Skip to main content

Octree Grid Topology Preserving Geometric Deformable Model for Three-Dimensional Medical Image Segmentation

  • Conference paper
Information Processing in Medical Imaging (IPMI 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4584))

Abstract

Topology-preserving geometric deformable models (TGDMs) are used to segment objects that have a known topology. Their accuracy is inherently limited, however, by the resolution of the underlying computational grid. Although this can be overcome by using fine-resolution grids, both the computational cost and the size of the resulting surface increase dramatically. In order to maintain computational efficiency and to keep the surface mesh size manageable, we have developed a new framework, termed OTGDMs, for topology-preserving geometric deformable models on balanced octree grids (BOGs). In order to do this, definitions and concepts from digital topology on regular grids were extended to BOGs so that characterization of simple points could be made. Other issues critical to the implementation of OTGDMs are also addressed. We demonstrate the performance of the proposed method using both mathematical phantoms and real medical images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  MATH  Google Scholar 

  • Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. International Journal of Computer Vision 22, 61–79 (1997)

    Article  MATH  Google Scholar 

  • Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape modeling with front propagation: A level set approach. IEEE Trans. PAMI 17, 158–175 (1995)

    Google Scholar 

  • Yezzi, A., Kichenassamy, S., Olver, P., Tannenbaum, A.: A geometric snake models for segmentation of medical imagery. IEEE Trans. Med. Imag. 16, 199–209 (1997)

    Article  Google Scholar 

  • Han, X., Xu, C., Prince, J.L.: A topology preserving level set method for geometric deformable models. IEEE Trans. Patt. Anal. Machine Intell. 25, 755–768 (2003)

    Article  Google Scholar 

  • Han, X., Pham, D.L., Tosun, D., Rettmann, M.E., Xu, C., Prince, J.L.: Cortical reconstruction using implicit surface evolution. NeuroImage 23, 997–1012 (2004)

    Article  Google Scholar 

  • Sundaramoorthi, G., Yezzi, A.J.: More-than-topology-preserving flows for active contours and polygons. In: ICCV pp. 1276–1283 (2005)

    Google Scholar 

  • Terzopoulos, D., Vasilescu, M.: Sampling and reconstruction with adaptive meshes. In: Proc. CVPR’91, Lahaina, HI, pp. 70–75 (1991)

    Google Scholar 

  • Milne, R.B.: Adaptive Level Sets Methods Interfaces. PhD thesis, Dept. Math., UC Berkely (1995)

    Google Scholar 

  • Sussman, M., Almgren, A.S., Bell, J.B., Colella, P., Howell, L.H., Welcome, M.L.: An adaptive level set approach for incompressible two-phase flow. J. Comput. Phys. 148, 81–124 (1999)

    Article  MATH  Google Scholar 

  • Xu, M., Thompson, P.M., Toga, A.W.: An adaptive level set segmentation on a triangulated mesh. IEEE Trans. Medical Imaging 23(2), 191–201 (2004)

    Article  Google Scholar 

  • Droske, M., Meyer, B., Schaller, C., Rumpf, M.: An adaptive level set method for medical image segmentation. In: Insana, M.F., Leahy, R.M. (eds.) IPMI 2001. LNCS, vol. 2082, Springer, Heidelberg (2001)

    Google Scholar 

  • Sochnikov, V., Efrima, S.: Level set calculations of the evolution of boundaries on a dynamically adaptive grid. Int. J. Numer. Meth. Engng 56, 1913–1929 (2003)

    Article  MATH  Google Scholar 

  • Bertrand, G.: Simple points, topological numbers and geodesic neighborhoods in cubic grids. Pattern Recognition Letters 15, 1003–1011 (1994)

    Article  Google Scholar 

  • Kong, T.Y., Rosenfeld, A.: Digital topology: Introduction and survey. CVGIP: Image Understanding 48, 357–393 (1989)

    Google Scholar 

  • Bai, Y., Han, X., Prince, J.L.: Octree-based topology-preserving isosurface simplification. In: IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA 2006), New York (2006)

    Google Scholar 

  • Sethian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge, UK (1999)

    MATH  Google Scholar 

  • Thirion, J.-P., Gourdon, A.: Computing the differental characteristics of isointensity surfaces. CVIU 61, 190–202 (1995)

    Google Scholar 

  • Malladi, R., Sethian, J.A.: Image processing via level set curvature flow. In: Proc. Natl. Acad. Sci. U.S.A, pp. 7046–7050 (1995)

    Google Scholar 

  • Lamecker, H., Seebass, M., Hege, H., Deuflhard, P.: A 3d statistical shape model of the pelvic bone for segmentation. In: SPIE, pp. 1341–1351 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Nico Karssemeijer Boudewijn Lelieveldt

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Bai, Y., Han, X., Prince, J.L. (2007). Octree Grid Topology Preserving Geometric Deformable Model for Three-Dimensional Medical Image Segmentation. In: Karssemeijer, N., Lelieveldt, B. (eds) Information Processing in Medical Imaging. IPMI 2007. Lecture Notes in Computer Science, vol 4584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73273-0_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73273-0_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73272-3

  • Online ISBN: 978-3-540-73273-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics