [3]. The data processing code and the 
implementation of various graphical representations of the results remained, however, 
hardwired and tailored specifically to each case. 

In this article we shall first analyze the common visualization techniques and then 
propose a software architecture that extends the unification and extensibility effort to 
the data processing and visualization modules and describe a prototype 
implementation of the architecture's core elements. 

2   Common Graphical Visualizations of Experimental Data 

The evaluation and visualization of eye tracking data is one of the more complex 
endeavors in biometric experiments because of the magnitude of the data obtained as 
well as its referential complexity. Let us therefore look at some implemented and 
proposed graphical representations as they were collected and presented in [4]. 

A common presentation of event-based data is a 2-dimensional graph where one of 
the axes represents the elapsed time. While measurement data forms a discrete 
function, a polyline connecting the samples is an adequate visualization. For example, 
the 2-dimensional graph in Fig. 1 shows the pupil size during an eye-tracking session. 

 

Fig. 1. A 2-dimensional graph depicting the pupil size with respect to time axis 

The raw eye tracking data has to be analyzed in terms of fixations – numerous eye 
gaze points falling into the same area – and saccades – the rapid eye movements. 
Even though there is general agreement that visual information is processed only 
during the fixations, graphs that combine saccades and fixations are common in 
literature as they convey the impression of a continuous gaze path. Such combined 
Fixation Path graph is depicted in Fig. 2. The dynamic version of Fixation Path graph 
where the sequence of fixations is shown as a (possibly slowed down) movie is also 
very useful as it indicates where and for how long the subject looked. 
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Fig. 2. A Fixation Path graph with fixations (black circles) and saccades (lines) on a 
background image that shows the text presented to the subject 

The Transition Matrix graph in Fig. 3 identifies areas of interest, determines the 
probabilities of a transition between consecutive fixations in different areas. These 
probabilities are then depicted as oriented arrows between the areas of interest labeled 
with the percentage numeric values corresponding to the probabilities. 

 

Fig. 3. A Transition Matrix graph with areas of interest (rectangles) and transition 
probabilities (arrows with percentages) superimposed on a background image 

Another often used visualization is the Heatmap graph shown in Fig. 4. It depicts 
the overall hotspots of fixations as ovals whose color and size indicate the frequency 
of fixations within the underlying area. 
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Fig. 4. A Heatmap graph with fixations hotspots (colored ovals) on a background image 

Other graphical representations of biometric data are commonly used, among them 
those that use surfaces in 3-dimensional space, which are just extensions of curves 
within a 2-dimensional graph into 3-dimensional space in our context. 

The above discussed visualizations were not selected according to their usefulness 
for the analysis of eye movement data. Instead, we tried to choose a wide spectrum of 
visually different representations. 

3   Function Framework 

Before the biometric data can be visualized, it needs to preprocessed. For instance, 
raw eye gaze data must be condensed into fixations. For the purposes of augmented 
cognition experiments, several dimensions of the data are typically combined to 
obtain indication of the subject's mental state and cognitive capabilities. For instance, 
higher heart rate and increased pressure on the mouse case may indicate stress levels 
that impede cognitive abilities. The schema in Fig. 5 shows how a function F(x1,…,xn) 
can aggregate the data vector into one value which is then shown on a gauge.  

 

Fig. 5. Schematic data flow coalescing in a cognitive gauge 

A more general schema may aggregate data over a recent time span in individual 
dimensions before combining them or employ several gauges to show different 
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aspects of the cognitive state. In particular, a framework should allow the 
experimenter can choose the functions arbitrarily. 

The biometric data consists of time-stamped events that form a discrete function in 
multidimensional space. This function is a series of samples of a continuous function 
that can be approximated by interconnecting the sampled values. In general, the 
preprocessing can be regarded as a function from one multidimensional space into 
another. We have therefore designed an extensible function framework that allows for 
definition of functional building blocks that can be combined into complex composite 
functions. The UML class diagram in Fig. 6 depicts the structure of the framework.  

 

Fig. 6. UML class diagram of the function framework 

At the heart of the framework is an interface contract that prescribes that a function 
must return a multidimensional point f(x) given a multidimensional point x. (The 
spaces may have different dimensions.) 

public interface Function { 
  public Point f (Point x); 
} 

We define a special case for one-dimensional functions. To be able to treat them the 
same way as the generic multidimensional functions we postulate that they change 
only the first coordinate of the given point and leave the other dimensions untouched.  

public abstract class Function1stD implements Function { 

  public abstract double f1stD (double x); 

  public Point f (Point x) { 
    x.vector [0] = f1stD (x.vector [0]); 
    return x; 
  } 
} 

To give an example, let us demonstrate the implementation of a particularly common 
one-dimensional function – the polynomial function. 
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public class Polynomial extends Function1stD { 

protected double coeficients []; 

  public double f1stD (double x) { 
    double value = 0; 
    for (int i = coeficients.length - 1; i >= 0; i--) { 
      value = value * x + coeficients [i]; 
    } 
    return value; 
  } 

} 

The implementation of a Linear function is trivial as a subclass of Polynomial 
with a constructor that has the two parameters slope and constant. 

Finally, let us demonstrate the implementation of function composition. (We 
present a simplified version without the accessor methods for the properties.) 

public class CompositeFunction implements Function { 

private ArrayList<Function> functions; 

public CompositeFunction (Function... functions) { 
    for (Function function : functions) { 
      this.functions.add (function); 
    } 
  } 

  public Point f (Point x) { 
    for (Function g : functions) {x = g.f (x);} 
    return x; 
  } 

} 

We support other useful functions as well. For instance, we define the basis for 
aggregate functions that can combine the values in several dimensions. Functions 
that filter the data or reduce the number of dimensions are trivial extensions of this 
framework. (The class Point itself provides for the composition of two points, one 
N-dimensional and the other M-dimensional, into a point in N+M-dimensional 
space.) 

The architecture presented above provides for an extremely simple, yet powerful 
framework. Together with the standard mathematical functions, this framework can 
accommodate a large variety of data-processing functions. As we will see later, 
graphical visualization methods can, for instance, use a composition of Linear 
functions with a function that permutates the coordinates of a point to scale the data 
to fit the drawing specifications and screen constraints. Obviously, the applications 
of the functional framework extend beyond the evaluation and visual representation 
of data as the framework provides a basis amenable to further mathematical 
treatment. 
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4   Visualization Framework 

Closer analysis of the graphs in Fig. 1 through Fig. 4 reveals that these visualizations 
have a common basis – there is some "background graphics" such as graph axes, an 
image, or potentially continuous media such as sound or video. Superimposed on this 
media is some representation of points: as a sequence of line segments (Fig. 1 and 
Fig. 2), circles (Fig. 2), rectangles (Fig. 3), ovals (Fig. 4), arrows (Fig. 3), or textual 
labels (numbers in Fig. 3). Every Java programmer will associate these geometrical 
shapes immediately with the methods for drawing primitive shapes in her preferred 
graphical support package. Furthermore, we observe that the shapes tend to have 
more parameters than the x and y coordinates, e.g., the size and color of the ovals in 
the heatmap in Fig. 4 or the numeric values in Fig. 3. Also, each of the lines or arrows 
needs an additional point, i.e. another pair of x and y coordinates. Moreover, some 
graphs combine several representations, such as lines and circles in Fig. 2. Despite 
these complexities the implementation of the graphs is fairly straightforward. 

Can the implementation of such visualizations be facilitated even more by a 
common underlying framework? Probably every programmer will write common 
software modules for drawing the axes and scaling the x and y coordinates. But 
further commonalities emerge if we treat a visualization as the representation of a 
sequence of points in a multidimensional space. (It is of course no coincidence that 
the function framework discussed in the previous section provides us exactly with 
such points.) The responsibility of a graph is therefore to provide such a sequence of 
points. Then each of the points can be drawn by a specific "painter". (Notice that the 
"background graphics" in the last paragraph can be also interpreted as one of the 
coordinates – then a frames number of a continuous media can be represented as a 
coordinate value and the painter will paint the corresponding frame.) The UML class 
diagram in Fig. 7 shows the basic structure of the proposed visualization framework. 

 

Fig. 7. UML class diagram representation of the graphical visualization framework 

The core of the framework is the Graph class that supplies one draw() method 
that draws the entire sequence of points and another draw() method that the paints 
the "current" point. It requests the points from the Source of data and uses a 
PointPainter to draw each of them. Again, let us illustrate this with a simplified 
version of the code: 
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public class Graph implements Visualization { 

  private Source source; 
  private PointPainter painter; 

  public Graph (Source source) {this.source = source;} 

  public void setPointPainter (PointPainter painter) { 
    this.painter = painter; 
    painter.setMap (new GraphMap (new Point(0,100) 
        , new Point(10,0)); 
  } 

  public void draw (Graphics graphics) { 
    while (source.hasNext ()) { 
      painter.draw (graphics, source.next ().get ()); 
    } 
  } 

  public void draw (Graphics graphics, Point point) { 
    painter.draw (graphics, point); 
  } 
} 

Notice that the while the source is responsible for preparing the Point data, the 
painter can convert it to the actual screen coordinates using the class GraphMap:   

public class GraphMap { 

  private Function conversion;     

  public void mapOriginUnit (Point o, Point u) { 
    Linear lx = new Linear (o.x(), u.x() - o.x()); 
    Linear ly = new Linear (o.y(), u.y() - o.y()); 
    Permutation pm = new Permutation (0, 1); 
    conversion = new CompositeFunction (lx, pm, ly, pm); 

  }  

  public Point convert (Point point) { 
    return conversion.f (new Point (point)); 
  } 
} 

The convenience method mapOriginUnit() illustrates how this framework can be 
used to quickly prototype the scaling and transition needed to map a data point to the 
actual position on a screen pane – otherwise a quite error-prone operation due to the 
fact that the y axis on the screen runs in the opposite direction than we are used to see 
in a book. Suppose that the origin and unit points contain the screen coordinates of the 
(0,0) and (1,1) points in the data space. Then the conversion to the screen point is 
given by two linear functions as defined in the above code. We can use a composition 
of these functions if we interchange the coordinates before we apply the second linear 
function and interchange them again at the end. The application of this composite 
function within the convert() method then becomes trivial.  
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Needless to say, this code is not a masterpiece of efficiency as four functions will 
be applied every time a point is drawn. On the other hand, the overhead will be 
typically negligible compared to the effort needed to draw the pixels of a line or an 
oval, and the clarity of the code (once the coordinate interchanges become second 
nature) is a clear advantage. Moreover, the above code can be easily modified into a 
more efficient version. 

Finally, as an example of a PointPainter, let us present a simplified version of 
a class that draws a circle: 

public class Circle extends PointPainter { 

  private int radius = 10;  
  private GraphMap map; 

public Circle (int radius) {this.radius = radius;} 

public void setMap (GraphMap map) {this.map = map;} 

  public void draw (Graphics graphics, Point point) { 
    Point p = map.convert (data); 
    graphics.gc ().fillOval (Graph.round(p.x()-radius), 
        Graph.round(p.y()-radius), 2*radius, 2*radius); 
  } 
} 

Note that instead of letting the painter convert the data into screen coordinates, our 
function framework would allow us to incorporate the conversion functions into the 
data-processing by appending them to the end of the function composition. While we 
opted to leave them as a responsibility of the graph's functionality, we could also let 
the graph pass them to the source for integration. 

A careful reader may ask: What if our circles needed to vary their radius and color 
to reflect additional dimensions of the source data? Then the source will have to add 
other two dimensions to our points and the painter will need to convert these 
coordinates into the appropriate values of the corresponding data types. This is simple 
with numeric data such as the circle radius and can be incorporated into the 
conversion within the GraphMap class. Similarly, a grayscale value can be 
accommodated within the point's conversion. One could also imagine converting data 
into the RGB value for color definition or even introducing three separate dimensions 
for either the proportion of primary colors or – probably more suitably for 
visualization purposes – the hue, saturation and brightness components of a color. The 
more general solution, however, is to supply separate conversion functions that map 
the data points into the appropriate data type.  

The visualization framework also incorporates a composite pattern to 
accommodate representations where one point is visualized in multiple fashions. The 
implementation of the pattern in CompositePainter is almost identical to that of 
CompositeFunction. To give an example, the saccades and fixations in the 
Fixation Path graph shown in Fig. 2 can be drawn using the composition of a 
ConnectingLine and Circle painters. 
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4   Conclusion 

The functional and visualization frameworks present a simple solution that unifies a 
wide variety of commonly used data processing functions and visualizations. Both 
frameworks are very extendible. New data processing functions can be constructed 
either as a composition of existing ones or, if this is not possible, by writing a 
Function subclass in Java. Similarly, complex visualizations can be composed 
from basic shapes and new painters can be implemented as Java subclasses. 
Moreover, specifications of function parameters and function compositions can be 
provided separately from Java code – e.g. in the form of XML configuration files – 
and the corresponding classes can be dynamically loaded. Parameterization and 
composition can be even made part of the user interface thus allowing the 
experimenter to choose the best preprocessing and visual representation of the data. 

There is an additional benefit of our approach: the visualization in real time and the 
replay of an experimental session is a natural extension that does not require any 
coding effort. Whether the data is generated as a sequence of events in real time or 
whether it is read from a stream, our EventStream software can provide it to the data 
processing layer in either fashion. And since the graph drawing layer does not depend 
on whether the points arrive with or without delay, a replay is generated simply by 
pausing by a given time span before prompting the graph to draw the next point. Even 
if the graph insist on getting the consecutive points "immediately" – i.e. within a 
while loop – the data source can block the drawing thread for the necessary span of 
time. Note however that this replay facility works only in the forward fashion and 
more elaborate state "undo/memento" facility would be needed to go backward in 
time without having to reconstruct the entire session. 

A prototype of the proposed frameworks has been implemented in Java using 
Eclipse and its SWT toolkit. We plan to incorporate an enhanced version into the 
software visualization project that we are currently developing. 

 
Acknowledgments. Fig. 1 through Fig. 4 courtesy of  C. Aschwanden. 

References 

1. Stelovsky, J., Aschwanden, C.: Measuring Cognitive Load with EventStream Software 
Framework. In: Sprague, R. (ed.) Proceedings of the 36th Hawaii International Conference 
of System Sciences (CD-ROM), IEEE Computer Society, Washington (2003) 

2. Stelovsky, J.: An Extendible Architecture for the Integration of Eye Tracking and User 
Interaction Events of Java Programs with Complex User Interfaces. In: Bullinger, H.-J., 
Ziegler, J. (eds.) Human-Computer Interaction: Ergonomics and User Interfaces, vol. 1, pp. 
861–865. Lawrence Erlbaum Associates, Mahwah (1999) 

3. Stelovsky, J., Aschwanden, C.: Software Architecture for Unified Management of Event 
Notification and Stream I/O and its Use for Recording and Analysis of User Events. In: 
Proceedings of Hawaii International Conference on System Sciences, p. 138 (2002) 

4. Aschwanden, C.: EventStream Experimenter Workbench: From Data Collection to 
Integrated Visualization Techniques to Facilitate Eye Movement Research. Ph.D. 
Dissertation, University of Hawaii at Manoa (2005) 


	Introduction
	Common Graphical Visualizations of Experimental Data
	Function Framework
	Visualization Framework
	Conclusion
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




