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Abstract. Secure communication over wireless channels necessitates
authentication of communication partners to prevent man-in-the-middle
attacks. For spontaneous interaction between independent, mobile de-
vices, no a priori information is available for authentication purposes.
However, traditional approaches based on manual password input or veri-
fication of key fingerprints do not scale to tens to hundreds of interactions
a day, as envisioned by future ubiquitous computing environments. One
possibility to solve this problem is authentication based on similar sensor
data: when two (or multiple) devices are in the same situation, and thus
experience the same sensor readings, this constitutes shared, (weakly)
secret information. This paper introduces the Candidate Key Protocol
(CKP) to interactively generate secret shared keys from similar sensor
data streams. It is suitable for two-party and multi-party authentication,
and supports opportunistic authentication.

1 Introduction

Secure communication over a wireless channel is a difficult problem, especially for
spontaneous interaction. Spontaneous interaction in the sense of ad-hoc commu-
nication between devices is often aimed for in ubiquitous computing [1], following
its vision of seamlessly interacting with whatever services are currently available
and useful. Moreover, many of these proposed devices are small, need to cope
with limited resources such as memory, computational power and battery life,
and do not have any conventional user interfaces such as key pads or displays.
Communication is assumed to happen over shared wireless channels that are
open to any device, which is necessary to enable transparent interoperability.
It is difficult to secure such interactions because we can not assume the
involved devices to have any a priori information about each other. Creating a
secure channel depends on an authentication step. If Alice (A) wants to interact
with Bob (B)! and does not know anything about Bob a priori, then she will be
unable to distinguish a legitimate interaction with Bob from malicious behavior

! In the context of this paper, we use A, B, and E for describing the devices that
interact with each other interchangeably with the established names Alice, Bob,



by Eve (E) — Eve can simply perform a valid protocol run with Alice. Currently,
there is no globally trusted public key infrastructure (PKI), and it is doubtful if
there will be any. Even if there was one that would be able to sign trusted devices,
it would not solve the problem of authenticating spontaneous interaction: Eve
could just set up a trusted device E of her own and intercept the communication
by getting A to communicate with her device instead of B. We therefore need
to individually authenticate the interaction between each communicating pair of
devices. Such authentication essentially aims at secret key agreement between A
and B.

This problem is amplified as ubiquitous computing is expected to generate
far more frequent spontaneous interactions. When using hundreds of different
devices each day, conventional authentication methods like passwords or PINs
fail to scale. Examples of devices that communicate wirelessly with each other
are mobile phones, Bluetooth headsets, networked cameras, printers, in the near
future goggles with integrated displays, and many more. We use the practical
example of establishing a secure channel between a mobile phone and a Bluetooth
headset without loss of generality.

Our approach is to authenticate devices based on shared context, which is
manifested by similar sensor readings. Whenever two devices are in the same
situation, e.g. being worn by the same person, capturing the same audio environ-
ment, or just being close to the same object, their sensors will experience similar
time series. These time series can be used to implicitly authenticate a secure
channel between the devices. There are multiple possibilities for authentication
based on similar time series. The more conventional approach is to perform an
unauthenticated (anonymous) key agreement like Diffie-Hellman [2], exchange
the time series using the secret shared key via some commitment scheme, and
compare if they are similar enough with an appropriate metric to prevent man-
in-the-middle (MITM) attacks. However, this approach is computationally ex-
pensive and consists of two phases, which introduces an additional delay. We
present an authentication protocol, the Candidate Key Protocol (CKP), which
derives cryptographic key material directly from sensor data streams and utilizes
only hash functions as cryptographic primitives.

In Section 2, we discuss related work and motivate the need for an authenti-
cation protocol based on conventional primitives in spite of more recent research
on information theoretic security. After defining the threat scenarios that CKP is
designed to deal with in section 3, we explain the approach and detailed specifi-
cation of CKP in section 4. A first practical implementation using UDP multicast
and initial experimental results are described in sections 5 and 6, respectively.
We finish with discussing the security properties and possibilities for extending
the protocol in section 7.

and Eve of the respective users. The reason is that one of the devices might be an
infrastructure device, such as a printer or a display, that does not belong to any
single user.



2 Related Work

Results from two research areas are relevant to the present paper: information
theoretical work in cryptography with influences from quantum cryptography,
and authentication protocols inspired by practical issues, mostly from ubiquitous
computing research.

Generating keys from noisy channels, or more generally, from (random) corre-
lated information, received some attention in theoretical cryptography research,
e.g. [3][4][5][6]. For a good introduction into the topic and for results for public,
non-authenticated channels, we refer to [7,8,9]. These publications give interest-
ing information theoretical results on key agreement, which no longer assume the
intractability of some computational problem like the discrete logarithm prob-
lem, but provide what is often called “unconditional security”. The basic concept
is that, when two legitimate communication partners either have a noisy com-
munication channel or when they have access to correlated information, then it
is possible for them to agree to a secret key even when an adversary has access
to their noisy channel or partial knowledge of their shared information. There
are two classes of such authentication protocols: interactive, e.g. [7,8,9], and non-
interactive, e.g. [6]. Non-interactive protocols have the obvious advantage that
they can be used to establish a shared secret when only one-way communica-
tion is available. This has additional practical consequences. Even when two-way
communication is possible, issues like time delays, packet loss, etc. can be han-
dled more easily with non-interactive protocols. On the other hand, interactive
protocols are necessary under the assumption of active adversaries (see e.g. [7,
section ITL.D]). Our proposed protocol is interactive.

Other results [10] seem particularly promising because they describe an au-
thentication protocol based on a weak secret key, which closely matches our real
world problem of using sensor time series as a weak secret key.

However, these theoretical results do not yet seem to have been implemented,
and practical applicability is therefore still limited. Another problem is that,
although the shared secrets may be weak, large secrets are required to guarantee
the security properties of these protocols. For small and embedded devices, it
is difficult to process large strings of secret data, and it is difficult to find good
sources of large secret strings in the first place.

In contrast, we use conventional, i.e. computational, cryptographic primitives
based on intractability assumptions which are still assumed to hold. With possi-
ble future availability of quantum computers, these assumption may need to be
revised. In this paper, we use the terminology of information theoretical cryptog-
raphy as far as appropriate because of the similar aims and assumptions. When
adding the assumption of non-reversibility of cryptographic hash functions, then
our proposed Candidate Key Protocol can be seen as an instance of a secret key
agreement based on correlated random variables.

It is not obvious how the calculus introduced in [8] for noisy channels could
be applied to the case of similar sensor time series that A and B have access



to and which E can get some knowledge about. Future work may use this or a
similar calculus to analyze the security of CKP more analytically.

A large number of interactive protocols based on authenticated Diffie-Hellman
(DH) key exchange [11] have recently been suggested, mostly inspired by practi-
cal problems of authentication in real world applications. This is assumed to be
computationally, instead of unconditionally secure. The classical interlock pro-
tocol [12] can be seen as a predecessor of these, but it already used the notion of
committing to values before revealing them. Newer protocols are mostly based
on commitment schemes, e.g. the MANA family of protocols for manual string
input or verification [13], optimized in [14].

While the “resurrecting duckling protocol” [15] aims at long-lived pairings,
Hoepman introduced pairing protocols for short-lived interactions based on man-
ual exchange of secrets [16][17], which scales poorly from a user point of view.
The protocol proposed in [16] is very similar to MANA IIT [13] and seems to have
been developed independently. Vaudenay claims [18] that Hoepman’s protocol
can not be implemented securely due to the lack of known hash functions with
properties required by the protocol, and presents a protocol called SAS, which
provides the same level of security with shorter shared secrets.

Creese et al. introduce a formal model for verifying authentication protocols
that work with empirical verification [19]. They present the analysis of three
related pairing protocols and show proofs of their security under their model.

éagalj et al. describe three other pairing protocols with similar aims, based
on short string comparison, distance bounding, and integrity codes [20]. Their
second protocol is based on distance measurement, but we suggest that their
scheme might be applicable to an interactive challenge-response scheme based
on sensor data.

CKP is related to all these protocols because it shares similar aims, but differs
in the approach. Instead of authenticating ephemeral session keys or long-term
pairings created with DH, CKP creates shared keys by using sensor streams as
input.

3 Threat Scenarios

In this section, we briefly outline the threat scenarios that are relevant to a
device authentication protocol and to CKP in particular. Typical threats for a
communication channel are eavesdropping, replaying of messages, and deletion,
insertion and modification of messages. All of these threats are subsumed in
the so-called man-in-the-middle (MITM) attack, where E is assumed to be “in
between” A and B and have complete control over their communication channel.
When an unauthenticated key agreement like Diffie-Hellman is used between
A and B, E can delete all messages between A and B and instead perform
two independent key agreements, one with A and one with B. In this paper,
we explicitly assume an active adversary, and CKP is designed to detect when a
MITM attack is being performed and fail to authenticate in this case. However, in
the general case, it is not possible to distinguish between a benign authentication



failure when the sensor values experienced by A and B are not similar enough
and a malign authentication failure caused by an attack.

Another typical threat is denial of service (DoS). This refers to E making
communication, and in the scope of this paper, authentication impossible be-
tween A and B. When assuming an active adversary, DoS is easily possible and
will therefore not be discussed further. However, the protocol should provide
indication to the user when it can not complete, either due to benign communi-
cation error or due to a DoS attack. Distinguishing between these two cases is,
again, not possible in the general case and we therefore treat them equally.

We also point out that attacks on the involved devices themselves are out of
the scope of this paper and assume that the two devices A and B are trusted
for the purpose of the interaction. If A trusts B with some document, but B
(intentionally or due to an attack) forwards it to E, then authentication between
A and B can not prevent this.

To summarize, our main threat scenario is an active attack on the (wireless)
channel including full MITM capabilities. We assume that there is some sensor
data which both A and B can get with better accuracy than E. Here we use the
same argument as applied in [7, Theorem 5]|: if Alice and Bob do not share any
correlated information, then “from Bob’s point of view, Alice has no advantage
compared to Eve. If Eve performs the same protocol as Alice would, pretending
to be Alice, Bob accepts with the same probability as he would accept a protocol
execution with Alice”. Assuming an experiment where Alice, Bob, and Eve can
receive the same bit string over independent noisy channels, [7] concludes that
“secret-key agreement against active adversaries is only possible if Alice’s and
Bob’s channels are both less noisy than Eve’s channel”. This is to be intuitively
expected, but in contrast to the results for passive adversaries [3].

We argue that this assumption is justified because, when A and B are in a
similar context, their sensor time series should be more similar to each other
than to the sensor time series perceived by E, even if only slightly. This can be
achieved by measuring local physical phenomena which an adversary can not
reasonably influence to obtain measurements with higher accuracy than A and
B. Examples for appropriate phenomena are acceleration, sound, light, or radio
frequency signal strength.

4 The Candidate Key Protocol

The candidate key protocol interactively generates secret shared keys from sensor
streams between two (or multiple) devices. Figure 1 shows the relations between
A, B and E. All devices are assumed to have full access to a wireless communi-
cation channel, and we explicitly assume E to be capable of deleting, inserting,
and modifying messages between A and B without them being able to notice at
this level. Additionally, A and B are assumed to share aspects of their context
and have sensors that can capture these aspects. E is assumed not to share the
same context, but be able to access it with (similar or different) sensors with
inferior accuracy.
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Fig. 1. Assumptions of CKP: A, B, and E share complete access to a wireless channel,
and restricted access to the context in which interaction is taking place

4.1 Approach

Our approach to generating secret shared keys from similar, but not equal, sen-
sor time series is based on the concept of candidates. When sampling sensor
time series, raw samples are typically not used directly, but more meaningful
features are extracted based on domain specific knowledge. We note that this
step is critical for any use of sensor data, although the respective requirements
depend on the application. For authentication, i.e. generating cryptographic key
material, it is important for the extracted features to have high entropy from
an adversary’s point of view. In the terms typically used for feature extraction
and context-aware systems, high entropy implies that the chosen features must
clearly distinguish devices being in the same context from devices being in differ-
ent contexts. The reverse, however, does not necessarily hold. Good separation
in this sense does not imply high entropy, because an adversary is free to choose
different features. Therefore, features should be chosen such that an adversary
can learn the least amount of information about their specific values. We can
not give generally valid recommendations because features are highly application
specific. For the scope of this paper, we assume feature vectors to be available
as input for authentication.

Even with features that perform well for a given application, there is still
room for errors. To generate key material from feature vectors, we need to con-
vert to integer values at some point; simple quantization errors can then lead to
different keys even when the feature vectors are very similar. That is, quantiza-
tion can increase noise. Generally, extracting and comparing feature vectors is
a classification problem with the usual trade-off between separation and recall.
Making features more distinctive to generate higher entropy will generate more
errors in comparing feature vectors from devices in the same context, i.e. false
negatives. Tuning the features for more robustness will make it easier for an
adversary to estimate their values, i.e. generate false positives. For the purpose
of authentication, false positives must be strictly avoided, but when the false
negatives rate is too high, the authentication method may become unusable in
practice. Therefore, our approach is to allow the feature extraction step to yield
multiple (parallel) feature vectors in each time step. We then use these multiple



different candidates in a way that does not leak additional information to an
adversary, and thereby provide a partial solution to this trade-off.

from sensor streams
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Fig. 2. Approach to generating a secret shared key: candidate key parts are time win-
dows over extracted features from sensor time series and are concatenated to candidate
keys

In Fig. 2 we show an overview of CKP, starting with the extracted features.
The generation of multiple candidates for each feature vector is again application
specific, but there exist general methods. One example is that different offsets
for quantization can be used to alleviate the problem of quantization errors and
thus solve a large class of false negatives. This method is depicted in Fig. 2.
Every feature vector becomes a candidate key part. That is, it is a candidate
for inclusion in the shared secret, subject to matching with the remote device.
We then compute hashes of all candidate key parts for the current time step,
which we abstract to a strictly monotonically increasing round number. These
hashes are exchanged between A and B to verify which of the candidate key
parts, if any, match. Note that transmitting their cryptographic hash values does
not reveal any useful information about the candidate key parts themselves,
because secure hash functions are assumed to be one-way functions. After a
sufficient number of matching key parts, i.e. after accumulating enough entropy,
the matching key parts are concatenated to a candidate key. With the possibility
of multiple matches in each round, there are different ways to concatenate this
key. Therefore, hashes of the candidate keys are again exchanged between A and
B. When they match, A and B have successfully agreed to a shared secret.
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Fig. 3. Specification of CKP



4.2 Specification

After introducing the concepts of candidate key parts and candidate keys, we
now present the detailed specification of CKP. Figure 3 defines the steps of the
protocol.

For the formal description, we use the following notation: H(m) describes
the hashing of message m with some secure hash algorithm, and m|n describes
the concatenation of strings m and n. The symbol & describes bit-wise XOR and
|S| the number of elements in a set S. When a message M is transmitted over
an insecure channel, we denote the received message M to point out that it may
have been modified in transit, by noise or attack. Subscripts denote the different
sides (a or b for an authentication between A and B), while superscripts denote
specific vectors in a set of vectors. The syntax T denotes the (open) result of
a search for matches in a set. When a hash is computed from a set of vectors,
we mean the concatenation of all vectors in some pre-defined order, typically by
their round number.

v denotes raw feature vectors without cryptographic key properties, i.e. they
do not need to be distributed uniformly. h denotes cryptographic hashes of fea-
ture vectors and r denotes round numbers. Each host keeps a set LH as a history
of recently added local feature vectors and one set M C' for each remote host to
store the matching candidates as reported by this host. Any of the SHA family
of hashes seems appropriate to implement H, and we currently use SHA-256 as
a secure hash.

CKP consists of two phases:

I Collecting entropy from feature vectors and determining matching candidate
key parts: In step 1.1, locally generated feature vectors are stored in a local
history for future reference. This history LH may be implemented as a circu-
lar buffer, overwriting oldest feature vectors. By computing the secure hash,
candidate key parts are created from these feature vectors and sent to the
remote device in step 1.2. Note that each round r uses a unique salt value s”
that is prepended before hashing to make attacks with lookup tables more
expensive.

In step 1.3, received candidate key parts are compared with feature vectors
in the local history LH. All matching vectors are advanced to the status of
matching key parts by adding them to the set of matching candidates M C,
which is specific to each remote host that CKP is run with.

Step 1.4 is optional, and should only be used in asymmetrical settings. In
an asymmetrical setting, only one host broadcasts candidate key parts. Any
host receiving the candidate key parts and recognizing matching key parts
acknowledges these matches, which enables the broadcasting host to keep
track of matching key parts.

II Generating the secret shared key: Each host can check locally if enough
matching key parts have been collected, and/or if the associated feature
vectors accumulate enough entropy for a secret shared key. When the lo-
cal criteria are fulfilled, a candidate key k and an associated candidate key
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identifier kh are generated in step II.1 by concatenating the feature vectors
that belong to the last N matching key parts and, again, computing secure
hashes over the concatenated string with prepended salt values. To decouple
the actual key and its identifier, a public padding string C'is appended before
hashing for the generation of k. The candidate key identifiers are exchanged
in step IL.2.

In step II.3, the hosts then try to locally generate a key that matches a
received candidate key identifier. This may be computationally expensive,
depending on the number of matching key parts in MC, the number of
matching key parts N used for the generation of kh, and the number of du-
plicate matches in each round. The reason is that, for example, host B has
no knowledge about the exact set of matching key parts chosen by host A to
generate its kh,. Because hosts A and B may be out of sync with their round
counters, it is unknown which rounds contributed matching key parts. And
because A and B most probably generate candidate key parts in different
order even within the same round, it is unknown which of the matches in a
specific round was chosen when there were multiple. B therefore needs to try
all possible combinations of N, elements of MC} ,, which has potentially a
run time complexity of O(A*) where A is the maximum number of differ-
ent candidate feature vectors generated in each round, and H > N is the
maximum size of the history M C. However, in practice we expect only few
duplicates, and the search can be further optimized by starting with the most
likely, i.e. the most recent, round numbers recorded in M C. Another possible
optimization is to transmit the round and vector numbers with candidate
key messages to uniquely identify the set of parts. This trade-off between
message size and computational cost depends on application-specific cost
models, but does not influence the security level of the protocol.

If a matching key could be generated, it is acknowledged in step 11.4. After
receipt of a key acknowledge, the hosts can start to use the generated key k
that matches the acknowledged key identifier kh.

Note that at this stage, there is the possibility that the generated keys at
hosts A and B are different. This can happen when hosts A and B indepen-
dently generate and exchange candidate keys in steps II.1 and I1.2 and the
respective KEY messages overlap during transmission. Then, in steps I1.3
and II1.4, both hosts may find and acknowledge the respective remote host’s
key, again with overlapping ACK messages. That is, when host A generated
a key k1 and B a key ko in step II.1, then after step II.4, host A may have
found and acknowledged ko while B may have found and acknowledged k; .
By concurrently reacting to overlapping messages, A and B have effectively
swapped their keys, but are still left with different k; and k5. To solve this
synchronization problem locally, the hosts remember the originally generated
keys and check if the received key acknowledge is different. If yes, they can
simply compute the final secret shared key as the XOR of the two different
keys.
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In this form, CKP does not assume the communication channel to have any
specific properties, because our basic assumption is a MITM with full control
over this channel.

5 Implementing CKP with Lossy Channels

In a practical implementation, the communication channel may be lossy. That
is, packet delivery is not guaranteed even when no MITM attack is taking place.
This is the case for most broadcast radio frequency (RF) channels such as IEEE
802.11 WLAN or IEEE 802.15.4 ZigBee.

Our first implementation of CKP uses UDP as a lossy communication proto-
col. This has three advantages: a) UDP can be used directly between any hosts
connected via an IP based network. b) UDP allows to broad- or multicast packets
and can therefore be used for group authentication or spontaneous authentica-
tion as described in more detail below. ¢) UDP offers guarantees comparable to
many low-level broadcast RF channels, thus porting our implementation e.g. to
TinyOS [21], should be straightforward.

