Skip to main content

Chestwall Segmentation in 3D Breast Ultrasound Using a Deformable Volume Model

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4584))

Abstract

A deformable volume segmentation method is proposed to detect the breast parenchyma in frontal scanned 3D whole breast ultrasound. Deformable volumes are a viable alternative to the deformable surface paradigm in noisy images with poorly defined object boundaries. A deformable ultrasound volume model was developed containing breast, rib, intercostal space and thoracic shadowing. Using prior knowledge about grey value statistics and shape the parameterized model deforms by optimization to match an ultrasound scan. Additionally a rib shadow enhancement filter was developed based on a Hessian sheet detector. An ROC chestwall detection study on 88 multi-center scans (20 non-visible chestwalls) showed a significant accuracy which improved strongly using the sheet detector. The results show the potential of our methodology to extract breast parenchyma which could help reduce false positives in subsequent computer aided lesion detection.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moss, S., Cuckle, H., Evans, A., Johns, L., Waller, M., Bobrow, L.: Effect of mammographic screening from age 40 years on breast cancer mortality at 10 years’ follow-up: a randomised controlled trial. Lancet 368(9552), 2053–2060 (2006)

    Article  Google Scholar 

  2. Kolb, T., Lichy, J., Newhouse, J.: Occult cancer in women with dense breasts: detection with screening US–diagnostic yield and tumor characteristics. Radiology 207(1), 191–199 (1998)

    Google Scholar 

  3. Destounis, S., Young, W., Murphy, P., Somerville, P., Seifert, P., Zuley, M.: Initial Experience of Automated Breast Ultrasound Screening Trial in the Setting of a Community Based Private Practice. RSNA (2006)

    Google Scholar 

  4. Drukker, K., Giger, M., Horsch, K., Kupinski, M., Vyborny, C., Mendelson, E.: Computerized lesion detection on breast ultrasound. Med. Phys. 29, 1438–1446 (2002)

    Article  Google Scholar 

  5. Drukker, K., Giger, M., Metz, C.: Robustness of computerized lesion detection and classification scheme across different breast US platforms. Radiology 237(3), 834–840 (2005)

    Article  Google Scholar 

  6. Sahiner, B., Chan, H., Roubidoux, M., Hadjiiski, L., Helvie, M., Paramagul, C., Bailey, J., Nees, A., Blane, C.: Malignant and Benign Breast Masses on 3D US Volumetric Images: Effect of Computer-aided Diagnosis on Radiologist Accuracy. Radiology (2007)

    Google Scholar 

  7. Sahiner, B., Chan, H., Roubidoux, M., Helvie, M., Hadjiiski, L., Ramachandran, A., Paramagul, C., LeCarpentier, G., Nees, A., Blane, C.: Computerized characterization of breast masses on three-dimensional ultrasound volumes. Med. Phys. 31(4), 744–754 (2004)

    Article  Google Scholar 

  8. Noble, J., Boukerroui, D.: Ultrasound image segmentation: a survey. IEEE Trans Med. Imaging 25(8), 987–1010 (2006)

    Article  Google Scholar 

  9. Sato, Y., Nakajima, S., Shiraga, N., Atsumi, H., Yoshida, S., Koller, T., Gerig, G., Kikinis, R.: Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Med. Image Anal. 2, 143–168 (1998)

    Article  Google Scholar 

  10. Frangi, A., Niessen, W., Hoogeveen, R., van Walsum, T., Viergever, M.: Model-based quantitation of 3-D magnetic resonance angiographic images. IEEE Trans. Med. Imaging 18, 946–956 (1999)

    Article  Google Scholar 

  11. Sato, Y., Westin, C., Kikinis, R.: Tissue classification based on 3D local intensity structures for volume rendering. IEEE Trans Vis. Comp. Graph. 6, 160–180 (2000)

    Article  Google Scholar 

  12. Ibanez, L., Schroeder, W.: The ITK software guide. Kitware Inc., (2005), www.itk.org

  13. Rutter, C.: Bootstrap estimation of diagnostic accuracy with patient-clustered data. Acad. Radiol. 7, 413–419 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Nico Karssemeijer Boudewijn Lelieveldt

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Huisman, H., Karssemeijer, N. (2007). Chestwall Segmentation in 3D Breast Ultrasound Using a Deformable Volume Model. In: Karssemeijer, N., Lelieveldt, B. (eds) Information Processing in Medical Imaging. IPMI 2007. Lecture Notes in Computer Science, vol 4584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73273-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73273-0_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73272-3

  • Online ISBN: 978-3-540-73273-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics