Skip to main content

Inferring Gene Regulatory Networks from Multiple Data Sources Via a Dynamic Bayesian Network with Structural EM

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4544))

Abstract

Using our dynamic Bayesian network with structural Expectation Maximization (SEM-DBN), we develop a new framework to model gene regulatory network from both gene expression data and transcriptional factor binding site data. Only based on mRNA expression data, it is not enough to accurately estimate a gene network. It is difficult for us to estimate a gene network accurately only with the mRNA expression data. In this paper, we use the transcription factor binding location data in order to introduce the prior knowledge to SEM-DBN model. Gene expression data are also exploited specifically for likelihood. Meanwhile, we incorporate the prior knowledge into every learning step by SEM rather than only learning from the very beginning, which can compensate the attenuation of the effect with location data. The effectiveness of our proposed method is demonstrated through the analysis of Saccharomyces cerevisiae cell cycle data. The combination of heterogeneous data from multiple sources ensures that our results are more accurate than those recovered from only gene expression data alone.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Imoto, S., Higuchi, T., Goto, T., Miyano, S.: Error tolerant model for incorporating biological knowledge with expression data in estimating gene networks. Statistical Methodology, 1–16 (2006)

    Google Scholar 

  2. Liang, S., Fuhrman, S., Somoyi, R.: REVEAL: a general reverse engineering algorithm for inference of genetic network architectures. In: Proc. Pacific Symposium on Biocomputing, pp. 18–29 (1998)

    Google Scholar 

  3. Akutsu, S., Miyano, S., Kuhara, S.: Algorithms for inferring qualitative models of biological networks. In: Proc. Pacific Symposium on Biocomputing, pp. 290–301 (2000)

    Google Scholar 

  4. Chen, T., He, H.L., Church, M.: Modeling gene expression with differential equation. In: Proc. Pacific Symposium on Biocomputing, pp. 29–40 (1999)

    Google Scholar 

  5. D’haeseleer, P., Wen, X., Fuhrman, S., Somogyi, R.: Linear modeling of mRNA expression levels during CNS development and injury. In: Proc.Pacific Symposium on Biocomputing, pp. 41–52 (1999)

    Google Scholar 

  6. Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian networks to analyze expression data. Computational Biology, 601–620 (2000)

    Google Scholar 

  7. Hartemink, A.J., Gifford, D.K., Jaakkola, T.S., Young, R.A.: Combing location and expression data for principled discovery of genetic regulatory network models. In: Proc. Pacific Symposium on Biocomputing, pp. 437–449 (2002)

    Google Scholar 

  8. Imoto, S., Goto, T., Miyano, S.: Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression. In: Proc. Pacific Symposium on Biocomputing, pp. 175–186 (2002)

    Google Scholar 

  9. Segal, E., Yelensky, R., Koller, D.: From Promoter Sequence to Expression: A Probabilistic Framework. Bioinformatics, 273–282 (2003)

    Google Scholar 

  10. Bar-Joseph, Z., et al.: From promoter sequence to expression: A probabilistic framework. Nature Biotechnology, 1337–1341 (2003)

    Google Scholar 

  11. Bernard, A., Hartemink, A.: Informative structure priors: Joint learning of dynamic regulatiory networks from multiple types of data. In: Proc. Pacific Symposium on Biocomputing, pp. 459–470 (2005)

    Google Scholar 

  12. Pilpel, Y., Sudarsanam, P., Church, G.M.: Regulatory networks by combinatorial analysis of promoter elements. Nature Genetics, 153–162 (2001)

    Google Scholar 

  13. Tamada, Y., Kim, S., Bannai, H., Imoto, S., Tashiro, K., Kuhara, S., Miyano, S.: Estimating gene networks from gene expression data by combing Bayesian network model with promoter element detection. Bioinformatics, 227–236 (2003)

    Google Scholar 

  14. Nariai, N., Kim, S., Imoto, S., Miyano, S.: Using protein-protein interactions for refining gene networks estimated from microarray data by Bayesian network. In: Proc. Pacific Symposium on Biocomputing, pp. 336–347 (2004)

    Google Scholar 

  15. Li, S.P., Tseng, J.J., Wang, S.C.: Reconstructing gene regulatory networks from time-series microarray data. Physica, 63–69 (2005)

    Google Scholar 

  16. Murphy,K., Mian,S.: Modelling gene expression data using dynamic Bayesian networks. Technology Report, Computer Science Division, University of California Berkeley, CA, (1999)

    Google Scholar 

  17. Husmeier, D.: Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics, 2271–2282 (2003)

    Google Scholar 

  18. Wu, C.C., Huang, H.C., Juan, H.F., Chen, S.T.: GeneNetwork: An interactive tool for reconstruction of genetic network using microarray data. Supplementary information, Taiwan (2003)

    Google Scholar 

  19. Kim, S., Imoto, S., Miyano, S.: Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data. Biosystems, 57–65 (2004)

    Google Scholar 

  20. Friedman, N., Murphy, K., Russell, S.: Learning the structure of dynamic probabilistic networks. In: Proc. Conf. Uncertainty in Aritif. Intell, pp. 139–147 (1998)

    Google Scholar 

  21. Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Aders, K., Eisen, M.B., Brown, P.O., Botstein, D., Futcher, B.: Comprehensive identification of cell cycle-regulated genes of the yeast Saccaromyces Cerevisiae by microarray hybridization. Mol. Biol. Cell, pp. 3273–3297 (1998)

    Google Scholar 

  22. Lee, T., et al.: Transcriptional Regulatory Networks in Saccharomyces cerevisiae. Science, 799–804 (2002)

    Google Scholar 

  23. Home page of KEGG: http://www.genome.ad.jp/kegg

  24. Yu, J., Smith, V.A., Wang, P.P., Hartemink, A.J., Jarvis, E.D.: Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics, 3594–3603 (2004)

    Google Scholar 

  25. Zhang, Y., Deng, Z., Jiang, H., Jia, P.: Gene regulatory network constructiong using dynamic Bayesian network (DBN) with structure expectation maximization. In: Proc. International Conference on Bioinformatics and Computational Biology (BIOCOMP’06), pp. 41–47 (2006)

    Google Scholar 

  26. Gevaert, O., Smet, F.D., Timmerman, D., Moreau, Y., Moor, B.D.: Predicting the prognosis of breast cancer by integrating clinical and microarray data with bayesian networks Bioinformatics, pp. e184–e190 (2006)

    Google Scholar 

  27. Merwe, R., Doucet, A., Freitas, N., Wan, E.: The Unscented Particle Filter. Technical Report, Cambridge University Engineering Department (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Sarah Cohen-Boulakia Val Tannen

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Zhang, Y., Deng, Z., Jiang, H., Jia, P. (2007). Inferring Gene Regulatory Networks from Multiple Data Sources Via a Dynamic Bayesian Network with Structural EM. In: Cohen-Boulakia, S., Tannen, V. (eds) Data Integration in the Life Sciences. DILS 2007. Lecture Notes in Computer Science(), vol 4544. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73255-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73255-6_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73254-9

  • Online ISBN: 978-3-540-73255-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics