
Multi-Fiber Reconstruction from Diffusion MRI Using Mixture of
Wisharts and Sparse Deconvolution

Bing Jian and Baba C. Vemuri
Department of Computer and Information Science and Engineering University of Florida,
Gainesville, FL 32611, USA*

Abstract
In this paper, we present a novel continuous mixture of diffusion tensors model for the diffusion-
weighted MR signal attenuation. The relationship between the mixing distribution and the MR signal
attenuation is shown to be given by the Laplace transform defined on the space of positive definite
diffusion tensors. The mixing distribution when parameterized by a mixture of Wishart distributions
(MOW) is shown to possess a closed form expression for its Laplace transform, called the Rigaut-
type function, which provides an alternative to the Stejskal-Tanner model for the MR signal decay.
Our model naturally leads to a deconvolution formulation for multi-fiber reconstruction. This
deconvolution formulation requires the solution to an ill-conditioned linear system. We present
several deconvolution methods and show that the nonnegative least squares method outperforms all
others in achieving accurate and sparse solutions in the presence of noise. The performance of our
multi-fiber reconstruction method using the MOW model is demonstrated on both synthetic and real
data along with comparisons with state-of-the-art techniques.

1 Introduction
As the only noninvasive and in vivo imaging method available today which allows neural tissue
architecture to be probed at a microscopic scale, diffusion-weighted magnetic resonance
imaging (DW-MRI) provides unique clues to the microstructure of tissues and to changes
associated with various physiological and pathological states. By producing quantitative data
of water molecule motion that naturally occurs in brain tissues as part of the physical diffusion
process, DW-MRI has also been used to map the fiber orientation in the brain white matter
tracks. This valuable information can be further exploited for neuronal connectivity inference
and brain developmental studies [1].

Assuming a displacement probability characterized by an oriented Gaussian probability
distribution function, diffusion tensor MRI (DT-MRI) [2] provides a relatively simple way of
quantifying diffusional anisotropy as well as predicting the local fiber direction within the
tissue from multidirectional DW-MRI data. However, the major drawback of diffusion tensor
MRI is that it can only reveal a single fiber orientation in each voxel and fails in voxels with
orientational heterogeneity [3], which makes DT-MRI an inappropriate model for use in the
presence of multiple fibers within a voxel.

This limitation of diffusion tensor model has prompted interest in the development of both
improved image acquisition strategies and more sophisticated reconstruction methods. Both
spherical harmonic expansion [4] and the equivalent higher order tensor model [5] have been
used to represent the diffusivity profile based on the Stejskal-Tanner mono-exponential
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attenuation model. Knowing that the peaks of the diffusivity profile do not necessarily yield
the orientations of the distinct fiber populations, a number of model-independent approaches
attempt to transform the multi-directional signals into a probability function describing the
probability of water molecular displacement. The q-ball imaging (QBI) method approximates
the radial integral of the displacement probability distribution function (PDF) by the spherical
Funk-Radon transform [6]. More recent studies have expressed QBI’s Funk-Radon transform
in a spherical harmonic basis [7–9]. Diffusion spectrum imaging (DSI) can measure the
microscopic diffusion function directly based on the Fourier relation between the diffusion
signal and the diffusion function, but is limited by the time-intensive q-space sampling burden
[10]. The diffusion orientation transform (DOT) transforms the diffusivity profiles into
probability profiles by explicitly expressing the Fourier relation in spherical coordinates and
evaluating the radial part of the integral analytically [11].

Some multi-compartmental models have also been used to model the diffusion-attenuated MR
signal using a finite mixture of Gaussians [3,12,13]. A continuous extension of the finite
discrete mixture model is the spherical deconvolution method[14]. Compared to the multi-
compartment models, the spherical deconvolution framework has two significant advantages.
First, it is not required to specify the number of underlying fiber populations before
deconvolution while this number has to be known in order to build the multi-compartment
models. Second, the spherical deconvolution methods often yield a linear system which can be
solved efficiently while the multi-compartment models usually involve the expensive nonlinear
fitting. Recognizing these merits of the spherical deconvolution framework, recently many
researchers have proposed a number of variants of spherical deconvolution approaches [7,15,
16] with different choices of basis functions, deconvolution kernels and regularization
schemes.

In this paper, we present a novel probabilistic model that significantly generalizes the
traditional diffusion tensor model [2]. First, we assume that each voxel is associated with an
underlying probability distribution defined on the space of diffusion tensors (the manifold of
3 × 3 positive-definite matrices). Conceptually, our model can be viewed as a natural extension
of the multiple-compartment models [3,13]. Moreover, this extension relates the continuous
mixture model to MR signal attenuation through a Laplace transform defined for matrix-variate
functions. It is worth noting that the Laplace transform can be evaluated in closed form for
Wishart distributions and the resulting closed form leads to a Rigaut-type function which has
been used in the past to explain the MR signal decay [17]. Our model naturally leads to a
deconvolution formulation of the multi-fiber reconstruction problem, where the deconvolution
kernel is the Laplace transform kernel and the basis functions are Wishart distributions. We
develop an efficient and robust scheme for reconstructing the multiple fiber bundles using the
proposed model and show several comparisons with other state-of-the-art methods.

2 Theory
By generalizing the discrete Gaussian mixture model to the continuous case, we postulate that
at each voxel there is an underlying probability measure associated with the manifold of n×n
symmetric positive-definite matrices, ℘n (by default ℘3). Let f(D) be its density function with
respect to some carrier measure dD on ℘n. Then the diffusion weighted MR signal S(q) can be
modeled as:

(1)

where S0 is the signal in the absence of diffusion weighting gradient, q encodes the magnitude
(G) and direction (g) of the diffusion sensitizing gradients, and b is the diffusion weighting
factor depending on the strength as well as the effective time of diffusion. Note that Eq. (1)
implies a continuous form of mixture model with f(D) being a mixing density over the
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components in the mixture. Clearly, our model simplifies to the diffusion tensor model when
the underlying probability measure is the Dirac measure.

Since b gTDg in Eq.(1) can be replaced by trace(BD) where B = b ggT, the equation (1) can be
expressed as the Laplace transform (matrix variable case) [18]:

(2)

where ℒf denotes the Laplace transform of a function f which takes its argument as symmetric
positive definite matrices from ℘n.

This expression naturally leads to an inverse problem: recovering of a distribution defined on
℘n that best explains the observed diffusion signal S(q). This is an ill-posed problem and in
general is intractable without prior knowledge of the probabilistic structure. In conventional
DT-MRI, the diffusion tensor is usually estimated by solving a linear or nonlinear least squares
problem, which amounts to applying the maximum likelihood estimator. Instead our approach
views the diffusion tensor as random variable (matrix) belonging to some known distribution
family, which allows us to model the uncertainty in the diffusion tensor estimation. Note that
in DT-MRI, the diffusion tensor can be interpreted as the concentration matrix (inverse of the
covariance matrix) of the Gaussian distribution in the q-space. It is a common practice to put
a Wishart distribution (see definition below) prior, on the concentration matrix in multivariate
analysis. Moreover, in the case of a Wishart distribution, a closed form expression for the
Laplace transform exists and leads to a Rigaut-type asymptotic fractal law for the MR signal
decay behavior which has been observed in the past (see explanation below).

Definition 1
[18] For Σ ∈ ℘n and for p in , the Wishart distribution γp,Σ with scale parameter Σ and
shape parameter p is defined as 1

(3)

where Γn is the multivariate gamma function and |·| is the matrix determinant.

The Wishart distribution γp,Σ is known to have the closed-form Laplace transform:

(4)

Let f in (2) be the density function of γp,Σ with the expected value D̂= pΣ, we have

(5)

This is a familiar Rigaut-type asymptotic fractal expression [19] implying a signal decay
characterized by a power-law which is the expected asymptotic behavior for the MR signal
attenuation in porous media. Note that although this form of a signal attenuation curve had
been phenomenologically fitted to the diffusion-weighted MR data before [17], until now, there
was no rigorous derivation of the Rigaut-type expression used to explain the MR signal
behavior as a function of b-value. Therefore, this derivation may be useful in understanding
the apparent fractal-like behavior of the neural tissue in diffusion-weighted MR experiments.
Also note when p tends to infinity, we have S(q) → S0 exp(−bgTD ̂g), which implies that the
mono-exponential model can be viewed as a limiting case (p→∞) of our model.

The single Wishart distribution model has a drawback in that it can not resolve the intra-voxel
orientational heterogeneity due to the single mode of the Wishart distribution. Hence it is
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natural to use a discrete mixture of Wishart distribution model where the mixing distribution

in Eq.(2) is expressed as . In order to make the problem tractable, several
simplifying assumptions are made as follows. First, in this model (pi, Σi) are treated as the basis
and will be fixed as described below. This leaves us with the weights, w = (wi), as the unknowns
to be estimated. Note that the number of components in mixture, N, only reflects the resolution
of the discretization and should not be interpreted as the expected number of fiber bundles. We
assume that all the pi take the same value, pi = p = 2, based on the analogy between the Eq.(5)
and Debye-Porod law of diffraction [20] in 3D space. Since the fibers have an approximately
cylindrical geometry, it is reasonable to assume that the two smaller eigenvalues of diffusion
tensors are equal. In practice, we fix the eigenvalues of Di = pΣi to specified values (λ1, λ2,
λ3) = (1.5, 0.4, 0.4)μ2/ms consistent with the values commonly observed in the white-matter
tracts [3]. This rotational symmetry leads to a tessellation where N unit vectors evenly
distributed on the unit sphere are chosen as the principal directions of Σi. For K measurements
with qj, the signal model equation:

(6)

leads to a linear system Aw = s, where s = (S(q)/S0) contains the normalized measurements, A
is the matrix with Aji = (1 + trace(BjΣi))−p, and w = (wi) is the weight vector to be estimated.

Like many existing reconstruction methods, our method can be cast into a unified convolution
framework as follows:

(7)

In Eq. (7), the signal is expressed as the convolution of a probability density function and a
kernel function. The integration is over a manifold ℳ whose elements x contain the useful
information like orientation and anisotropy. The convolution kernel, R(q, x): ℝ3 × ℳ ↦ ℝ
represents the response derived from a single fiber. In order to handle the intra-voxel
orientational heterogeneity, the volume fractions are represented by a continuous function f
(x): ℳ ↦ ℝ. The deconvolution problem is to estimate the f(x) given the specified R(q, x) and
measurements S(q)/S0. In literature, f(x) is usually expressed as a linear combination of N basis
functions: f(x) = Σ wjfj(x). The choices of convolution kernels and basis functions are related
to the underlying manifold ℳ. A simple example is to set ℳ to the unit sphere, which leads to
the spherical deconvolution problem [15]. Though involving the manifold of diffusion tensors,
several other approaches still reduce to the sphere deconvolution problem since only
rotationally symmetric tensors are considered. [7,13,14].

The types of basis functions include radial basis functions [15], spherical harmonics [7,14].
Like in [7,13,14], our method uses the standard diffusion tensor kernel. However, it is the
Wishart basis function that distinguishes our method from these related methods. It is worth
noting that the Wishart basis reduces to the Dirac function on ℘n when p = ∞ and thus leading
to the tensor basis function method introduced in [13]. The fiber orientation estimated using
the continuous axially symmetric tensors (FORECAST) method proposed in [7] also resembles
(very closely) our method with the basis function being chosen as the spherical harmonics.

3 Stable, Sparse and Positive Deconvolution
The deconvolution problem can be formulated in a general form of as,

(8)
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where s contains K measurements S(q)/S0, the K ×N matrix A = {Aij} is given by Aij =∫M R
(qi, x)fj(x)dx and η represents certain noise model. Note that the integral to compute the entries
of A may have an analytical solution as in our model and others that use the tensor kernel [7,
13,14], or needs to be numerically approximated as in [15]. But, once the response kernel R
(q, x) and the basis function are specified, the matrix A can be fully computed (or approximated)
and only w, a column vector containing K unknown coefficients, remains to be estimated.

Under the assumption that the measurement errors η are i.i.d. and normally distributed, the
maximum likelihood estimate of w naturally leads to the L2 norm as a measure of goodness of
the fit. Without inequality constraints, the corresponding quadratic programming (QP) problem
minimizing the residual sum of squares

(9)

can be efficiently solved by solving a linear system using for instance, direct methods when
the size of the linear system in Eq. (9) is not large as in our application. The solution in the
least squares sense is given by w = A+s where A+ = (ATA)−1AT is the pseudoinverse of the A.
The advantage of applying the pseudoinverse is in its light computational burden since the
matrix A is identical in each voxel and its pseudoinverse only needs to be computed once.
However, this simplicity and efficiency comes at the cost of higher susceptibility to noise, due
to the fact that the matrix A is usually ill-conditioned in our application as illustrated in Fig.
1. Efforts at reliable multi-fiber reconstruction in the presence of noise have included low-pass
filtering [14], the maximum entropy principle [15] and Tikhonov regularization [16]. In the
Tikhonov regularization framework, the problem in Eq. (8) can be formulated as:

(10)

where α is a regularization parameter and T is a regularization operator. In order to penalize
the magnitude of the estimates, (P2) in (10) with T being the identity operator I is often used
and yields the relation: w = (ATA + αI)−1ATs. Recently, a Damped Singular Value
Decomposition was used to regularize the fiber orientation distribution [21] where the damping
factor α is determined by minimizing the Generalized Cross Validation (GCV) criterion, which
provides a simple and objective method, though not really optimal, for choosing the
regularization parameter.

In practice, the number of diffusion MR image acquisition sequence, K, is rarely greater than
100. On the other hand, a high resolution tessellation with N > 100 is usually taken to obtain
an accurate reconstruction. This under-determined linear system has infinite solutions in the
least squares sense and usually produces the w with many negative-valued components which
are not physically meaningful. Another issue related to this configuration is the sparsity
constraint. Since the number of significant spikes in w is indicative of the number of maxima
in the displacement probability surfaces, w is expected to have a sparse support. Recently a
series of significant research articles have been published by Candés and collaborators (see
[22] and references therein) on a theory of signal recovery from highly incomplete information.
The central result relevant to us here, states that a sparse vector w ∈ ℝN can be recovered from
a small number of linear measurements s = Aw ∈ ℝK, K ≪ N (or s = Aw + η when there is
measurement noise) by solving a convex program. Among the several problems they have
discussed, we are particularly interested in the following two problems: (1) Min-L1 with
equality constraints:

(11)

and (2) Min-L1 with quadratic constraints:
(12)
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where ε is a user specified parameter. Both problems (P3) and (P4) find the vector with smallest
L1 norm (||w||1 = Σi |wi|) that best explains the observation s. (P3) can be recast as an linear-
programming (LP) problem while (P4) can be recast as a second order cone programming
(SOCP) problem (see [22,23] and references therein for details). We will report the results of
implementation of these methods for the sake of comparisons in the next section.

However, (P3) and (P4) do not explicitly enforce the nonnegative constraints. The straight
forward solution is to incorporate a nonnegative constraint while minimizing the least-squares
criterion:

(13)

This non-negative least squares (NNLS) minimization is precisely a quadratic programming
problem: Find the minimum point of a concave quadratic function in a linearly bounded convex
feasible hyperspace. The most used algorithm for NNLS was developed in [24, Ch. 23], which
treats the linear inequality constraints using an active set strategy. Though the sparsity
constraint is not explicitly imposed, the active set strategy tends to find the sparse solution
quickly if there exists such one. Additionally, unlike other iterative methods mentioned above,
this algorithm requires no arbitrary cutoff parameter and hence the output is not susceptible to
mistuning of the input parameters. More comparisons of these methods on simulation data are
shown in Section 4.

After w is estimated, the displacement probabilities can be approximated by the Fourier
transform P(r) = ∫(S(q)/S0) exp(−iq · r) dq where r is the displacement vector. Assuming a

continuous diffusion tensor model (1) with mixing distribution , we have

(14)

where D ̂i = pΣi are the expected values of γp,Σi. Note that the end result is expressed as a mixture
of oriented Gaussians. Due to its good analytic properties, many of the quantities produced by
other methods including the radial integral of P(r) in QBI [6] and the integral of P(r)r2 in DSI
[10] are analytically computable using our technique.

4 Experimental Results
4.1 Numerical Simulations

Prior to performing the experiments on real diffusion MRI data, we first test the performance
of the methods described in the previous section on the HARDI simulations of 1-,2- and 3-
fiber geometries with known fiber orientations as shown in Fig. 2. The diffusion MR signals
were realistically simulated by using the formulas from the cylindrical boundary restricted
diffusion model in [25] with the same parameter settings as in [11]. In order to compare the
performance of the five deconvolution methods described in Section 3, we first apply all of
them on the noiseless 1-fiber HARDI simulation data and the results of w obtained from these
methods are plotted in Fig. 3. We observe that the least squares solution to (P1) contains a large
portion of negative weights and has relatively large magnitude. A zeroth-order Tikhonov
regularization (P2) is able to reduce the magnitude significantly but does not help achieve the
sparsity and non-negativity. By minimizing the L1 norm with equality constraints, (P3) yields
relative sparse solution but the magnitude and the negative values are not controlled. The result
produced by (P4) has better sparsity and non-negativity. Evidently, the best result is obtained
by solving (P5) using NNLS. Among the 321 components, there are only two nonzero and
significant spikes which both lie in the neighborhood of true fiber orientation (30°, 90°). It is
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important to note that (1) the true fiber orientations do not necessarily occur at the maximum
of the discrete w vector; and (2) although all of these different results for w actually lead to a
very good approximation of the true displacement probability function P(r) after taking the
Fourier transforms, a sparse positive representation of w obviously offers a great advantage in
setting the initial guess in the optimization procedure used to find the fiber orientations by
estimating the extrema of P(r). Considering the additional computational overhead for solving
(P3), (P4) and (P5) due to the iterative optimization, (P5) is slightly slower than (P3) (LP) but
significantly faster than (P4) (SOCP). It only takes MATLAB’s built-in lsqnonneg around 20–
200ms to solve a problem of size 81 × 321. Fig. 4 further shows the results of using NNLS on
the noisy simulated data. Clearly, NNLS is still able to produce quite accurate solutions which
also are sparse representations.

Finally, as a conclusion to our experiments on the simulated data, we compare the proposed
method mixture of Wisharts (MOW) model with two model-free methods, namely, the Q-ball
ODF[6] and the DOT [11]. In order to provide a quantitative comparison, all the resulting P
(r) surfaces were represented by spherical harmonics coefficients up to order l = 6. As before,
the Q-ball ODF is computed using the formula in [7, Eq.(21)]. First, to gain a global assessment
of these methods in terms of stability, we calculated the similarity between each noisy P(r) and
the corresponding noiseless P(r) using the angular correlation coefficient formula given in
[7, Eq.(71)]. The angular correlation ranges from 0 to 1 where 1 implies identical probability
profiles. Then, we estimated the fiber orientations of each system by numerically finding the
maxima of the probability surfaces with a Quasi-Newton algorithm and computed the deviation
angles between the estimated and the true fiber orientations. Figure 5 shows the mean and
standard deviation of the angular correlation coefficients, and error angles, respectively, for
the two-fiber simulation. Note that among the three methods examined, only MOW results in
small error angles and high correlation coefficients in presence of relatively large noise. This
trend also holds for the 1-fiber and the 3-fiber simulations. This can be explained by noting
that NNLS is able to locate the sparse spikes quite accurately even in the presence of large
noise.

4.2 Real data experiments
The rat optic chiasm provides an excellent “platform” to experimentally validate our approach
due to its distinct myelinated structure with both parallel and descussating (crossing) optic
nerve fibers. Decussating fibers carry information from the temporal visual fields to the
geniculate body. A HARDI data set was acquired from a perfusion-fixed excised rat optic
chiasm at 14.1T using a Bruker Avance imaging system with a diffusion-weighted spin echo
pulse sequence. DW-MRI data were collected using 46 directions with a b-value of 1250s/
mm2 and a single image with b ≈ 0s/mm2. Echo time and repetition time were 23ms and 0.5s
respectively; Δ and δ values were set to 12.4ms and 1.2ms respectively; bandwidth was set to
35kHz; signal average was 10; a matrix size of 128 ×128 ×5 and a resolution of 33.6 ×33.6
×200μm3 was used. The optic chiasm images were signal averaged to 67.2 × 67.2 × 200μm3

resolution prior to computation of the water molecule displacement probability field.

