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Abstract. In this paper, we propose a graphics adaptation framework with a 
mechanism of video streaming to overcome the shortcoming of real-time repre-
sentation and interaction experiences of 3D graphics application running on 
mobile devices. We therefore develop an interactive 3D visualization system 
based on the proposed framework for rapidly representing a complex 3D scene 
on mobile devices without having to download it from the server. Our system 
scenario is composed of a client viewer and an adaptive media streaming server. 
The client viewer offers the user to navigate the 3D scene and interact with ob-
jects of interests for studying about them through the responded text descrip-
tions. The server adaptively provides media contents to the client according to 
the user preferences, interactions, and the condition of wireless network.  

Keywords: Video streaming, interactive 3D visualization, adaptive media  
content, MPEG-4/H.264 standard, color vision deficiency. 

1   Introduction 

In recent years, real-time representation and interaction for a highly complex 3D 
scene is one of fundamental problems in 3D graphics application for mobile devices. 
It is because the performance of 3D graphics requires a powerful computational capa-
bility, and large storage memory. In addition, a very huge data size of 3D scenes will 
also cause problems for storing, transferring and rendering the contents not only on 
mobile devices but also on PCs.  

A number of individual approaches are proposed to overcome these difficulties. 
Teler [1], [6] presented a method of streaming 3D scene for remote walkthrough by 
selecting a portion of the 3D scene and reducing quality representation for objects. 
This method only sends the visible 3D contents at the observer viewpoints. These 
contents are then kept in the client sides for reusing so these contents will not be sent 
again. Schneider [2] and Hesina [3] introduced a network graphics framework that 
includes various transmission methods to provide a constant quality of 3D-contents 
downloaded with different conditions of environment. AlRegib [7] developed a spe-
cial network layer called 3D model transport protocol for streaming 3D models over 
the network. A single-level compression method is used to reduce the transmitted bits. 
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Some other methods attempt to reduce bandwidth requirements by developing com-
pression algorithms [14], [15], [16], [17]. Using arbitrary triangular mesh with an 
irregular connectivity, a 3D model is compressed by two channels of data (geometry 
data and connectivity data) before it is streamed to the client. To deal with the scene 
complexity, Hoppe [4] and Funkhouser [5] proposed approach of level of detail 
(LOD) models and object progressive rendering. Users can see the objects with dif-
ferent levels of detail depending on transferring intervals of time or distance from the 
observer viewpoint to the objects. 

Similar to our research, many researches invested accelerated rendering algorithms 
in taking advantages of displaying 2D rendered images for easily visualizing a 3D 
scene in the client sides. Image-based rendering techniques [8], [9], [10], [11], [12], 
[13] do not use 3D geometry information of the 3D scenes such as object attributes, 
vertex points and their connectivity. Thus, the client alternatively receives and dis-
plays rendered images in a very short time. To archive high performance, the rendered 
images usually are compressed using JPEG compression standard [9]. However, the 
data size of compressed images is still big compared to the bandwidth of wireless 
links of mobile devices. 

 

Fig. 1. A graphics adaptation framework for the Inter3DV system, the client can navigate for a 
large and complex 3D scene without having to download it from the server 

The above solutions all, however, require a powerful computational capability, 
large memory for storing, 3D graphics hardware, and programming capabilities from 
the client sides. Meanwhile, every mobile device can not embed required hardware 
for rapidly displaying and memory capacity for storing the large and complex 3D 
scene. Moreover, the mobile devices are still limited in bandwidth of wireless links so 
that transferring data of a 3D scene over the network is a big challenge. Whereas, 
today mobile devices usually support natively video, audio, and text, they offer direct 
optimization for playing back of such media contents. Consequently, in this paper, a 
graphics adaptation framework for an interactive 3D visualization (Inter3DV) system 
is proposed. The Inter3DV system offers the client viewer on mobile devices to rap-
idly represent a large and complex 3D scene resided in the server without having to 
download it. The user can remotely navigate the 3D scene and select an object of 
interests for studying according to the text description introducing about it. 
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The graphics adaptation framework is providing a representation, interaction and 
adaptive media content experiences with no additional processing cost on the client 
side. Our solution is developing an adaptive media streaming (AMS) server for 
streaming the video stream generated from a remote interaction. The AMS server 
frequently renders a sequence of images and then encodes them into a video stream. 
The video stream is then received by the client, which decodes the video stream into 
video-frames and displays. Video codec processes is based on MPEG-4/H.264 stan-
dard. The AMS server provides the client with adaptive video stream in term of color 
vision deficiency, quality representation according to the user preferences and the 
variation of network bandwidth and also provides suitable text descriptions depended 
on the user interactions. 

2   A Graphics Adaptation Framework 

Figure 1 illustrates a graphics adaptation framework of the Inter3DV system that 
takes the advantages of video streaming technique for reducing the data transmission 
rate and accelerated rendering on the client sides. The client viewer offering real-time 
representing and navigating a complex 3D scene is specially developed for HP iPAQ 
Pocket PCs. The client viewer provides a user-interface for representing the  
responded media contents and for controlling visualization. The server, AMS server, 
plays important roles of transforming the 3D scene into suitable media contents due to 
the user interactions and streaming these media contents to the client viewer. 

2.1   Adaptive Media Streaming Server 

Before the media contents are sent to the client, the server has a lot of works to do that 
can be performed in three processes. 

Event Process. This process manages the interactions derived the user on the client. 
Event process includes event-parser, camera-navigator, and object-processing-unit 
modules. On the client side, whenever the user interacts with the 3D scene such as 
walking through the scene or selecting an interested object, the event-generator  
creates a control event and sends it to the server. On the server side, the event-parser 
converts the control event into control parameters (camera, selection, coding parame-
ters, etc.) that will be conveyed to one of the following processes: text-descriptor, 
camera-navigator, object-processing-unit, vision-deficiency and coding-controller. 
The observer viewpoint of the 3D scene is updated following the movement and ori-
entation of the virtual camera. The camera-navigator uses the camera parameters to 
adjust the virtual camera by changing camera coordinates in position (x, y, z) and 
changing camera orientation in pose (h, p, r), h is rotated by z-axis, p is rotated by  
x-axis and r is rotated by y-axis. The object-processing-unit uses the selection pa-
rameters to obtain the selected object in the 3D scene. The process of object identifi-
cation is doing as follows. Because the size of image rendered in the server side 
(called rendered image) might be different to the size of image displayed on the client 
side (called displayed image). Therefore, the position of mouse event should be 
mapped into the rendered image at the current observer viewpoint to archive correct 
coordinates. Assume that, xn and yn are coordinates projected on the rendered image,  
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x and y are coordinates projected on the displayed image. xn and yn are calculated as 
the following: xn = x*rw and yn = y*rh, where rw and rh are ratio by width and ratio by 
height between the rendered image and displayed image. The xn, yn coordinates are 
then projected into the 3D space of the 3D scene to obtains the object-ID of the se-
lected object. The selected object is marked by adding its triangle mesh. The object-
ID is also sent to the text-descriptor for querying its text description in the Media DB. 

3D-scene Process. 3D-scene process is designed for rendering and grabbing images 
from the 3D scene at the observer viewpoints. This process is broken into four proc-
essing layers: loading-memory, 3D-scene-rendering, image-capturing, and frame-
buffer. When a client sends a request to access a 3D scene in the AMS server, the 3D 
scene is loaded to the loading-memory and then a virtual camera is mapped to the 3D 
scene. Responding to the observer viewpoints, the 3D-scene-rendering constantly 
renders raster images. This method uses a special function that is available in 
OpenGL called feedback function [21], [22]. When using feedback mode the 3D 
scene is not rasterized like the usual way, the transformed data (rendered/raster  
image) is stored in a feedback buffer. After that, the 3D-scene-rendering signs the 
image-capturing to read back the rendered image from the feedback buffer using 
glReadPixels function and store it into the frame-buffer preparing for the video  
encoding process. 

Encoding-Streaming Process. The main tasks of encoding-streaming process are 
adaptively providing and streaming media contents (video stream data and text de-
scriptions) in accordance to the control parameters received from the event-parser to 
the client. This process is performed as follows. 

(1) The images in the frame-buffer first are passed to the vision-deficiency module for 
pre-processing color vision. If the vision parameters indicate the degree of color 
vision deficiency then the images will be converted by the visual content adapta-
tion algorithm [19] to suit the visual perception characteristics of the user. 

(2) The video-encoder compresses the converted images into a video stream based on 
MPEG/H.264 standard [18]. The video stream is finally stored in the streaming-
buffer. During encoding process, the quality of video compression is always  
adjusted in order to satisfy the user preferences. Channel rate (a), minimizing dis-
tortion (b), and quantizer (c) are three encoding options for the user on the client. 
The channel rate option requires that, the system should always keep a stable 
frame rate. The minimizing distortion option requires that, the system provides re-
sult with a minimal video distortion for video segment in the streaming-buffer. If 
the user chooses option (c), the quality of video compression will not be changed. 
If the user sets up option (a) or (b), the system requires the coding-controller to 
find an optimal quantizer [20]. The coding-controller receives control parameters 
from the event-parser or a signal from the transfer-engine it finds an optimal quan-
tizer and sends to the video-encoder for adjusting quality of video compression. 
The value of quantizer is varied from 1 to 31 in steps of 1. The increment of quan-
tizer value is in inverse ratio to the quality of video compression. 

(3) The transfer-engine receives the video stream from the video-buffer and receives 
text descriptions from the text-descriptor. It creates two data transmission channels, 
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one is for transferring the text descriptions and one is for transferring video stream 
data. If the text-descriptor receives an object-ID from the object-processing-unit or 
the vision-deficiency it tries to obtain the text description of the object-ID and 
sends to the transfer-engine. Whenever the transfer-engine receives ACK message 
from the receiver-engine, it indicates the coding-controller to find a new optimal 
quantizer for the video-encoder due to the rules of the coding options. 

2.2   A Client Viewer 

A client viewer, a real-time client application offering adaptively representing and 
navigating a complex 3D scene, is specially developed for mobile devices (HP iPAQ 
Pocket PCs). In previous works [1], [2], [3], [7], the clients need time-delay for 
downloading the 3D scene, a large memory space for storing data and required graph-
ics hardware for accelerated 3D rendering. In our method, a video streaming tech-
nique is employed instead of streaming 3D scene for solving the above limitations and 
for accelerated representing a complex 3D scene. Therefore, a complex 3D scene 
resided in the AMS server is rapidly represented by the client viewer without having 
to download and store it as well. In this study, we are taking advantages of the video 
streaming technique due to not only the low computing capacity of the clients and the 
potential low bandwidth of wireless links, but also security concerns. The user on the 
client can not access the original data from the server because only generated video 
stream data is transferred to the client. 

 

Fig. 2. The Event_Action structure of a control event 

The media content, received by the receiver-engine, is temporarily stored into the 
video-buffer if it is a video stream data and stored into the text-buffer if it is a text 
description data. The video-decoder decompresses the video stream data into frames 
and stores into the frame-buffer. After that, the visualization process displays the 
frames and represents the text description through the viewer & user’s interaction and 
text-modality-conversion.  

The client viewer supports the user with walking through the 3D scene, turning 
view orientation, and selecting objects for studying about them according to their text 
descriptions. The user interactions are generated to as control events and transferred 
to the server by the event-generator (see figure 1). Each control event is formed by the 
Event_Action structure as shown in figure 2. ActionType defines type of the interac-
tions (e.g. ACT_WALK or ACT_SELECT). EventType defines interface-button or 
mouse events (e.g. mouse move, mouse click, etc.) MouseFlag records statuses of 
mouse click (e.g. left or right). C_MousePosition and P_MousePosition record the 
current and previous position of mouse events based on the size of displayed image. 
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2.3   Streaming Protocol 

Data transmission between the client and the server are conveyed through sockets. 
User diagram protocol (UDP) is often the favoured transport protocol for delivery of 
media data over the network [23]. However, as UDP, the sender can continuously 
send data to the receiver without guarantee the delivery of transmitted data [7]. There-
fore, the media streaming system needs to be supported extra information to manage 
the delivery of lost, delayed, and unordered packets. A real-time media streaming 
system usually uses UDP with supplementation of framing and feedback information 
that provided by real-time transport protocol (RTP) [24].   

 

Fig. 3. A mechanism for establishing sockets of the interaction and streaming sessions 

In this paper, the socket connections include control socket, action socket, video 
socket, and text socket. The control socket is used to establish and manage all com-
munications between the client and the server. The control socket always listens  
request messages from the client. User interactions from the client are sent to the 
server over the action socket. The video socket is created for transferring video stream 
data. Text socket is created for transferring text descriptions. Figure 3 depicts a 
mechanism of establishing socket connections for interaction and media streaming 
sessions. To access and visualize the 3D scene, the client first sends a request mes-
sage to the server over the control socket. The server creates an action socket and 
sends a response message to the client. The client then sends the user preferences and 
device information to the server for starting interaction session and also creates from 
the server and it again sends a confirmed message to the server. After that, the server 
opens media streaming session for transferring the media contents to the client. 

3   Implementation and Results 

To verify the graphics adaptation framework, an interactive 3D visualization (in-
ter3DV) system is developed. We implemented an adaptive media streaming (AMS)  
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server and client viewer. An implementation based on a central workstation is config-
ured in which the AMS server is running on. The central workstation is equipped with 
a single Pentium IV, 1.8 GHz, 1 GB of RAM and running on WindowXP platform. 
Client nodes are HP iPAQ PocketPCs working on WinCE 2005 platform. PocketPC 
devices currently have a small screen resolution - 240x320 pixels and 16/32 bit color 
depth. In this experiment, MPEG-4/H.264 standard is used to encode the input images 
into video stream and UDP/RTP is used to packetize and stream generated video data 
to the client over the network. The size of video compression is Quarter Common 
Intermediate Format (QCIF – 176x144). 

 (a)  (b) 

Fig. 4. The user preferences on the client viewer, with (a) vision deficiency and text modality 
conversion options, (b) control rate option 

Figure 4 is two screenshots of the user preferences. In figure 4.a, the user can setup 
the vision deficiency characteristics based on three primitive colors (Red, Green, and 
Blue) and text modality conversion such as text-to-speak (TTS), text description, and 
language for presenting text modality conversion. In figure 4.b, the user can select 
one of three control rate options. The channel rate allows the system to fix the frame 
rate and tries to adjust the quality of video compression by finding an optimal quan-
tizer. Similar to the minimizing distortion option, the system adjusts the quality of 
video compression by finding an optimal quantizer in order to obtain a minimum 
distortion for decoded video data in the client side. The quantizer option is that the 
user chooses a quantizer level for the encoding process. The default option for control 
rate preference is minimizing distortion. We have evaluated the frame rate for HP 
iPAQ PocketPC that is varied from 14 to 20 fps when the user chooses default mini-
mizing distortion option. Figure 5.a and 5.b show results of choosing the channel rate 
option with 22 fps and 25 fps, respectively. 
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 (a)  (b) 

Fig. 5. The screenshots of the client viewer based on the two channel rates (22 and 25 fps) 

(a)   (b) 

Fig. 6. The screenshots of the client viewer for navigating the 3D virtual building, (a) without 
setting of vision deficiency, (b) with setting of vision deficiency for red-color at degree of 0.5 

Figure 6 is a demonstration for the user walking through the 3D virtual building 
(New Jerusalem City Hall). Figure 6.a and 6.b are results at two different view-
points. In figure 6.a, the video frame is represented with the original color. Figure 
6.b shows an instance of color adaptation that describes color vision deficiency 
characteristics of the user who has a certain type and degree of color vision defi-
ciency. In this example, red-color is set as color deficiency of the user and the  
degree is equal to 0.5. 
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 (a)  (b) 

Fig. 7. The screenshots of the client viewer for navigating the primitive 3D object model and 
selecting object of interests and querying its text description 

Figure 7 shows a demonstration for walking through the primitive 3D object model 
and selecting an interested object. In figure 7.a, the user selected the cube object and 
queried its text description that was not existed in the Media DB so that the AMS 
server can not serve. In figure 7.b, the user selected the cone object and queried its 
description that was displayed in the user interface. The text description of the cone 
object is a simple one for introducing about the chosen object. 

4   Conclusion 

In this paper, we proposed a graphics adaptation framework for an inter3DV system. 
The system takes the advantages of video streaming technique for reducing burden of 
storing and rendering process on the client side as well as reducing transmitted data 
(the end-to-end transmission delay). Our proposed system works well for mobile 
devices with low computational power, memory capacity.  

The Inter3DV system has been implemented with an AMS server and a client 
viewer. We have experimented on 3D virtual building (New Jerusalem City Hall), and 
a primitive 3D object model. The client viewer, run on a HP iPAQ PocketPC device, 
allows the user to rapidly represent, easily navigate a complex 3D scene and interact 
with interested objects for studying according to their text descriptions. Responding to 
the user preferences, interactions, and the condition of wireless, the media contents 
are adaptively represented on the client.  
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