Skip to main content

Localized Maximum Entropy Shape Modelling

  • Conference paper
Information Processing in Medical Imaging (IPMI 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4584))

Abstract

A core part of many medical image segmentation techniques is the point distribution model, i.e., the landmark-based statistical shape model which describes the type of shapes under consideration. To build a proper model, that is flexible and generalizes well, one typically needs a large amount of landmarked training data, which can be hard to obtain. This problem becomes worse with increasing shape complexity and dimensionality.

This work presents a novel methodology applicable to principal component-based shape model building and similar techniques. The main idea of the method is to make regular PCA shape modelling more flexible by using merely covariances between neighboring landmarks. The remaining unknown second order moments are determined using the maximum entropy principle based on which the full covariance matrix—as employed in the PCA—is determined using matrix completion.

The method presented can be applied in a variety of situations and in conjunction with other technique facilitating model building. The experiments on point distributions demonstrate that improved shape models can be obtained using this localized maximum entropy modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Cootes, T.F., Taylor, C.J., Cooper, D., Graham, J.: Active shape models—their training and application. Computer Vision and Image Understanding 61, 38–59 (1995)

    Article  Google Scholar 

  • Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley Interscience, New York (1991)

    MATH  Google Scholar 

  • Jaynes, E.T.: On the rationale of maximum-entropy methods. In: Proceedings of the IEEE, vol. 70, pp. 939–952 (1982)

    Google Scholar 

  • Cootes, T.F., Taylor, C.J.: Combining point distribution models with shape models based on finite-element analysis. Image and Vision Computing 13, 403–409 (1995)

    Article  Google Scholar 

  • de Bruijne, M., van Ginneken, B., Viergever, M., Niessen, W.: Adapting active shape models for 3D segmentation of tubular structures in medical images. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 136–147. Springer, Heidelberg (2003)

    Google Scholar 

  • Wang, Y., Staib, L.H.: Elastic model based non-rigid registration incorporating statistical shape information. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 1162–1173. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  • Wang, Y., Staib, L.H.: Boundary finding with prior shape and smoothness models. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 738–743 (2000)

    Article  Google Scholar 

  • Shen, D., Davatzikos, C.: An adaptive-focus statistical shape model for segmentation and shape modeling of 3-D brain structures. IEEE Transactions on Medical Imaging 20, 257–270 (2001)

    Article  Google Scholar 

  • Lötjönen, J., Antila, K., Lamminmäki, E., Koikkalainen, J., Lilja, M., Cootes, T.: Artificial enlargement of a training set for statistical shape models: Application to cardiac images. In: Frangi, A.F., Radeva, P.I., Santos, A., Hernandez, M. (eds.) FIMH 2005. LNCS, vol. 3504, pp. 92–101. Springer, Heidelberg (2005)

    Google Scholar 

  • Davatzikos, C., Tao, X., Shen, D.: Hierarchical active shape models using the wavelet transform. IEEE Transactions on Medical Imaging 22, 414–423 (2003)

    Article  Google Scholar 

  • Mohamed, A., Davatzikosh, C.: Shape representation via best orthogonal basis selection. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 225–233. Springer, Heidelberg (2004)

    Google Scholar 

  • Nain, D., Haker, S., Bobick, A., Tannenbaum, A.R.: Multiscale 3D shape analysis using spherical wavelets. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 459–467. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  • Zhao, Z., Aylward, S.R., Teoh, E.K.: A novel 3D partitioned active shape model for segmentation of brain MR images. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 221–228. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  • Johnson, C.R.: Matrix completion problems: A survey. In: Proceedings of Symposia in Applied Mathematics. Providence, Rhode Island, American Mathematical Society 1990, vol. 40, pp. 171–198 (1990)

    Google Scholar 

  • Laurent, M.: Matrix completion problems. In: Laurent, M. (ed.) (Interior–M) of The Encyclopedia of Optimization, pp. 221–229. Kluwer Academic Publishers, Dordrecht (2001)

    Google Scholar 

  • Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  • Glunt, W., Hayden, T.L., Johnson, C.R., Tarazaga, P.: Positive definite completions and determinant maximization. Linear Algebra and its Applications 288, 1–10 (1999)

    Article  MATH  Google Scholar 

  • van Ginneken, B., Stegmann, M., Loog, M.: Segmentation of anatomical structures in chest radiographs using supervised methods: a comparative study on a public database. Medical Image Analysis 10, 19–40 (2006)

    Article  Google Scholar 

  • Davies, R.H.: Learning Shape: Optimal Models for Analysing Natural Variability. Ph.D. Thesis, Division of Imaging Science and Biomedical Engineering, University of Manchester, UK (2002)

    Google Scholar 

  • Styner, M.A., Rajamani, K.T., Nolte, L.P., Zsemlye, G., Székely, G., Taylor, C.J., Davies, R.H.: Evaluation of 3D correspondence methods for model building. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 63–75. Springer, Heidelberg (2003)

    Google Scholar 

  • Romdhani, S., Gong, S., Psarrou, A.: A multi-view non-linear active shape model using kernel PCA. In: Proceedings of the 10th British Machine Vison Conference, Nottingham, UK, vol. 2, pp. 483–492. BMVA Press (1999)

    Google Scholar 

  • Sozou, P., Cootes, T.F., Taylor, C.J., Mauro, E.D.: A non-linear generalisation of point distribution models using polynomial regression. Image and Vision Computing 13, 451–457 (1995)

    Article  Google Scholar 

  • Larsen, R., Eiriksson, H., Stegmann, M.B.: Q-MAF shape decomposition. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 837–844. Springer, Heidelberg (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Nico Karssemeijer Boudewijn Lelieveldt

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Loog, M. (2007). Localized Maximum Entropy Shape Modelling. In: Karssemeijer, N., Lelieveldt, B. (eds) Information Processing in Medical Imaging. IPMI 2007. Lecture Notes in Computer Science, vol 4584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73273-0_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73273-0_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73272-3

  • Online ISBN: 978-3-540-73273-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics