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Abstract. This paper proposes two typing systems for session inierexin higher-
order mobile processes. Session types for thedd@iculus capture high-level structures
of communication protocols and code mobility as type albsiva, and can be used to
statically check the safe and consistent process composiii communication-centric
distributed software. Integration of arbitrary higheder code mobility and sessions
leads to technical difficulties in type soundness, becansaid usage of session chan-
nels and completion of sessions are required in executeel &ydusing technigues from
the linearA-calculus, we develop a coherent and tractable sessiongygyistem for the
HOT-calculus. We also present an alternative system basedesgiféined process types.
The formal comparison between the two systems offers ihsigithe interplay between
higher-order code mobility and session types.

1 Introduction

In global computing environments, applications are exagaicross multiple distributed sites
or devices. The use of mobile code is prominent in such enwients, where several partici-
pants are synthesised by communication of not only passilkees but also of runnable code:
for example a service can be delegated to different padit by sending either a channel via
which it is accessible, or code that accesses it; and inaprode may transit through several
devices that alter their computational behaviour or thatadhrough interaction with it.

The Higher-Ordert-calculus (HArcalculus) [22] is a general formalism of interaction in
which two kinds of mobility, name passing and process passre integrated in a simple
and universal form: in this model, processes can be insti@atiby names and other processes,
just like a piece of mobile code is instantiated with locgbalaility after migration. This ad-
ditional expressiveness inherited from theealculus provides a powerful basis for describing
and analysing dynamicity in global computing scenarios.

As a type-theoretic foundation for highly structured commeation protocols often found
in distributed applications, this paper focuses on theamotf sessionsand their types. A
session is a series of communications between two partigshvibrm a meaningful logical
unit, just like a web session between a browser and a webrsghen a human user interacts
with an e-commerce site. Session types model such interscts an abstract structure of
typed inputs and outputs. The study of session typing systemow wide-spread due to the
need for structured communications in various scenariagdistributed computing. Starting
from 1994, it has been studied for titecalculus [4, 12—-14, 18, 23, 32], ambients [11], CORBA
interfaces [24], Concurrent Haskell [21], multi-threadedctional languages [16, 26, 27] and
distributed [9] and multi-threaded Java [8]. At the indygevel, languages with variants
of session types are implemented in an operating systemaiidWC3 Choreography Web
Description Language [5, 6, 29].

While many advanced session types for thealculus and programming languages have
been studied, there exist no session typing systems for ®m-¢dlculus. Incorporation of
sessions into the H®calculus offers a general theoretical basis for examitiveginterplay
between two non-trivial features in communication-basedgmmming, higher-order mobility



and session-based structured interaction. This papdiisstas the first session type theory for
the HOTcalculus which can statically validate the type safetyahplex distributed scenar-
ios with code mobility. In spite of their simple type synt#ixe previous literature have shown
that obtaining type soundness for session types is anatdrimsk because of delegation of
sessions [32]. In addition, in the presence of higher-opdecess passing, with the instantia-
tion of names into executable code, preservation of tyfgliecomes even more non-trivial.
We provide two different solutions: one by controlling thieear use of variables for higher-
order processes, which enjoys simplicity and tractahibtyd another by exporting channel
capabilities as types of processes, which needs more dimmstéut has wider, more flexible
typability. These two methods provide a potential typestieéic basis of future programming
idioms for dynamic code mobility and structured commuriarag [2, 19].

The next section defines the syntax, operational semaatidsgjemonstrates the combined
use of session types and code mobility. Section 3 definegthéyfping system inspired by the
linearA-calculus [28]. Section 4 outlines an alternative typingteyn based on the fine-grained
process types of [30, 31], and discusses the trade-offsdegtihe two approaches. Section 5
concludes with related and future work. The omitted definisi and proofs are found in the
on-line Appendix [1].

2 The Higher-Order teCalculus with Sessions

2.1 Syntax

The syntax of the calculus is given in Fig. 1, based onrttoalculus augmented with session
primitives and the call-by-valua-calculus. A session is a series of reciprocal interactions
between two parties, possibly with branching, serving aritiaf type abstraction. A session
is initiated over ashared channednd communications belonging to a session are performed
via two fresh end-point channels specific to that sessidledtsession channel3he indices 0
and 1 of session channels are used to distinguish the twoantsptaking a similar approach
to [14, 32]. We denot¥ for a potentially empty vectdry...Vy. “t” and “c” denote types which
will be given later. Type annotations are often omitted.

For terms, we have prefixes for declaring session connestiofx).P for servers and
u(x).P for clients. Here the identifien represents the public interaction point over which a
session may commence. The bound variabtepresents the actual channel over which the
session’s communications will take place. Session comeations are performed using the
next four primitives: the input(x).P, the outpuk (V).P, branchingks> {I1:Pi;...;In:Pn} (of-
ten written akr> {l; : B, }ic; with index set) which offers alternative interaction patterns, and
selectionk <11.P which chooses an available bran¢ha : o)P restricts (and binds) a channel
ato the scope oP. Similarly, (vk) P bindsk andk1, making them private t®. Other prim-
itives are standard. We often onfit The bindingsare induced byva: o)P, (vk)P, lu(x).P,
u(x).P andAx.P. The derived notions of bound and free identifiers, alphavadgnce and sub-
stitution are standard. We dendt€)/fn(P) for the set of free variables/channels, respectively.
We sayP is initial if it does not contain free variables/session channels. difierence be-
tween shared and session channels is worth illustragipg.P; | a(x).P, | a(x).Q is accepted,
but Ko(V1).P1 | Ko(V2).P> | K1(X).Q is not, since two senders Bg appear at the same time;
Ko(V).Ko(X).P2 | K1(y).0is also unsafe because interactions betwegsndk, do not match.

2.2 Reduction

The single-step call-by-value reduction relation, dedete, is a binary relation from closed
terms to closed terms, defined by the rules in Fig. 2. The ratefrom those of the H®



(Identifiers) u,v,w ::=X,y,z variables k:=xyz variables

| ab,c shared channels | ki i€{0,1} session channels
(Terms)
PQR =V value
| 'u(x).P server (Values)
| 1u(x).P client V,V/ W :=uv,w shared identifier
| k(x).P input | kK,k” linearidentifier
| k(V).P output [ 0 unit
| ko> {l1:Pi;...;ln:Py} branching | A(x:t).P abstraction
| k<l.P selection (Abbreviations)
| PIQ parallel def )
| (va:o)P restricion P = A(x:unit).P (x¢&fv(P)) thunk
| (vk)P restriction  run d_'af)\x( x()) run
| PQ application
| O nil process
Fig. 1. Syntax
(beta) (A(x:t).P)V — P{V/x}
(conn) B(x).P|a(z).Q — 'a(x).P| (vk) (P{Ko/x} | Q{K1/z}) Ko,K1 fresh
(comm) Ki(x).P|Kj(V).Q — P{V/x} |Q i#]
(label) Kj>{l1:Py;...;In:Pa} [ Ki<ImP — Pp|P i#],1<m<n
P—PF Q —Q
app-l) s =——~= app-r
(app-)) FQ— PO @pNyS—v Q{
PP PP P=P —Q=0Q
P —pP0 Fvasmp —naoeor W P—0

Fig. 2. Reduction

calculus[22, 30], but with the necessary modificationséssgon communications. Rule (conn)
establishes a new session between server and client viedshameu; freshkg andk are in-
stantiated, and the server stays as it is, waiting anotheraation. Rule (comm) transmits
values between the private session channels. Note thasisehannel can be sent and re-
ceived (wherv = k), with which various protocols are expressed, allowing ptax nested
and private structured communications. This interact®nadlledhigher-order session pass-
ing (delegation). Rule (label) seled®, (a communication version of the case reduction in
the A-calculus). We use the standard structure rules f28uch agvk)P|Q = (vk) (P| Q) if
Kic(o.) & M(Q) (see Appendix [1]).

2.3 Example: Business Protocol with Code Mobility

We show a simple protocol which contains essential featbyewhich we can demonstrate
the expressivity of the code mobility and session primgieéthe HQt-calculus; it consists of
a combination of session establishing, code mobility,ieesdelegation and branching. This
extends a typical collaboration pattern that appears inymeasb service business protocols
[5,7,29] to code mobility.



Client Agency Hotel Client Agency Hotel

a:x a:x
------------------- L SEEEEEEELEEELEEEELEEE
X : London X : London
x : Date x : Date
by - »> by
X : continue with y abEEEEEEELEEELEEE b X : mobile toy oo -
B y : roomtype y : code
: roomrate
y v 2 run code
y : creditcard Aw - -4 B : creat session x over a y : roomtype
X : comission cix y : roomrate
A =—pB:send xoverc ¥ - creditcard
. c:lwithy X
( a) Renot e Massage Passi ng A =—pp»B : select label and
send y over c (b)  Code Mobility

Fig. 3. Sequence Diagram for Hotel Booking

In Fig. 3, we show the sequence diagram for a protocol whicldetsoa hotel book-
ing: first, Booki ng Agency andd i ent initiate interaction at sessianover channe; then
Cient starts exchanging a series of information witency; during this initial communi-
cation,Agency calculates its Round Trip Time (RTT) betwe€@n ent andAgency; Agency
selects an appropriak®t el and creates a new sessipaver channeb with thatHot el . If the
RTT is short (Fig. 3 (a)), theAgency delegates t@l i ent its part of the remaining activity
with Hot el , by sending session channelthend i ent andHot el continue negotiations by
message passing. If the RTT is long (Fig. 3 (b)), since mampte interactions increase the
communication time as well as danger of communication fafiiAgency asks bacld i ent
to send mobile codevhich contains the communication of titkei ent 's room plan and ne-
gotiation behaviourAgency sends the code tiot el , thenHot el runs it locally, finishing a
series of interactions in its location. Finaligency receives a commission fee (10 percent of
the room rate) via sessiof) concluding the transaction.

The given scenario is straightforwardly encoded in ouraals, where session primitives
make the structures of interactions clearer; we omit théestilof the intermediate communi-
cations within the same session g1l .x{v).x(y).P is written asx<i1; (v); (y).P. Agency first
initiates ata and starts the interactions withi ent ; then it initiates ab and establishes session
y; next it invokes either labedont or labelmove in 0 i ent depended on the RTT and sends
y (higher-order session passing) to it, and waits for a cotigieof the transaction between
Cient andHotel atx (note that “if-then-else” can be encoded using branching,\ae use
other base types and their operators).

la(x).x(area);...b(y).if rtt < 100 then X < cont; (y); (2).P 1)
else Xx<imove; (Y); (2).P 2

d i ent requests a service atand starts a series of interaction wifency, and either contin-
ues the rest of activity withiot el or sends the code (a thunk in Line 4). Note t@atent can
safely send back the commission feedgency because the return message x 0.1) which
uses session channelk embedded in the thunk.

a(x).x(London;... x> { cont : (y).y < cont; (roomtype; (2);...X(zx 0.1} ; 3
move : (Y).y < move; ("y(roomtype; (2);..X(zx 0.1)")}  (4)



Hot el performs the interactions withgency andd i ent via a single session at (by the
facility of higher-order session passing). In Line 6, theesent byd i ent is run locally.