The protocol specification presented in section 4 lends itself to implementa-
tion on lossy channels, because it is robust against packet loss. When candidate
key parts get lost, there will simply be no matches for the respective round.
When candidate keys get lost, they can not be used to generate secret shared
keys, but new candidate keys will be generated in subsequent rounds. However,
issues arising from asynchronism and overlapping messages need to be dealt with
at the implementation level.

There are various possibilities for asynchronism in CKP. Here we concentrate
on the case where a remote message arrives for a round before the respective
local action has been processed. This includes many special cases like a dispar-
ity between the system clocks or delayed processing due to multi-tasking. To
cope with such asynchronism, we introduce message buffers to keep a history
of recently received messages. Then, when local operations such as adding new
feature vectors are processed, this history is replayed to simulate a new arrival
of messages using the updated local state. This method allows to cope with
asynchronism while considering limited resources in terms of memory and CPU
capabilities.

Note that, among others, |7, Theorem 8| states that “perfect synchronization
is impossible”, i.e. that there are always some cases in which the decisions of
Alice and Bob about generating a common key are different. Our implementa-
tion of CKP using UDP can only safeguard against Alice and Bob agreeing to
a different shared key (i.e. a MITM attack). But, under the assumption of a
completely insecure communication channel without any guarantees, it will al-
ways be possible for one host to finish the protocol with success, while the other
finishes with failure. In this case, further secure communication is not possible,
and the hosts can use time-outs to detect it.
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6 First Experimental Results

CKP has already been applied to one specific device pairing method: implicit
authentication by shaking devices together for a few seconds [22]. This method
uses 3D accelerometers as input to two alternative authentication protocols, one
of them being CKP. When shaking two devices with integrated accelerometers
together, their sensor time series are similar enough to create a secret shared
key, but an adversary can not obtain these time series with sufficient accuracy.
The lower bound of the entropy rate has been estimated at about 7 bits per sec-
ond [22], which means that around 20s of shaking are sufficient to generate over
128 bits of entropy. Experiments on “human man-in-the-middle” attacks, where
adversaries try to duplicate the shaking patterns of victims to produce similar
sensor time series, show that people are unable to reproduce these patterns even
when we allow for cooperation between adversary and victim (which would not
be possible during a real attack). It remains to be shown if high-speed cam-
eras could be used to estimate the local acceleration values and thus lower the
candidate key parts entropy from an adversary’s point of view.

7 Security Analysis and Discussion

When generating cryptographic key material, the most important point is to
achieve high entropy with regards to a possible adversary’s knowledge. A key
can only remain secret if Eve is sufficiently uncertain about it. It is important to
note that, principally, CKP can not increase the entropy of a secret key compared
to the total entropy of all feature vectors it has been created from. Instead, any
public communication between Alice and Bob must reveal something about the
key — CKP can only try to make this additional information useless to Eve.
Note that feature extraction and estimation of entropy are entirely application
specific. We can only assume the locally added feature vectors to carry sufficient
entropy, and leave it to the specific implementation to guarantee this.

Hashing the sensor time series to generate candidate key parts and candidate
keys serves to reduce an adversary’s usable information about them. This is
often termed “privacy amplification”. When we assume the SHA family of hash
functions to be universal as defined in [23] and reproduced in [24], then an upper
bound for the information that Eve can obtain about the secret key has been
shown in [24, Corollary 5|: if Eve has access to ¢ bits of the (weak) secret W with
n bits, then her expected knowledge about a key K = H (W) with a length of
r = n—t— s bits for some safety parameter s < n —t is restricted to a maximum
of 27%/In2. This assumes that W is uniformly distributed. For our application
to sensor time series, W is not uniformly distributed, and a significant part of
its distribution function may be known to Eve. We can only conjecture that the
above corollary may be applicable to those components of the sensor time series
that are completely unknown to Eve and thus uniformly distributed from her
point of view, but can not currently provide a proof. This conjecture suggests
that, if we intend to extract a secret shared key with a size of r = 128 bits,
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then the difference between the length of the sensor time series W and Eve’s
information about it, i.e. n — t bits, must be larger then 128. Intuitively, this
requirement is trivial. But the theoretical analysis indicates that by hashing the
input, all the entropy of the weakly secret sensor time series should be retained
in K. This means that transmitting the candidate key parts, which are hashes
over the sensor time series, should not reveal more about them than an adversary
already knew. It is currently unclear if more information about the final secret
key is revealed when MATCH messages are transmitted to acknowledge matching
candidate key parts, but we do not expect this to be the case. Nonetheless, the
normal mutual authentication mode seems more conservative, because only the
candidate key part hashes and the candidate key hashes are transmitted, but
no more information about which of the candidate key parts have been used to
construct the secret key.

It is important to note that there is a possibility for brute-force attack. The
problem arises when parts that are extracted from sensor time series only have
a small entropy from Eve’s point of view. In this situation, even when reversing
the hash function is impossible, she could just generate lookup tables of all
possible time series parts and compare their hashes with the CAND messages.
This is slightly mitigated by our use of salting, but only makes the attack more
computationally expensive, and not less likely to be successful. Eve only needs
to keep a small amount of possibly matching key parts in a history to try and
create keys that match the transmitted KEY messages, in much the same way
that is also used in the legitimate protocol run. For this reason, it is better to use
less candidate key parts to construct a key. When the sensor time series parts
that can be extracted naturally using domain specific knowledge only have a
small entropy, then multiple such parts should be buffered and bundled into one
candidate key part. Guessing a candidate key part and verifying that it matches
its received hash value has an average complexity of O (26_1) when the feature
vector has e bits of entropy from Eve’s point of view. Thus, two concatenated
feature vectors would need O (22°7!) steps to guess. This entropy level directly
defines the security level of the whole CKP run. It has been shown in [24] that
adding random material can in principle increase the length of K that can be
extracted from the weak secret W, but we currently do not see a method to
apply this to CKP.

Finally, there are two additional advantages of CKP over more traditional au-
thentication protocols, e.g. ones based on public key infrastructures. First, the
continuous broadcasting of candidate key parts and, after detecting matches,
of candidate keys, allows remote hosts to “tune in to” another host’s authen-
tication stream. This allows to easily construct applications with opportunistic
authentication, where hosts automatically authenticate with each other as soon
as they enter a shared context: when a host picks up broadcasts from another
and is able to generate matching key parts, they are guaranteed to record similar
sensor readings.

Second, CKP can be trivially generalized to group authentication. In the
specification in Fig. 3, only steps 11.4 and II.5 need to be adapted. All hosts
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can continue to generate candidate key parts and candidate keys, and to search
for candidate keys as for two-host authentication. However, keys can only be
acknowledged and used in steps I1.4 and II.5, respectively, after all hosts that
should be members of the authenticated group were able to generate matching
keys. A possible solution is to split step I1.4 into a tentative acknowledge and
a group acknowledge message, where the latter is only sent after the tentative
acknowledge has been received from all group members.

8 Conclusions

Our proposed Candidate Key Protocol (CKP) is one approach to solving the
problem of device-to-device authentication for spontaneous interactions. Replac-
ing explicit means of authentication like manual password input or string ver-
ification with an implicit authentication based on similar sensor data streams
offers significant advantages from a user point of view: wireless communication
can be made secure by default instead of relying on a separate authentication
step.

Context-based authentication is in fact a classification problem, with the
known problems of false positives, which need to be strictly avoided for security
reasons, and false negatives, which hinder seamless and unobtrusive user inter-
action. One main novelty of CKP is that multiple candidate key parts in each
step can be used to address the problem of false negatives. Its advantages over
other proposed approaches to the same problem and based on Diffie-Hellman key
agreement authenticated by short, or weak, shared secrets are threefold: it is less
computationally expensive and thus well suited for implementation with limited
resources, it provides opportunistic authentication, and it is trivially extensible
to group authentication. The major disadvantage is that the generated secret
shared key is only as secure as the entropy of the candidate key parts and that
it does not provide forward secrecy. Newer results on information theoretically
secure key agreement are very promising for authentication based on sensor data
streams, but have not yet been implemented in practice. Relying on conventional
secure hashes allows us to implement and test CKP in real-world settings like
the authentication method based on shaking devices together.

Complete source code of our current Java implementation is available at
http://www.openuat.org, as part of the open source ubiquitous authentication
toolkit.
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