
C. Stephanidis (Ed.): Universal Access in HCI, Part I, HCII 2007, LNCS 4554, pp. 481–490, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Graphics Adaptation Framework and Video Streaming
Technique for 3D Scene Representation and Interaction

on Mobile Devices

Congdu Nguyen, Minh Tuan Le, Dae-Il Yoon, and Hae-Kwang Kim

School of Computer Engineering, Sejong University, Seoul, Korea
{congdu,tuanlm,daeil}@sju.ac.kr and hkkim@sejong.ac.kr

Abstract. In this paper, we propose a graphics adaptation framework with a
mechanism of video streaming to overcome the shortcoming of real-time repre-
sentation and interaction experiences of 3D graphics application running on
mobile devices. We therefore develop an interactive 3D visualization system
based on the proposed framework for rapidly representing a complex 3D scene
on mobile devices without having to download it from the server. Our system
scenario is composed of a client viewer and an adaptive media streaming server.
The client viewer offers the user to navigate the 3D scene and interact with ob-
jects of interests for studying about them through the responded text descrip-
tions. The server adaptively provides media contents to the client according to
the user preferences, interactions, and the condition of wireless network.

Keywords: Video streaming, interactive 3D visualization, adaptive media
content, MPEG-4/H.264 standard, color vision deficiency.

1 Introduction

In recent years, real-time representation and interaction for a highly complex 3D
scene is one of fundamental problems in 3D graphics application for mobile devices.
It is because the performance of 3D graphics requires a powerful computational capa-
bility, and large storage memory. In addition, a very huge data size of 3D scenes will
also cause problems for storing, transferring and rendering the contents not only on
mobile devices but also on PCs.

A number of individual approaches are proposed to overcome these difficulties.
Teler [1], [6] presented a method of streaming 3D scene for remote walkthrough by
selecting a portion of the 3D scene and reducing quality representation for objects.
This method only sends the visible 3D contents at the observer viewpoints. These
contents are then kept in the client sides for reusing so these contents will not be sent
again. Schneider [2] and Hesina [3] introduced a network graphics framework that
includes various transmission methods to provide a constant quality of 3D-contents
downloaded with different conditions of environment. AlRegib [7] developed a spe-
cial network layer called 3D model transport protocol for streaming 3D models over
the network. A single-level compression method is used to reduce the transmitted bits.

482 C. Nguyen et al.

Some other methods attempt to reduce bandwidth requirements by developing com-
pression algorithms [14], [15], [16], [17]. Using arbitrary triangular mesh with an
irregular connectivity, a 3D model is compressed by two channels of data (geometry
data and connectivity data) before it is streamed to the client. To deal with the scene
complexity, Hoppe [4] and Funkhouser [5] proposed approach of level of detail
(LOD) models and object progressive rendering. Users can see the objects with dif-
ferent levels of detail depending on transferring intervals of time or distance from the
observer viewpoint to the objects.

Similar to our research, many researches invested accelerated rendering algorithms
in taking advantages of displaying 2D rendered images for easily visualizing a 3D
scene in the client sides. Image-based rendering techniques [8], [9], [10], [11], [12],
[13] do not use 3D geometry information of the 3D scenes such as object attributes,
vertex points and their connectivity. Thus, the client alternatively receives and dis-
plays rendered images in a very short time. To archive high performance, the rendered
images usually are compressed using JPEG compression standard [9]. However, the
data size of compressed images is still big compared to the bandwidth of wireless
links of mobile devices.

Fig. 1. A graphics adaptation framework for the Inter3DV system, the client can navigate for a
large and complex 3D scene without having to download it from the server

The above solutions all, however, require a powerful computational capability,
large memory for storing, 3D graphics hardware, and programming capabilities from
the client sides. Meanwhile, every mobile device can not embed required hardware
for rapidly displaying and memory capacity for storing the large and complex 3D
scene. Moreover, the mobile devices are still limited in bandwidth of wireless links so
that transferring data of a 3D scene over the network is a big challenge. Whereas,
today mobile devices usually support natively video, audio, and text, they offer direct
optimization for playing back of such media contents. Consequently, in this paper, a
graphics adaptation framework for an interactive 3D visualization (Inter3DV) system
is proposed. The Inter3DV system offers the client viewer on mobile devices to rap-
idly represent a large and complex 3D scene resided in the server without having to
download it. The user can remotely navigate the 3D scene and select an object of
interests for studying according to the text description introducing about it.

 A Graphics Adaptation Framework and Video Streaming Technique 483

The graphics adaptation framework is providing a representation, interaction and
adaptive media content experiences with no additional processing cost on the client
side. Our solution is developing an adaptive media streaming (AMS) server for
streaming the video stream generated from a remote interaction. The AMS server
frequently renders a sequence of images and then encodes them into a video stream.
The video stream is then received by the client, which decodes the video stream into
video-frames and displays. Video codec processes is based on MPEG-4/H.264 stan-
dard. The AMS server provides the client with adaptive video stream in term of color
vision deficiency, quality representation according to the user preferences and the
variation of network bandwidth and also provides suitable text descriptions depended
on the user interactions.

2 A Graphics Adaptation Framework

Figure 1 illustrates a graphics adaptation framework of the Inter3DV system that
takes the advantages of video streaming technique for reducing the data transmission
rate and accelerated rendering on the client sides. The client viewer offering real-time
representing and navigating a complex 3D scene is specially developed for HP iPAQ
Pocket PCs. The client viewer provides a user-interface for representing the
responded media contents and for controlling visualization. The server, AMS server,
plays important roles of transforming the 3D scene into suitable media contents due to
the user interactions and streaming these media contents to the client viewer.

2.1 Adaptive Media Streaming Server

Before the media contents are sent to the client, the server has a lot of works to do that
can be performed in three processes.

Event Process. This process manages the interactions derived the user on the client.
Event process includes event-parser, camera-navigator, and object-processing-unit
modules. On the client side, whenever the user interacts with the 3D scene such as
walking through the scene or selecting an interested object, the event-generator
creates a control event and sends it to the server. On the server side, the event-parser
converts the control event into control parameters (camera, selection, coding parame-
ters, etc.) that will be conveyed to one of the following processes: text-descriptor,
camera-navigator, object-processing-unit, vision-deficiency and coding-controller.
The observer viewpoint of the 3D scene is updated following the movement and ori-
entation of the virtual camera. The camera-navigator uses the camera parameters to
adjust the virtual camera by changing camera coordinates in position (x, y, z) and
changing camera orientation in pose (h, p, r), h is rotated by z-axis, p is rotated by
x-axis and r is rotated by y-axis. The object-processing-unit uses the selection pa-
rameters to obtain the selected object in the 3D scene. The process of object identifi-
cation is doing as follows. Because the size of image rendered in the server side
(called rendered image) might be different to the size of image displayed on the client
side (called displayed image). Therefore, the position of mouse event should be
mapped into the rendered image at the current observer viewpoint to archive correct
coordinates. Assume that, xn and yn are coordinates projected on the rendered image,

484 C. Nguyen et al.

x and y are coordinates projected on the displayed image. xn and yn are calculated as
the following: xn = x*rw and yn = y*rh, where rw and rh are ratio by width and ratio by
height between the rendered image and displayed image. The xn, yn coordinates are
then projected into the 3D space of the 3D scene to obtains the object-ID of the se-
lected object. The selected object is marked by adding its triangle mesh. The object-
ID is also sent to the text-descriptor for querying its text description in the Media DB.

3D-scene Process. 3D-scene process is designed for rendering and grabbing images
from the 3D scene at the observer viewpoints. This process is broken into four proc-
essing layers: loading-memory, 3D-scene-rendering, image-capturing, and frame-
buffer. When a client sends a request to access a 3D scene in the AMS server, the 3D
scene is loaded to the loading-memory and then a virtual camera is mapped to the 3D
scene. Responding to the observer viewpoints, the 3D-scene-rendering constantly
renders raster images. This method uses a special function that is available in
OpenGL called feedback function [21], [22]. When using feedback mode the 3D
scene is not rasterized like the usual way, the transformed data (rendered/raster
image) is stored in a feedback buffer. After that, the 3D-scene-rendering signs the
image-capturing to read back the rendered image from the feedback buffer using
glReadPixels function and store it into the frame-buffer preparing for the video
encoding process.

Encoding-Streaming Process. The main tasks of encoding-streaming process are
adaptively providing and streaming media contents (video stream data and text de-
scriptions) in accordance to the control parameters received from the event-parser to
the client. This process is performed as follows.

(1) The images in the frame-buffer first are passed to the vision-deficiency module for
pre-processing color vision. If the vision parameters indicate the degree of color
vision deficiency then the images will be converted by the visual content adapta-
tion algorithm [19] to suit the visual perception characteristics of the user.

(2) The video-encoder compresses the converted images into a video stream based on
MPEG/H.264 standard [18]. The video stream is finally stored in the streaming-
buffer. During encoding process, the quality of video compression is always
adjusted in order to satisfy the user preferences. Channel rate (a), minimizing dis-
tortion (b), and quantizer (c) are three encoding options for the user on the client.
The channel rate option requires that, the system should always keep a stable
frame rate. The minimizing distortion option requires that, the system provides re-
sult with a minimal video distortion for video segment in the streaming-buffer. If
the user chooses option (c), the quality of video compression will not be changed.
If the user sets up option (a) or (b), the system requires the coding-controller to
find an optimal quantizer [20]. The coding-controller receives control parameters
from the event-parser or a signal from the transfer-engine it finds an optimal quan-
tizer and sends to the video-encoder for adjusting quality of video compression.
The value of quantizer is varied from 1 to 31 in steps of 1. The increment of quan-
tizer value is in inverse ratio to the quality of video compression.

(3) The transfer-engine receives the video stream from the video-buffer and receives
text descriptions from the text-descriptor. It creates two data transmission channels,

 A Graphics Adaptation Framework and Video Streaming Technique 485

one is for transferring the text descriptions and one is for transferring video stream
data. If the text-descriptor receives an object-ID from the object-processing-unit or
the vision-deficiency it tries to obtain the text description of the object-ID and
sends to the transfer-engine. Whenever the transfer-engine receives ACK message
from the receiver-engine, it indicates the coding-controller to find a new optimal
quantizer for the video-encoder due to the rules of the coding options.

2.2 A Client Viewer

A client viewer, a real-time client application offering adaptively representing and
navigating a complex 3D scene, is specially developed for mobile devices (HP iPAQ
Pocket PCs). In previous works [1], [2], [3], [7], the clients need time-delay for
downloading the 3D scene, a large memory space for storing data and required graph-
ics hardware for accelerated 3D rendering. In our method, a video streaming tech-
nique is employed instead of streaming 3D scene for solving the above limitations and
for accelerated representing a complex 3D scene. Therefore, a complex 3D scene
resided in the AMS server is rapidly represented by the client viewer without having
to download and store it as well. In this study, we are taking advantages of the video
streaming technique due to not only the low computing capacity of the clients and the
potential low bandwidth of wireless links, but also security concerns. The user on the
client can not access the original data from the server because only generated video
stream data is transferred to the client.

Fig. 2. The Event_Action structure of a control event

The media content, received by the receiver-engine, is temporarily stored into the
video-buffer if it is a video stream data and stored into the text-buffer if it is a text
description data. The video-decoder decompresses the video stream data into frames
and stores into the frame-buffer. After that, the visualization process displays the
frames and represents the text description through the viewer & user’s interaction and
text-modality-conversion.

The client viewer supports the user with walking through the 3D scene, turning
view orientation, and selecting objects for studying about them according to their text
descriptions. The user interactions are generated to as control events and transferred
to the server by the event-generator (see figure 1). Each control event is formed by the
Event_Action structure as shown in figure 2. ActionType defines type of the interac-
tions (e.g. ACT_WALK or ACT_SELECT). EventType defines interface-button or
mouse events (e.g. mouse move, mouse click, etc.) MouseFlag records statuses of
mouse click (e.g. left or right). C_MousePosition and P_MousePosition record the
current and previous position of mouse events based on the size of displayed image.

