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Abstract

Volumetric registration of brains is required for inter-subject studies of functional and anatomical 

data. Intensity-driven registration typically results in some degree of misalignment of cortical and 

gyral folds. Increased statistical power in group studies may be achieved through improved 

alignment of cortical areas by using sulcal landmarks. In this paper we describe a new volumetric 

registration method in which cortical surfaces and sulcal landmarks are accurately aligned. We 

first compute a one-to-one map between the two cortical surfaces constrained by a set of user 

identified sulcal curves. We then extrapolate this mapping from the cortical surface to the entire 

brain volume using a harmonic mapping procedure. Finally, this volumetric mapping is refined 

using an intensity driven linear elastic registration. The resulting maps retain the one-to-one 

correspondence between cortical surfaces while also aligning volumetric features via the intensity-

driven registration. We evaluate performance of this method in comparison to other volumetric 

registration methods.

1 Introduction

Morphometric and functional studies of human brain require that neuro-anatomical data 

from a population be normalized to a common template. The goal of registration methods is 

to find a map that assigns a correspondence from every point in a subject brain to a 

corresponding point in the template brain. Since cytoarchitectural and functional parcellation 

of the cortex is intimately related to the folding of the cortex, it is important when 

comparing cortical anatomy and function in two or more subjects that the cortical surfaces 

are accurately aligned. However, it is a non-trivial problem to find a map from a subject 

brain to a template brain which maps grey matter, cortical surface and white matter to the 

corresponding regions in the template brain.

Volumetric brain image registration methods [1–8] find a deformation field that aligns one 

volume to another using intensity values, ideally to establish a diffeomorphism between the 

two brain image volumes. Using intensity only typically results in accurate registration of 

subcortical structures, but poorer alignment of cortical features. Information such as 

landmark points, curves and surfaces can be incorporated as additional constraints in an 

intensity-based warping method to improve alignment of the cortical surface [9–15]. For 

HHS Public Access
Author manuscript
Inf Process Med Imaging. Author manuscript; available in PMC 2015 July 22.

Published in final edited form as:
Inf Process Med Imaging. 2007 ; 20: 359–371.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



example, landmarks, curves [13] and image matching [12] can be applied in a hierarchical 

manner in a large deformation framework to ensure generation of diffeomorphisms [16, 17]. 

Hybrid methods such as HAMMER [18] implicitly incorporate surface as well as volume 

information in the alignment.

An alternative approach for studying the cortex is to use a surface based analysis. A number 

of surface-based techniques have been developed for inter-subject registration of cortices. 

These techniques involve flattening the two cortical surfaces to a plane [19, 20] or to a 

sphere [21, 22] and then registering the two surfaces in the intermediate flat space [23, 21] 

or in the intrinsic surface geometry via covariant derivatives [24, 25]. These approaches can 

be automatic [26, 23], or semi-automatic using sulcal landmarks [24, 25]. Although progress 

has been made towards automatic surface registration [26, 23], accurate fully automatic 

registration remains a challenge.

The main advantage of a purely surface based method is that the cortical surface can be 

modeled at high resolution, producing a precise point correspondence between cortical 

surfaces such that sulcal landmarks are aligned. However, these methods do not define a 

volumetric correspondence, so one is restricted to analyzing only cortical effects. The goal 

of this paper is to develop a registration method in which we retain the advantage of 

accurate cortical and sulcal alignment within a fully 3D volumetric registration. This 

approach takes advantage of strengths of both types of methods: the ability of surface based 

methods to accurately align complicated folding patterns and the ability of volumetric 

intensity based methods to align internal subcortical structures.

The algorithm we develop consists of three steps: (i) extraction, labelling and alignment of 

the cortical surfaces, (ii) extrapolation of the surface mapping to the volume using harmonic 

maps, and (iii) refinement of the volumetric map using an intensity driven linear elastic 

warp. We describe the cortical surface extraction and alignment procedure in Section 3. The 

result of this alignment is a 2D parameterization of the two cortical surfaces in which sulcal 

landmarks are aligned. The extrapolation of these parameterizations to three dimensions is 

then computed using harmonic mapping, an approach which we review below. Finally, we 

use an intensity-driven linear elastic warp as described in Section 5.

A number of existence, uniqueness, and regularity results have been proven for harmonic 

maps [27–29]. Harmonic maps and their generalized counterparts, p-harmonic maps [30], 

have been used for various applications such as surface parameterization and registration 

[31, 32], [20] and image smoothing [33]. Wang, et al. [34] describe a method for volumetric 

mapping of the brain to the unit ball B(0, 1). In recent papers, Joshi, et al. [35][36] described 

a method for combined surface and volume registration that used a similar three step 

procedure. In that case, the harmonic mapping used an intermediate unit ball representation 

which has the advantage of allowing the cortical surfaces to flow within each other. The 

distortion introduced in the intermediate space was corrected by associating a Riemannian 

metric with that representation. The limitation of this approach is that by using the map to 

the unit ball, the method is restricted to mapping only the cerebral volume contained within 

the cortical surface. Here we avoid this restriction by computing the harmonic map directly 

in Euclidean space so that the entire brain volume can be registered. We do this by fixing the 
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correspondence between all points on the cortical surface rather than just the sulcal curves as 

in [35][36]. Since the map between the cortical surfaces is fixed, there is no longer a need 

for the intermediate spherical representation. While this approach places a more restrictive 

constraint on the mapping of the surface, in practice we see little difference between the two 

methods in the mapping of the interior of the cerebrum.

2 Problem Statement and Formulation

The registration problem is formulated in the following manner. We start by aligning the 

cortical surfaces, semi-automatically, using sulcal landmarks. We then use harmonic maps 

to extrapolate this surface mapping to the entire cortex. It is nontrivial to extend the surface 

map to the full 3D volumetric map due to large inter-subject variability in sulcal structures 

and the complicated folding pattern of the sulci. For example, the widely used linear elastic 

or thin-plate spline registration methods based on landmarks are not useful for this 

extrapolation due to their tendency to generate folds [37]. Harmonic maps, on the other 

hand, are particularly suitable for this task since they tend to be bijective provided that the 

boundary (the cortical surface in this case) is mapped bijectively [38, 34]. The volumetric 

point correspondence obtained from these harmonic maps is then refined further using 

volumetric registration based on image intensity.

Given two 3D manifolds M and N representing brain volumes, with ∂M1, ∂M2 and ∂N1, ∂N2 

representing surfaces corresponding to cortical grey/white matter and grey/CSF boundaries, 

we want to find a map from M to N such that (i) ∂M1, the grey/white matter surface of M, 

maps to ∂N1, the grey/white matter surface of N; (ii) ∂M2, the grey/CSF surface of M, maps 

to ∂N2, the grey matter/CSF surface of N; and (iii) the intensities of the images in the interior 

of M and N are matched. The surfaces, ∂M1, ∂M2 and ∂N1, ∂N2, are assumed to have a 

spherical topology. We solve the mapping problem in three steps:

1. Surface matching which computes maps between surface pairs - the cortical 

surfaces and the grey matter/csf surfaces of the two brains, with sulcal alignment 

constraints (Section 3);

2. extrapolation of the surface map to the entire cortical volume. This is done by 

computing a harmonic map between M and N subject to a surface matching 

constraint (Section 4), and

3. Refinement of the harmonic map on the interiors of M and N to improve intensity 

alignment of subcortical structures (Section 5).

3 Surface Registration

Assuming as input two T1-weighted MRI volumes corresponding to the subject and the 

template, cortical surfaces are extracted using the BrainSuite software [39]. BrainSuite 

includes a six stage cortical modeling sequence. First the brain is extracted from the 

surrounding skull and scalp tissues using a combination of edge detection and mathematical 

morphology. Next the intensities of the MRI are corrected for shading artifacts. Each voxel 

in the corrected image is labeled according to tissue type using a statistical classifier. Co-

registration to a standard atlas is then used to automatically identify the white matter 
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volume, fill ventricular spaces and remove the brain stem and cerebellum, leaving a volume 

whose surface represents the outer white-matter surface of the cerebral cortex. It is likely 

that the tessellation of this volume will produce surfaces with topological handles. Prior to 

tessellation, these handles are identified and removed automatically using a graph based 

approach. A tessellated isosurface of the resulting mask is then extracted to produce a genus 

zero surface which is subsequently split into two cortical hemispheres. These extracted 

surfaces are hand labeled with 23 major sulci on each cortical hemisphere according to a 

sulcal labeling protocol with established intra- and inter-rater reliability [39]. Grey 

matter/CSF surfaces are extracted similarly except that topology correction was done 

manually by morphological operation tools in BrainSuite.

One method for alignment of surfaces with sulcal constraints is based on intrinsic thin-plate 

spline registration [25]. In that method, a deformation field is found in the intrinsic geometry 

of the cortical surface, which results in the required sulcal alignment. Covariant derivatives 

with the metric for the flat coordinates are used in order to make the deformation 

independent of the flat representation. The method requires the surfaces to be re-sampled on 

a regular or semi-regular grid in the flat space for discretization of the covariant derivatives. 

In addition to the loss of resolution, this leads to an added computational cost of 

interpolations for the re-sampling brain surface in the flat space. To overcome this problem, 

we follow a registration method described in [40] which registers surfaces by 

simultaneously parameterizing and aligning homologous sulcal landmarks. In order to 

generate such a parameterization with prealigned landmarks, we model the cortical surface 

as an elastic sheet by solving the linear elastic equilibrium equation in the geometry of the 

cortical surface using the form:

(1)

where μ and λ are Lamé’s coefficients and ϕ denotes 2D coordinates assigned to each point 

on the surface. The operators Δ and ∇ represent the Laplace-Beltrami and covariant gradient 

operators, respectively, with respect to the surface geometry. The solution of this equation 

can be obtained variationally by minimizing the integral on the cortical surface [41]:

(2)

where Dϕ is the covariant derivative of the coordinate vector field ϕ. The integral E(ϕ) is the 

total strain energy. Though the elastic equilibrium equation models only small deformations, 

in practice we have found that it is always possible to get a flat map of the cortex by setting 

the parameters μ = 10 and λ = 1.

Let ϕM and ϕN denote the 2D coordinates to be assigned to corresponding hemispheres of M 

and N brains respectively. We then define the Lagrangian cost function C (ϕM, ϕN) as

(3)
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where ϕM (xk) and ϕN (yk) denote the coordinates assigned to the set of K sulcal landmarks 

xk ∈ M, yk ∈ N and σ2 is a Lagrange multiplier. The cost function is then discretized in the 

intrinsic surface geometry by finite elements as described in [40] and minimized by 

conjugate gradients. This procedure is applied to both the inner and outer pairs of cortical 

surfaces ∂M1, ∂N1 and ∂M2, ∂N2 to achieve a bijective point correspondence between each 

pair. This surface alignment and parameterization procedure is illustrated for the inner grey/

white cortical boundary in Fig. 1.

4 Harmonic Mapping

The surface registration procedure described in Section 3 sets up a point to point 

correspondence between the pairs of surfaces ∂M1, ∂M2 and ∂N1, ∂N2. As noted earlier, 

treating these surfaces as landmarks is not helpful since they are highly convoluted and 

finding a volumetric diffeomorphism consistent with the surface map is non-trivial. One 

approach that can achieve such a diffeomorphism is to compute a harmonic map. A 

harmonic map u = (u1, u2, u3) from 3D manifold M to 3D manifold N is defined as the 

minimizer of the harmonic energy [29],

(4)

Note that (4) is quadratic in uα and that the summands are decoupled with respect to α. 

Consequently the harmonic energy Eh (u) can be separately minimized with respect to each 

component uα, α ∈ {1, 2, 3}.

We compute the minimizer of Eh (u) using a conjugate gradient method with Jacobi 

preconditioner. The mapping of the two surfaces computed in the previous sections act as 

constraints such that ∂M1 maps to ∂N1 and ∂M2 maps to ∂N2. This harmonic mapping 

extrapolates the surface mappings to the entire volume such that the surface alignments are 

retained.

5 Volumetric Intensity Registration

The previous harmonic mapping step matches inner and outer cortical boundaries by 

computing a large deformation of the template brain to obtain a constrained bijective 

mapping between the two brain volumes. However, this map uses only the shape and not the 

MRI intensity values. Consequently we need a final small scale deformation to refine the 

mappings so that subcortial and extra-cerebral structures are also aligned. To compute this 

refinement we use a linear elastic registration method [6] as described below. We impose the 

constraint that cortical boundaries remain stationary during this refinement so that the 

cortical correspondence is retained.

Let fM (x) denote the MRI intensity value at location x = (x1, x2, x3)t for the brain M and let 

fN (x) denote the MRI intensity value at location x = (x1, x2, x3)t for the brain N. In order to 

find a smooth deformation field d = (d1, d2, d3)t such that the mean squared error between 

MRI intensity values of the two brains fM (x + d) and fN (x) is minimized, we minimize the 

cost function
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(5)

where L = ∇2 + μ∇(∇·) denotes the Cauchy-Navier elasticity operator in M. By imposing 

the constraint (6) on the deformation field, we ensure that the surface alignment is not 

affected. Assuming that the deformation d is small compared to the rate of change of fM, 

then using a Taylor series approximation, we have fM (x + d) ≈ fM (x) + ∇ fM (x) · d. 

Substituting this approximation in (5) and (6), we get

(6)

Note that this is a quadratic cost function and can again be minimized by the conjugate 

gradient method. We use a preconditioned conjugate gradient method with Jacobi 

preconditioner.

This final refinement completes the surface-constrained registration procedure. While there 

are several steps required to complete the registration, each step can be reduced to either a 

surface or a volume mapping cast as an energy minimization problem with constraints, and 

can be effectively computed using a preconditioned conjugate gradient method. Thus, the 

entire procedure can be completed efficiently.

6 Results

In this section we demonstrate the application of the surface constrained registration 

procedure to T1-weighted MR brain images. We took the genus zero cortical mask, the 

tessellated cortical surface, the sulcal labels, and the original image intensities for two brains 

and applied our alignment procedure as described above. Shown in Fig. 3 are three 

orthogonal views of a subject before and after alignment to the template image. Note that 

before alignment the surfaces of the subject and template are clearly different, while after 

matching the subject surface almost exactly matches the morphology of that of the template. 

However, since at this point we do not take the image intensities into account, the interior 

structures are somewhat different. Following the final intensity-based alignment procedure 

the interior structures, such as the subject ventricles, are better matched to those of the 

template. There is no gold standard for evaluating the performance of registration algorithms 

such as the one presented here. However, there are several properties that are desirable for 

any such surface and volume registration algorithm. Our method for evaluating the quality 

of our registration results is based on the following two desirable properties:
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1. Alignment of the cortical surface and sulcal landmarks. We expect the sulcal 

landmarks to be accurately aligned after registration and for the two surfaces to 

coincide.

2. Alignment of subcortical structures. We also expect the boundary of subcortical 

structures (thalamus, lateral ventricles, corpus callosum) to be better aligned after 

coregistration than before.

For evaluating performance with respect to the first property, we compared the RMS error in 

sulcal landmark registration for pair-wise registration of a total of five brain volumes. We 

performed a leave-one-out validation in which we removed one sulcus from the set of curves 

to be aligned and then computed the RMS error in alignment for that sulcus; the procedure 

was repeated for each sulcus in turn. The mean squared distance (misalignment) between the 

respective sulcal landmarks was 11mm using a 5th order intensity-only registration with AIR 

[3] and 11.5mm for the HAMMER algorithm [18, 42], which uses a feature vector based on 

a set of geometric invariants. The RMS error for our approach was 2.4mm. The difference 

reflects the fact that our approach explicitly constrains these sulcal features to match, which 

AIR and HAMMER do not.

For the second property, we used manually labeled brain data from the IBSR database at the 

Center for Morphometric Analysis at Massachusetts General Hospital. These data include 

volumetric MRI data and hand segmented and labeled structures. We first traced the 23 sulci 

for each brain. We then applied the HAMMER software and our method using the sulcal 

landmarks as additional constraints. To evaluate accuracy, we computed the Dice 

coefficients for each structure, where the structure names and boundaries were taken from 

the IBSR database. The Dice coefficient measures overlap between any two sets 

representing regions S1 and S2, and is defined as  where |·| denotes size of the 

region [43]. A comparison of the Dice coefficients is shown in Table 6, where we show Dice 

coefficients for our method before and after application of the final intensity-based 

alignment step.

These results show superior alignment of cortical grey matter while HAMMER achieves 

superior alignment of subcortical structures. These results appear reasonable since 

HAMMER uses boundary information throughout the volume as part of the feature vector 

and thus can produce superior alignment of subcortical boundaries than our method which is 

based solely on image intensity. Conversely, the more specific cortical information in our 

approach leads to superior results in the cortical grey matter. Based on these preliminary 

observations, we believe that the approach described here could be appropriate for use in 

applications where cortical alignment may be of particular importance such as morphometric 

studies of cortical thinning, fMRI studies and analysis of DTI fiber tract data.
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Fig. 1. 
(a) Our surface registration method involves simultaneous flattening and sulcal landmark 

alignment of the two cortical surfaces, which produces accurate sulcal mapping from one 

cortex to another. The outer grey matter/CSF surface is shown in semi-transparent grey 

color and the inner grey/CSF surface is opaque. Shown below are flat maps of a single 

hemisphere for the inner cortical surface of the two brains. (b) Mapping of the aligned sulci 

in the flat space and (c) sulci mapped back to the inner cortical surface of the template.
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Fig. 2. 
(a) Illustration of the extrapolation of the surface mapping to the 3D volume by harmonic 

mapping. The pairs of surfaces are shown in red and green. The deformation field is 

represented by placing a regular grid in the central coronal slice of the brain and deforming 

it according to the harmonic map. The projection of this deformation onto a 2D plane is 

shown with the in-plane value encoded according to the adjacent color bar. (b) The result of 

harmonic mapping and linear elastic refinement of the subject brain to the template brain. 

Note that the inner and outer cortical surfaces, by constraint, are exactly matched. The linear 

elastic refinement produces an approximate match between subcortical structures. The 

deformation field here shows the result of cortically constrained intensity-driven refinement. 

Note that the deformations are zero at the boundary and nonzero in the vicinity of the 

ventricles, thalamus and other subcortical structures.
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Fig. 3. 
Examples of surface constrained volumetric registration. (a) Original subject volume; (b) 

template; (c) registration of subject to template using surface constrained harmonic 

mapping, note that the cortical surface matches that of the template; (d) intensity-based 

refinement of the harmonic map of subject to template
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Table 1

Comparison of Dice coefficients and RMS errors in sulci

Subcortical Structure AIR HAMMER Harmonic Harmonic
with intensity

Left Thalamus 0.7943 0.7365 0.6852 0.7163

Left Caudate 0.3122 0.5820 0.5036 0.6212

Left Putamen 0.6136 0.5186 0.4040 0.4700

Left Hippocampus 0.3057 0.6837 0.5661 0.5918

Right Thalamus 0.7749 0.8719 0.6645 0.7291

Right Caudate 0.3232 0.8107 0.4607 0.5474

Right Putamen 0.5370 0.6759 0.5229 0.5862

Right Hippocampus 0.3373 0.5974 0.5877 0.6988

Left Cerebral WM 0.5826 0.7858 0.9029 0.9118

Left Cerbral GM 0.6233 0.8388 0.9094 0.9117

Left Cerebellum WM 0.4092 0.6170 0.5333 0.6793

Left Cerebellum GM 0.5246 0.8597 0.7857 0.8227

Right Cerebral WM 0.5897 0.7938 0.9014 0.9113

Right Cerbral GM 0.6048 0.7208 0.9022 0.9050

Left Cerebellum WM 0.3686 0.5763 0.6474 0.6721

Left Cerebellum GM 0.5252 0.8535 0.8303 0.8604

RMS Error in Sulci 11mm 11.5mm 2.4mm 2.4mm
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