Ib(y).yr> { cont: (2); (roomrat€z));...Q ; (5)
move : (code.(runcode| y(z); (roomratéz));...Q)} (6)

The encoding is simple, butincludes a couple of subtle paithiose slight modification breaks
the session structures. First, in Line 4, if we send the cddemdoes not complete the session,
then the protocol is broken: e.g. if we have interactiong @ayy(w)) after sending a thunk

in Line 4 ind i ent, the session at will appear in the three threads (two Hot el , one in
dient), so the session atis interfered and values get mixed up. Secondly, in Line 6, if
we have two or more applications (sayn code| run codg instead of ongun code it again
breaks the session structure (botly ahdx). Finally, if the code is not runnable in Line 6 (like
(Ax.0)codeinstead ofrun codg, the receiver(z); (roomratéz));...Q cannot find a matching
output. Hence the variableodemust appear exactly once and surely get instantiated into a
process exactly once.

3 The First System: Higher-Order Linear Typing

3.1 Types

This section presents the first session system based ontypéag for higher-order functions.
The syntax of types is given below.

Termt =1t | o Chano = begina Valt:=unit|t—1|(t—1']0]a
Session a :=!]tl.a | ?t].a | @[l1:01;...;ln:on] | &[li:ag;...;ln:an] | end

Itis an integration of the types from the simply typedalculus with unit and the session types
from theTrcalculus, with the exception of linear functional typés,— 1)%, which represent
functions to be used exactly onderm typesranging over, include all value types and the
process type>. Channel typesranging overo, take the shapeegin.a. Session typesange
overa,,y... In begin.a, begin represents the start of the session, whild represents its
termination.Value typesonsist of the unit type, the function types, the linear fiorctypes
and the channel and session types. Note that linear anmudadie attached only to function
types. In the session typest]la represents the output of a value typedtbipllowed by a
session typed bw; ?[t] is its dual.®[l1:d1;...;ln: ap) is the selection type on which one
of the labeld; can be sent, with the subsequent session typed; b [l1:01;...;In:0n] is
its dual called the branching type. We often writdi& ailic/ @]l : ailic) for branching and
selection types, and” for unit — T. end is often omitted. Each session typehas adual
type, denoted by, which describes complementary behaviour. This is indebtidefined as:
Ht].a =?t].0, ®[l1: ag;...1n: ap) =&[l1: O1;...;ln: Op, 2t].a=![t].a@, &[l1: ag;...In: on] =
@®[l1: @1;...;In: Tp), andend = end.

3.2 Linear Higher-Order Typing System
We first define the two kinds of finite mappings for environnsent

Globall =0 |Tlu:0|l,x:unit |F,x:t 1|l x:(t—1! Sessionz :=0]|Zk:a

I" is a mapping, associating value typesdept session typese identifiers> is a mapping from
session channels to session types that records precise ugagmation for all free session



(Common)

(Shared) (Session) (Lvar)
t#t -1t
ru:t;0;0Fu:t kia;0Fk:a rx:t—=05Lo{xFx:t—1)?
(Function)
(Base) (Abs) (Absg)
X 65S5HEPT (%) MIx:oSFEP:T
0,0 () :unit IS \xFAXY).Pit—>1 LELSEAXQ).P:a—T
(App) (Sub)
MEpSiFPit—>0! M55 EQit (1) LSEPit—1
21,22;51,52FPQ:T MLSFP:(t—1)t
(Process
(Nil) o (Par) (New) (Newk)
> ={k:end} M212;8512FPioio MnaoZSkEP:o MZKi oK O, SFP:o
r0-0:0 21,22, 81,5 FPL|[P:io NSk va:o)P:o MLSE(VK)P:o
(Acc) (Req)
I0;0Fu:begina I;x:a;0FP:o I0;0Fu:begina MEIX o;SHEP:o
0,0 u(x).P:o MsHux).P:o
(Rec) (Recg)
Xt kia;SEP:io (%) Mk o x:oSHEP:o
M2k 7t S\ XFK(X).P:o ;% k: 2a].o’;S-k(x).P:o
(Send)

HIpSikEPio T35Vt kiaeSicny (1)
M (21,20) \ {k:a},k:It].0; 81,5 Fk(V).P:o

(Bra) (Sel)
Mk o;SER:o (Viel) rrk:a;SFPio jel
M2k &[lcailienn SEke{li i Rlicl i o I k: ol ailie; SEkaljPio

() ift=(t'— 1) thenxe S. (1) ift=t' -1 thenZ;=5,=0.

Fig. 4. Session Typing based on Linear Types

channels in a term, so that the cumulative result can be cadpaith the expected session
type. In addition, we use a set of linear variables ranged 8y¢’, ... to ensure linear usage
of function terms that may contain session chanrg|&’ and.s,S’ denote disjoint-domain
unions.I',u:c meansu ¢ dom(I"). Then the typing judgement takes the shape:

MZ,SHEP:T

which is read: under a global environmédnta termP has a typea with session usages de-
scribed byX and linear variables specified by We say the judgement iwell-formedif
dom(l") D $ and donfl") ndom(Z) = 0. The typing system is given in Fig. 4. In each rule,
we assume the environments of the consequence are defined.

In the first group{Common), (Shared) is an introduction rule for identifiers with shared
types, i.e. neitheft’)! or a. (Session) is for session channels afidvar) is for linear variables,
recordingk in X andx in §, respectively.



The second groudFunction), comes from the simply typed linearcalculus. In(Abs),
the side conditionX) ensures that the formal paramexeto be substituted with the received
function, appears in the linear variables’ premise. In thactusion, we remove from the
function environment(Absg) is an abstraction rule for session chann@ep) is the rule for
application; the side condition (1) ensures that when thiettierm is of shared function type,
it is required not to have free session channels or lineaables. The conclusion says thHat
andQ’s session environments and linear variable sets are dts{Sub) is a subsumption rule
to lift from the shared to linear function. The converse isafe.

The final group(Process) are for processes integrated with linear functional tgpiim
(Nil), we start from the session environment only wétid-usages and the empty linear vari-
able set. InPar), we parallel-compose two processes, assuming disjoistmesession envi-
ronments and linear variable sets agApp). (New) and(Newk) hide a shared name and a pair
of session channels, respectively. The latter erasesgiise¢lsion environment, complemen-
tary communication patterns for the two endpoint&pin order to ensure compatible dyadic
interactions(Acc) and(Req) are for initiating sessiongAcc) forbids the use of anfreelinear
identifier because of replication. The type expected forsémsion channel is duai)(to that
portion of the declared session type for the shared identifigReq), it is used as it isd).
(Rec) handles the reception (input) of values. JustAiss), if received values have a linear
function type x should be recorded to ensure its linear usage.ifihe relevant consumption
is composed in the conclusion’s session environment, inyathat agrees with the protocol.
(Recy) is for the input of session channels.

(Send) is the most complex rule, integrating session typing areHintyping. Firstly, (1), as
in (App), enforces safety when sending linear functions. Secdndty€ Zjc (1 2, means either
21 or 2, contains the complete sessibna (sinceZs, 2, is defined in the conclusion). When
k: a € 21 andV has a functional type, it ensures that all occurring sessiamnels withirl/
being sent are complete (i.e. suffixed wittd). Hence they cannot occur in the continuation
P, because, if they did, we would have a race condition betweenreceiver ot/ andP, w.r.t.
communications over these common channels, as noted ix&nepde in § 2.3. This condition
forcesV to bek itself when it has the session typeuniformly generalising the corresponding
rule in the session types [14,18, 23,32]. This is importamtes in the presence of higher-
order mobility, the sent code containikgan be executed locally and privately in the receiver
side:C i ent in the example in § 2.3 becomes typable with this general lédhe conclusion,
we deletek in eitherX; or Z,, and the relevant consumption is recorded in the conclission
session environment. Note the function environments ajeidi. (Bra) and(Sel) are the rules
for branching and selection. They are standard from [18].

3.3 Type Soundness and Type Safety

The typed processes enjoy type soundness and type safedtly. tifpings which start from
well-formed environments construct only well-formed enviments.

Proposition 3.1. Suppose the derivation &f;%;$ - P : T starts from the axiomgShared,
Session, LVar, Base, Nil) of a well-formed judgement. ThénZ; S - P: 1 is well-formed.

We have the standard weakening and strengthing fdaut not forz and.$). Then the substi-
tution lemmas follow.

Lemma 3.2 (Substitution Lemma).

1. Supposé . x: t;Z1; 1 FP:tandlM; 2 S FV it witht £t — U, xe fv(P), andZ1,2»
ands$, S, are defined. TheR; Z1,%2; 51\ X, 52 - P{V/x} : T.



2. Assumé x:t' - 1;Z;SFP:tandl;0;0FV :t' — U. Thenl; ;S F P{V/x} : T.
3. Suppos€;3,x: a;S FP:tand kg (dom(")UdomX)). Thenl;Z,k: o; S F P{Kix} : 1.

Before stating the main theorems, we introduce the importation ofbalancedsession envi-
ronments. Clearly, typability over arbitrary session @omiments is not closed under reduction.
For example, the procegg(true) | K1(X).K{(x+ 1) is typable, but it reduces & (true + 1),
leading to a run-time error. Hence we allow only typings venhdre two ends of a channel
are of dual types. Formally, we say that a session envirohihas balancedif whenever
Ki: a,Kj: BeZ, thena = .

Theorem 3.3 (Type Soundness).

1. Supposé€;Z; S+ P: o with X balanced. Then B P impliesl; ;S - P .
2. Supposé’;Z; S+ P: 1 with X balanced. Then P— P’ impliesl";Z';$' = P’ : T with &’
balanced angs O §'.

One may wonder why “balanced” cannot be assumed for the ttondf the well-formed
judgement. To see the reason, consi@erx(1).(xX(3).0 | k1(x).k1(y).0))Ko. This is typed un-
der the balanced environment= Kg : a,K1 : @ with a =![nat].![nat].end, and moreover all
subterms are typed under balanced environments. Thisgsoeduces t8 = Kg(1).(Ko(3).0|
K1(x).K1(y).0), which is still typed under the balanced environmEnHowever the body of
P’ (i.e. Ko(3).0 | K1(x).k1(y).0) cannot be typed under a balanced environment. Thus if we
impose the balanced condition for the typing judgemente typundness does not hold; the
general substitution lemmas (Lemma 3.2) are required fsrrfason, too. This is one of the
subtle points on aliasing of session channels, causgdrbguctions and communications.
We now formalise type safety. Firstkaprocesss a prefixed process with subjdc{such
ask(x) andk(V)). Next, ak-redexis a pair of dual processes composed,hye. either of forms
(Ki(V).P|Kj(x).Q) or (Ki<Im.P|Kj>{l1:Qq;---In:Qn}) with 1 < m< n. Then we sap
is anerror if P = (va)(vk)(Q | R) whereQ is, for somek, the |-composition ofeither two
K-processes that do not formkaredex,or three or morex-processes. We then have:

Theorem 3.4 (Type Safety)A typable procesE;Z; S - P : o with balanced never reduces
into an error.

Typing Hotel Booking Example Using the typing system, we can now type the hotel booking
example in § 2.3, guaranteeing its type safagent has the following types a andb.

a: begin.![string]...® [rtt < 100: a; rtt > 100: a ], b: begin.![B].end
with a = &[cont : ?[B].![int].end ; move : ?[B].![int].end]
and B = &|[cont :![string].?[int]...end ; move :![(¢")1].end]

Note that the type dadiis dualised becauseis used as the input lgent (see(Acc)). a consists
of higher-order session passing, and the thunk has a limeaw &ype.C i ent andHot el just
have the dual ofgent ’s type ata and the dual oRgent ’s type atb, respectively. Note that in
Cient, subjecty is shared in the sent codg which is typed bySend) with a general side
conditionk : o € 2 explained in § 3.2.



4 The Second System: Fine-Grained Process Typing

Linear variables in the previous system “might be instdatéby a function which contains
free session channels, hence it should occur exactly oifog& haveprior knowledge as to
channel capabilities with which each functional varialtler(ce any code instantiated into it)
is associated, then we might have more flexible control ougrating code that holds session
capabilities. This motivates the use of the fine grainedgsstyping introduced in [17, 30, 31].
Consider the following server which receives thunked psses via shared chanrzel

Serv(a) = la(x).x(y: 1).runy (7

Since accepting arbitrary processes for execution obilyjdareaks access control of local re-
sources, one might wish to restrict the behaviour of incgmiade so that it can only access
some specified channels. In [17, 30, 31], we introduced a typapline which can control
the effect of migrating code, by assigning a different typeeaich process depending on its
intended use, so that a process can use a typed inputtingeh@rat a in (7) above) to de-
tect, for example, malicious behaviour of received codestédic type checking. A type for
representing capability is given as a finite channel envirentA, prescribing channel usage
of each process.

r-P:A

This judgement meang>accesses channels at most as specified bgder global environ-
mentlr”. For example, under appropriafed {b: g,c: o} with 0 = begin.![nat].end, a client
may be assigned a different type depending on its destimatio

Ir=b(x).x(1): {b: o} and TFT(X)X(2): {c: a}
Then the following indicates a server which only acceptsaegss which accesses at most the
specified resourcd,
Serv(a) = la(x).x(y: :c").runy (8)

Using the type system in [17,30, 31], one can chgek/(a) | a(x).X("b(x).X(1)") is typable
while Serv(a) | a(x).x({c(x).x(1)") is not. Using process types with session capabilities, we
can type-check that the following process is illegal:

k(y: "K: ![nat]").(runy| runy) 9)

sincerun y has a process tyge= {K': ![nat]}, andA andA are not disjoint, so twoun y must
not be composed. Now we no longer require linear annotatiofunctional types. Moreover
the additional type information leads to a larger typapitian the previous system. For ex-
ample k(y: K: ![nat]").(run y | (Az0)y), (Ax.O)Ko | Ko(2).0 | K1(1), and more interestingly
(Ax.k(1).runx)("k(()).0") which do not destroy session communication but are untypiabl
the previous one become typable since the resulting pragess are balanced.

4.1 Types
The second typing system introduced below is built on thedjraéned types of [30, 31]. The
syntax of environments and types is given below.
Env N 2=0 | x:t|FTuo Ax:=0|Au:c Term 1:=1t]|A
Chan o ::=begin.a | a Func t i=unit |[t—1 | Nx: 0.1
Session a :=![(X: 6)i;a | 2N (X: 6)i;a | ®[li: ailier | &[li: ailier | end



These types are from the first system except for the intradoictf fines-grained process types
A, functional dependent typddx: 0.1 and channel dependefi{X: G)t. Note from this sys-
tem,u,v,w, ... (resp.o) include session names and variables (resp. session tyges)do not
include channel8.

In MNx: 0.1, we allow the typea to contain occurrences of the channel variabldenx in
T is bound. Notes — T is a special case ¢1x: 0.1 with X £ fv(0). A process typd, assigned
to a process, is a mapping from a finite subset of identifiechtmnel types.

A channel type incorporates dependent quantification, asdte fornf1(X: &) indicating
a vector of channels typed loy, .., 0, and a vector of higher-order values typedtby.,tm;
free occurrences of; in Gi,1,...,0, as well asty,...,ty, are bound occurrences. We write
01,01, ooy tm fOr M(X1: 01, ..., %01 Op)ta, ooyt if X1,..., X0 &€ (01, ..., On, 11, ..., tm). Under
this abbreviation, [7]. is subsumed to the case= 0, and ?%].p3 to the cases; = a and
m = 0. The set of free names and variables are defined in the sthwda [30], cf. Appendix
[1]. The sets of free s/variables channels incorporategtoasurring in annotating types. For
example, we havé/(A(x: t).P) = (fv(t) Ufv(P)) \ x. Substitution by channeB{u/x} affects
not only terms but also types which annotate bound varialdegxample, when the channel
u is substituted foix in a process typd, then the types of x andao’ of u are joined as:
{u1: 01,...,un: on}{V/x} = Ui{u{V/x}: 0i{V/x}}. Others are defined homomorphically.
Duality is defined by adding[M(X: 6)t].a =![N(X: 6)t].@ and![M(X: 6)f].a =7[N(X: 6)t].T;
others remain unchanged.

4.2 Fine-Grained Process Typing System

The typing system is given in Fig. 5, and uses two kinds of @mdgnts: the main i§ +
P> A, which reads “under the environmelnf processP has an interface typA”. Also we
havel F u: o, which reads as “a channalhas a types underl"™” and the standard well-
formednes$ + Env andl I T : tp for environments and types following [30, 31] (which are
left to Appendix [1]). For channel inference, we define theasing~ on channel types as the
smallest partial order such thafl(x: 6)f].a = o and®[l1: ai;...ln: an] = ai; dually for
input and branching types.