486 C. Nguyen et al.

2.3 Streaming Protocol

Data transmission between the client and the server are conveyed through sockets.
User diagram protocol (UDP) is often the favoured transport protocol for delivery of
media data over the network [23]. However, as UDP, the sender can continuously
send data to the receiver without guarantee the delivery of transmitted data [7]. There-
fore, the media streaming system needs to be supported extra information to manage
the delivery of lost, delayed, and unordered packets. A real-time media streaming
system usually uses UDP with supplementation of framing and feedback information
that provided by real-time transport protocol (RTP) [24].

Fig. 3. A mechanism for establishing sockets of the interaction and streaming sessions

In this paper, the socket connections include control socket, action socket, video
socket, and text socket. The control socket is used to establish and manage all com-
munications between the client and the server. The control socket always listens
request messages from the client. User interactions from the client are sent to the
server over the action socket. The video socket is created for transferring video stream
data. Text socket is created for transferring text descriptions. Figure 3 depicts a
mechanism of establishing socket connections for interaction and media streaming
sessions. To access and visualize the 3D scene, the client first sends a request mes-
sage to the server over the control socket. The server creates an action socket and
sends a response message to the client. The client then sends the user preferences and
device information to the server for starting interaction session and also creates from
the server and it again sends a confirmed message to the server. After that, the server
opens media streaming session for transferring the media contents to the client.

3 Implementation and Results

To verify the graphics adaptation framework, an interactive 3D visualization (in-
ter3DV) system is developed. We implemented an adaptive media streaming (AMS)

 A Graphics Adaptation Framework and Video Streaming Technique 487

server and client viewer. An implementation based on a central workstation is config-
ured in which the AMS server is running on. The central workstation is equipped with
a single Pentium IV, 1.8 GHz, 1 GB of RAM and running on WindowXP platform.
Client nodes are HP iPAQ PocketPCs working on WinCE 2005 platform. PocketPC
devices currently have a small screen resolution - 240x320 pixels and 16/32 bit color
depth. In this experiment, MPEG-4/H.264 standard is used to encode the input images
into video stream and UDP/RTP is used to packetize and stream generated video data
to the client over the network. The size of video compression is Quarter Common
Intermediate Format (QCIF – 176x144).

 (a) (b)

Fig. 4. The user preferences on the client viewer, with (a) vision deficiency and text modality
conversion options, (b) control rate option

Figure 4 is two screenshots of the user preferences. In figure 4.a, the user can setup
the vision deficiency characteristics based on three primitive colors (Red, Green, and
Blue) and text modality conversion such as text-to-speak (TTS), text description, and
language for presenting text modality conversion. In figure 4.b, the user can select
one of three control rate options. The channel rate allows the system to fix the frame
rate and tries to adjust the quality of video compression by finding an optimal quan-
tizer. Similar to the minimizing distortion option, the system adjusts the quality of
video compression by finding an optimal quantizer in order to obtain a minimum
distortion for decoded video data in the client side. The quantizer option is that the
user chooses a quantizer level for the encoding process. The default option for control
rate preference is minimizing distortion. We have evaluated the frame rate for HP
iPAQ PocketPC that is varied from 14 to 20 fps when the user chooses default mini-
mizing distortion option. Figure 5.a and 5.b show results of choosing the channel rate
option with 22 fps and 25 fps, respectively.

488 C. Nguyen et al.

 (a) (b)

Fig. 5. The screenshots of the client viewer based on the two channel rates (22 and 25 fps)

(a) (b)

Fig. 6. The screenshots of the client viewer for navigating the 3D virtual building, (a) without
setting of vision deficiency, (b) with setting of vision deficiency for red-color at degree of 0.5

Figure 6 is a demonstration for the user walking through the 3D virtual building
(New Jerusalem City Hall). Figure 6.a and 6.b are results at two different view-
points. In figure 6.a, the video frame is represented with the original color. Figure
6.b shows an instance of color adaptation that describes color vision deficiency
characteristics of the user who has a certain type and degree of color vision defi-
ciency. In this example, red-color is set as color deficiency of the user and the
degree is equal to 0.5.