Three methods are used to generate the displacement probability functions for the optic chiasm
image. The results on a region of interest are shown in Figure 6. The corresponding S0 image
is also shown in the upper left corner as a reference. As seen from the figure, the fiber-crossings
in the optic chiasm region is not identifiable in Figure 6 (a). Note that both the DOT method
and the MOW method are able to demonstrate the distinct fiber orientations in the central region
of the optic chiasm where ipsilateral myelinated axons from the two optic nerves cross and
form the contralateral optic tracts. However, it is evident from the figure that compared to all
other solutions, the MOW scheme yields significantly sharper displacement probability
surfaces. This is particularly borne out in the central location of the figure labeled, the optic
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chiasm. One of the reasons for the blurred appearance of these probability surfaces in the QBI
and DOT models is due to the fact that neither of them yield the actual displacement probability
surfaces but a corrupted P(r) where the corrupting factor is a a zeroth order Bessel function in
the QBI method and a function that does not have an analytic form in the case of DOT. This
corruption effects the accuracy of the reconstructed fiber orientations as evidenced in the
simulated data case where ground truth was known.

5 Conclusions
In this paper, we present a novel mathematical model which relates the diffusion MR signals
and probability distributions for positive definite matrix-valued random variables through
Laplace transforms. We further show that the closed form expression for the Laplace transform
of Wishart distributions leads to Rigaut-type asymptotic fractal law for the MR signal decay
behavior which has been observed experimentally in the past [17]. Moreover in this case, the
traditional diffusion tensor model is the limiting case of the expected signal attenuation. We
further develop a spherical deconvolution method for resolving multiple fiber orientations
using the mixture of Wisharts (MOW) model. To address the numerical issues and sparsity
constraints raised in solving this de-convolution problem, we investigate a number of
deconvolution techniques and demonstrate that the classic non-negative least squares (NNLS)
algorithm developed in [24] is most suitable for our deconvolution problem in achieving
sparseness and robustness. Experimental results on both synthetic and real data sets have also
shown that the proposed MOW model combined with NNLS deconvolution provides better
overall performance than other state-of-the-art techniques for multi-fiber reconstruction.
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Fig. 1.
Left plot shows the case where the A matrices are constructed from the radial basis function
and the tensor kernel model as in [15]. Right plot shows the case with a standard diffusion
tensor kernel weighted by a mixture of Wisharts. Both assume 81 diffusion gradient directions
and two tessellation schemes (81 and 321 directions) are considered for each model.
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Fig. 2.
HARDI simulations of 1-, 2- and 3-fibers (b = 1500s/mm2) visualized in QBI ODF surfaces
using [7, Eq.(21)]. Orientation configurations: azimuthal angles: φ1 = 30°, φ2 = {20°, 100°},
φ3 = {20°, 75°, 135°}; polar angles are all 90°.
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Fig. 3.
Deconvolution-based computation of w in the 1-fiber HARDI simulation. The matrix A is of
size 81×321 and is built from the Wishart model but with p = ∞. The Min-L1 algorithms are
solved using the package developed in [23]. The NNLS solver is the MATLAB built-in
lsqnonneg function based on Lawson and Hanson’s algorithm [24].
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Fig. 4.
Deconvolution-based computation of w using NNLS on simulated data in presence of Riccian
noise with σ = .06. The matrix A is constructed by using the Wishart model with p = 2 and the
tessellation of size N = 321. From left to right are the 1-fiber, 2-fiber and 3-fiber simulations,
respectively. The spikes in each resulting w are marked with the corresponding azimuthal and
polar angles in degrees. Note all the spikes detected are close to the ground truth orientations
specified in Figure 2.
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Fig. 5.
Mean and standard deviation of (a) angular correlation coefficient and (b) error angles for the
two-fiber simulation. The displayed values for error angles are averaged over the two fibers.
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Fig. 6.
Probability surfaces computed from a rat optic chiasm image using three methods. Note the
decussation of myelinated axons from the two optic nerves at the center of the optic chiasm.
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