The inference rules are combinations of [30] and the seslipimg system of thet
calculus. We use the notatidnu: o for AU{u: o} if 0 = begin.a; A,u: o otherwise. We
extend this ta\ - A’; andu® 6 which meansi;: 01---Un: Op.

In the first group(Common), (Val) is a standard rule for variableghan) uses> to infer
shortertypes for sessions than the typewéleclared in the environmeft The second one,
(Function), comes from the simply typetl-calculus (where the rules for the higher-order
abstractions(Absy) and (Appy) and those for channel abstractiqapsy) and (Appn), are
separately given). The final grou@Rrocess) are about processes. (Kil), we start from the
empty interface, and itPar), we merge two interfaces together. The r(Weak) corresponds
to the process subsumption rule; sidce P : A means P would access channels specified
at most byA”, we can increment its interface. Note that we eatweaken session channels
exceptend. (New) and(Newk) hide a name and a pair of session channels, respectixety,
(Req), (Bra) and(Sel) are standard rules for accept, request, branching andisgiec

(Rec) is a combination of the input rule for session types and th@20]. This single rule
subsumes both the value input rule and the session chaqmelrue (recall the abbreviation

1 For simplicity of presentation, the tail typedoes not include the channel type This inclusion can

be straightforwardly formalised by using the standard tgpeality approach [3]. We also omit the
existential types from [17, 30] which are a special case pkddent types.
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(Common)

(Val) (Chan)

r,x:t,l" - Env ru:ol+FEnv 0>-0

rox:tr'Ex:t ru:oltu:o

(Function)

(Base) (Absh) (APPH)

[ Env Mx:tFP:t MFP:t—1 THQ:t

N-=():unit TFAXT).P:it—T r-PQ:t

(AbsN) (Appn)

Mx:oFP:T MN=P:Mx:o1 Tku:o

r=A(x:0).P:MNx: o1 rEPu:t{u/x}

(Process (Weak)

(Nil) (Par) IFP:A THu:o

M-Env TFPio:iAp o € {begin.a,end} u¢dom(A)

FrFO:0 THEP|P:A1-Dp r-P:Au.c

(New) (Newk)

MNaokP:Aa: o IKi: o,Kj: dFPIAK:: a,Kj: O
- (va: o)P: A M= (vk)P:A

(Acc)

MFu:begina {k:B}ZA
Mx:akFP:AX: a
I Hu(x).P:A-u: begin.a

(Req)
M-u:begina IMx:aFP:AX: a

I FTU(x).P:A-u: begin.a

(Send)
(Rec) k1N 6)t;a
r+k:?N&: 6)i];a F}—PA {k:a}CA-V: G
F,)Z:c”ryt" P:AX: §,k: a I EV;t{V/%} vz oi{V/%}
rEk&: 6,y:1).P:Ak: ?2NK: 6)f;a  THKW,V).P:A-¥: §\kk: ![N(X: 6)f];a
(Bra) (Sel)
MEk:&[li: ailier THER:AK: 0 FEk:afli: ailier THEP:AK: q;

CEk>{li: Rlia : Ak &[li: aifier

FEK<IL.P:AK: G[li: aific

Fig. 5. Session Typing based on Fine-Grained Process Types

in the previous paragraph). The first assumption ensugas input channels typed oy and
higher-order values typed liy, and in the conclusion, the free occurrences of Goth P and

t; are bound (hencg is depended by); resulting the process tygewith a new session type
?N(X: 6)t].a atk (notek ¢ dom(A)). (Send) is again a combination with the output rule in
[30] (see alsogend) for the first system): the first assumption ensuresitputs a pair of names
typed byo; and higher-order values typed by The third assumption says thais either sent
namev; or a free name ifP. The the first part of the argumentsjsthen the second part of the
arguments should have typgV/X} sincex; binds free occurrences &fin tj. Then the effect
of channek andv; should be recorded as a typeldf, V) because they will be used by the
opponent input after interaction (note that werdi have to record the effect &f).

By essentially the same routine of the proofs in [30], we obta
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Theorem 4.1 (Type Soundness).

1. Suppos€ FP:tand P— P'. Thenl - P’ :t.
2. Supposé€ - P: A with A balanced. Then B P' impliesl” - P’ : A with A’ balanced.
3. Supposé€ - P : A with A balanced. Then P— P’ impliesl” - P’ : AY with A’ balanced.

Note thatl™ does not have to be balanced.

Theorem 4.2 (Type Safety)A typable procesE + P : A with balancedA never reduces into
an error.

Typing Hotel Booking Example We revisit the hotel booking example in § 2.3. The only
change from the previous types in § 3.2[id")1] in B. This is changed to{(X: Yy, Y : Vy) A
with yx =![string].?[int]...end andyy =![int].end, andA = {X: yy,y : yy}. Note that we also
have to change the syntax in Line 4 frgra move; ('R') toy<imove; (X, Yy, R") since the type of
the thunk is dependent orandy. This suggests a trade-off between the two approacheseIn th
channel-dependent typing, we gain more flexibility by hguimore type information, but this
in turn demands additional type annotation in programs. agproach based on linear typing
does not need heavy annotations, though it allows the tiifyabf a smaller, but probably
pragmatically sufficient, class of programs. We may alsmegtie dependently typed approach
with the existential types of [17,30] (this integration isasghtforward, but requires more
rules), in which case we do not have to declare session naxpdisiy. The syntax of the
example is unchanged, and the type becormi#{s ! v,y : yy|"A"]. The reader can also check
the processes in the beginning of the section are typabtéeiffirst process(Ax.0)y has the
empty process typ@ so that we can compose withiny by (Par). Similarly for the second.
In the third, (A(x: t).k(1).runx)("k(()).0") with t = 'k: ![unit].end’. has a process type=

{k: ![nat].![unit].end} under environmerh. These are untypable in the first system.

4.3 Comparison of the Two Systems

We conclude this section with a comparison of the two typiysfems. The examples in the
beginning of this section show the existence of terms tygabthe second system but not in
the first system introduced in § 3. A natural question is wisighsystem of the second system
can precisely characterise the first, i.e. a sound and caenghebedding of the first system into
a subset of the second system. Observing that it is lineatifurs that can inhabit those types
with free session capabilities (eX(x: o).x(1) of typelx: a.x: nat is not a linear function,
while X(1)" of type"x: nat'is linear), we introduce the following three functions.

— ErasdP) erases the dependent binding from the input and outputEaase€T) erases
the dependent binding from the functional and channel dégeintypes; and translates
process types into; and puts the linear annotation to a functional type whick fnae
session typings in its tail.

— Proc(1) extracts the session environmé&nfrom T.

— Lin(I") extracts the linear variable sétfrom .

Formally we define:

— For terms:Eras€()) = (), Erasdu) = u, Eras€0) = 0, Erasdk(X: G,y: 1).P) = k(y:
Erase€T)).Eras€P), Erasek(V,V).P) = k(ErasgV)).ErasgP) and others are homomor-
phic. For typesErasdunit) =unit, ErasgA) = o, Erasdt — 1) = (Erasdt) — ErasdT))!
(if Proc(t — 1) # 0) Erasdt) — Erasd1) (otherwise);Eras€lx: 6.1) = (Eras€ag) —
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ErasdT))? (if Proc(Mx: 0.1) # 0) Eras€o) — Eras€1) (otherwise)Erase! [ (X: &)t];a) =
I[Eras€t)];Eras€a), Erasg![[1(X: §)];a) =![Eras€0oy)]; Erasga), Eraséend) = end and
others are homomorphic or dulras€l") is defined homomorphicly except deleting ses-
sion typings (i.eErasdl,u: a) = Eras€l)).

— Proc(A) = {k: Erasda) | k:a € A}; Proc(unit) = unit, Proc(t — 1) = Proc(t) \ Proc(t)
andProc(Mx: o0.1) = Proc(T) \ X.

— Lin(T") = {x | Eras€T (x)) = (t)1}.

Next we re-formulate the rules for the arrow types to enshed &ll session capabilities are
not lost duringB-reductions (which is a property of the first systemn}: 1 is well-formed if
Proc(t) C Proc(t); andlMx: o.T is so ifx: a € Proc(t). We also replacé-k: a to meank ¢
fn(A) Ufv(Q) in the rules for processes. Then we can describe the comdsppside conditions
directly usingProc(t) andLin(I") instead of recording and.$. Then we have:

Theorem 4.3 (Embedding)Belowl" [ $ means{u:T'(u) |ue S}.

— Supposd + P : 1 is derived by the restricted system defined in this subseciieen we
have: Eras€l);Proc(1) \ Z;$ + Eras€P) : Erasdt) where$S = Lin(I" | fv(P)) andZ =
{Proc(t) | x:teTl | 5}.

— Supposé ;0,0 - P : o and P is initial. Then there exi$t’, P andA such that™” - P’ : A
with Erasél’’) =T, ErasdP’) = P andA C I’ in the restricted system.

The first statement means that the session capabilitifegtept those that appear in types of
the linear variables i are placed aX%, and the linear variables id are placed as in the first
system. The proof is by induction dn+ P : 1. The second statement is by constructing the
minimum environments starting from, x, u andO. This theorem shows that the second system
(with appropriate use of dependency type information) haglar typability than the first one,
but needs more complex types in the user program. Type imderalong the line of [8, 30]
may partly ease these burdens, while it is unknown for pnogravithout type annotations.

5 Related and Future Work

This paper studies session types for higher-order prosesseg two different approaches and
compares their typability. The robust formulations hintsdthe linear and dependekitype
theories [3, 28] lead to new process typing systems for patealidation. Straightforward ex-
tensions are recursive types [18, 32], subtyping [14, 3d]@olymorphism [12, 26]. In partic-
ular, recursive session types are useful to type variouswomirepetitive” protocols appeared
in many practices [7, 10, 29]. For this extension, an expietursion construct in the form of
the recursive agertef X(Xk) = P in M is introduced in [18, 32]. In our calculus, this agent
can be replaced by a more familiar syntax such@srec x =P in M. The important con-
straint is thatP cannot hold linear variables nor free session channelX(ke$§ = 0), which
does not reduce the expressivity by using parameterisertpses as in [28]. By taking the ap-
proach in [32], we can construct the typing rule for the rstwg agent, and can type scenarios
with repetition and recursion which are common in the litere, fully integrated with code
mobility, see [1].

There is a large literature on linear and session types ftr thee A-calculus and thet
calculus. Below we give the most closely related work, facg®n the linear typing system of
theA-calculus and on the session types for distribution andtfanal programming languages.
See also [1, 6-8,29] for discussions on other type disapliof thert-calculus as well as on
applications of session types.
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Our first typing system is substructural [28] in the sensé tbhasession environmenis
we do not allow weakening, ensuring that a session chanmet@ded as having been used
only when it actually occurs in session communication eggians; contraction is also not
allowed inZ. Similarly no structural transformations can apply to Angariable environments,
ensuring that the occurrence of a variable manifests thetdtindeed been used exactly once.
The ways in which our typing system enforces linearity casdsn as an amalgamation of the
two approaches in [28], retaining the simplicity of dectarasystems, and the decidability of
algorithmic ones. Contrary to the systems of [28], theredisi@ed to consider linear usage for
types other than functional. Applying the techniques ir?fg, constructing its type inference
system would be a straightforward task.

Relating to distribution, [11] studies session types faxdsbambients, preventing session
interruption when an ambient crosses its boundary. Onesaitthnical challenges of our work
is to formalise sound typing systems for arbitrarily paréenised processes (i.&-abstractions
in processes with the full type hierarchy), which is not teebin ambient primitives. In [26, 27]
the authors extend previous work [16], and define a concumeiti-threaded functional lan-
guage with session primitives. It has explicit multi-thdésy primitivef or k and explicit stores
whose operational semantics. Their recent draft paperfiirfijer extends the language to a
variant of session types where sending messages is nokelo€his is handled by explic-
itly storing an entry for the two endpoint channels in a buffés functionality is the same as
our use of two session channels indexed by 0 and 1 for disghgwg two endpoints (based
on [14]). They simplify their previous type judgement whigyquires input and output envi-
ronments in [26, 27] by using the linear typing witlp1it operator, which is more directly
related to the original non-deterministic typing [28]. Wha precise typability comparison is
difficult due to our additional language primitives and thagerational semantics with buffers
(which is essential for type soundness in their languagejr ivork also shows a use of the
linear types for functional languages with sessions. Ouongarison between the first and sec-
ond systems via Theorem 4.3 makes the relationship betwadrotling usage of functional
variables and effects of channel accessibility clear: deaiof “balanced” seems more suited
to effect-like systems since our concern is well-formedraprocess types, not intermediate
functional types, while the linear typing approach is siem@dnd more tractable. This line of
study is not explored in the previous literature.

As an on-going work, we have been investigating the incapon of session types and
code mobility with Sockets in Java [19] and Web Service Diption Languages [7, 29]. From
these experiences, we find that not only type checking bymsesges after writing a protocol,
but also declaring its session types before compilatiosaily helps programmers implement
error-free interactions in their programs. For developginggramming language designs, the
presented type theory needs further explorations, inolydtls incorporation with advanced
concurrent programming primitives such as exceptionsdiat and priority checking.
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A Appendix: Section 2

We define the structural congruence omitted from the maitisecThe relation, denoted=’,
is the smallest relation generated by the following axiomd iaules.

P=xQ=P=Q Renaming of bound variables
P|IQ=Q|P Commutativity of parallel composition
(PIQ)|R=P|(Q|IR) Associativity of parallel composition
PlO=P Inaction and parallel composition

(va:0)P|Q=(va:0)(P|Q) a¢f(Q)  Scope extrusion
(VK)P|Q= (vK) (P|Q)  Kicjoay & M(Q)

(va: o) (vk)P=(vk)(va:o)P Exchange
(va:0o)(vb:0')P=(vb:0')(va:o)P

(VK) (VK')P = (VK') (VK) P

(va:

Q

)0=0 (Vk)0=0 Inaction and restriction

B Appendix: Section 4

This appendix lists the omitted definitions and rules in B&ct. First we define the set of free
names and variables as follows.

(Free Variables) (Free Names)

V() = {x}, fv(a) = fv(ki) = 0. fn(x) =0, fn(a) ={a}, (ki) = {ki}

fv(unit) = fv(end) = 0 fn(Mx: 6.17) = fn(G) Un(T)

fu(t — T) = fv(t) Ufv(T) (' [N(Xy: O1,...,%n: On)T1,...,Tm|Q)

fu(Mx: 0.T) = fv(0) UTv(T) \ X =f(?MN(X1: 01,...,Xn: On)T1, ..., Tm]AX)
A(begin.a) = (o) = (fn(07)... Ufn(on) Utn(Ty)... Ufn(tm)) U fv(a)

(D) = (VU URVE) | u: T e A} Other rules are given by replacirg( ) by fn().

V(M (X1 O1,-..;%n " On)T4, ..., Tm]O)
=fv(?M(X1: O1,....%Xn: On)Tq,...,Tm]0)
= (v(01)... U(On) UTv(T1)... UTv(Tm)) \ RUTv(a)

(&[l1: ag;...In: on]) = (@[l ag;...In: an]) = Uv(a)

Well-Formedness Next we define the notions of well-formedness for types amifenments
by the formal system in Figure 6. As in [30,31], the first judwntl - Env is designed
to ensure that an identifier can only be used in the constmucif a type if it has already
beendeclaredin the environment. (e-base) and (e-chan) are standardfofimation rule for
functional types are the same as [30, 31]; (t-base) is fostzot and end type, and (t-al)ss

for higher-order values. In the formation rule for depentdgpes, (t-abg), the bound variable

x is allowed in the construction of the result type(t-dep) for channel dependent types is
similarly defined. (t-sel) is for selection. Then (t-dualjrhulates the input types. For process
types, (t-proc) ensures that a process always has a chawirgirenent which does not exceed
the capability specified by the global environmEnsee [31, § 3.1].
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(Well-Formed Environment)

N-t:tp x¢dom(l) N-o:tp ugdom{)

(e-nil) OF Env (e-val) X tF Env (e-chan) [ U OF Env
(Well-Formed Types)
[+ Env M-t:tp THT:tp MX:okFT: tp
(t'base)W@nd:tp (t-absy) FTFt—Tt:tp (t-abs) FTIx: 0.1:tp
N-A:tp ThFu:o

[FEnv  uédom(d) FHo:tp rFo:tp
(t-proc) T~0:tp FT’FAuU:o:tp (t-beg) I begin.0: tp (t-dual) FFo: tp

M,X1: 01,.,%: OnFTjitp Tha:t LI
(tout) P X T A P T T

I HIM(X1: 01,...,%: On)T1,...,Tm]; 00 : tp (t-sel) MEofli:ag,..,Inian}:tp

Fig. 6. Well-Formed Higher-Order IO Types
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