 A Graphics Adaptation Framework and Video Streaming Technique 489

 (a) (b)

Fig. 7. The screenshots of the client viewer for navigating the primitive 3D object model and
selecting object of interests and querying its text description

Figure 7 shows a demonstration for walking through the primitive 3D object model
and selecting an interested object. In figure 7.a, the user selected the cube object and
queried its text description that was not existed in the Media DB so that the AMS
server can not serve. In figure 7.b, the user selected the cone object and queried its
description that was displayed in the user interface. The text description of the cone
object is a simple one for introducing about the chosen object.

4 Conclusion

In this paper, we proposed a graphics adaptation framework for an inter3DV system.
The system takes the advantages of video streaming technique for reducing burden of
storing and rendering process on the client side as well as reducing transmitted data
(the end-to-end transmission delay). Our proposed system works well for mobile
devices with low computational power, memory capacity.

The Inter3DV system has been implemented with an AMS server and a client
viewer. We have experimented on 3D virtual building (New Jerusalem City Hall), and
a primitive 3D object model. The client viewer, run on a HP iPAQ PocketPC device,
allows the user to rapidly represent, easily navigate a complex 3D scene and interact
with interested objects for studying according to their text descriptions. Responding to
the user preferences, interactions, and the condition of wireless, the media contents
are adaptively represented on the client.

Acknowledgments. This work was supported by Seoul City Project. The authors
would like to thank the related members of Dept. of Computer Software in Sejong
University.

490 C. Nguyen et al.

References

1. Teler, E., Lischiniski, D.: Streaming of complex 3D Scenes for Remote Walkthroughs. In:
Eurographics, vol. 20(3), pp. 17–25. Blackwell Publishing, Oxford (2001)

2. Schneider, B.-O., Martin, I.M.: An adaptive framework for 3D graphics over networks.
Computers & Graphics 23(6), 867–874 (1999)

3. Hesina, G., Schmalstieg, D.: A Network Architecture for Remote Rendering. In: Bouker-
che, A., Reynolds, P. (eds.) Proceedings of Second International Workshop on Distributed
Interactive Simulation and Real-Time Applications, pp. 88–91 (1998)

4. Hugues, H.: Progressive Meshes. Computer Graphics. In: SIGGRAPH ’96 Proceedings,
vol. 30, pp. 99–108 (1996)

5. Funkhouser, T.A., S´equin, C.H.: Adaptive Display Algorithm for Interactive Frame Rates
During Visualization of Complex Virtual Environments. In: ACM SIGGRAPH, pp. 247–
254 (1993)

6. Agarwal, P.K., Har-Peled, S., Wang, Y.: Occlusion Culling for Fast Walkthrough in Urban
Areas. In: Proc. Eurographics 2001 (September 2001)

7. AlRegib, G., Altunbasak, Y.: 3TP: An Application-Layer Protocol for Streaming 3-D
Models. Multimedia, IEEE Transactions on 7(6), 1149–1156 (2005)

8. Shum, H.-Y., Kang, S.B.: A Review of Image-Based rendering techniques. In: IEEE/SPIE
Visual Communications and Image Processing (VCIP), pp. 2–13 (2000)

9. Cuntz, N., Klein, J., Krokowski, J.: Real-time Navigation in Highly Complex 3D-scenes
Using JPEG Compression. In: Proceedings of 4. GI-Informatiktage (2002)

10. Engel, K., Sommer, O., Ertl, T.: A Framework for Interactive Hardware Accelerated Re-
mote 3D Visualization. In: Proc of EG/IEEE TCVG Symposium on Visualization, pp.
167–177 (2000)

11. Koller, D., Levoy, M.: Protecting 3D graphics contents. Communications of the
ACM 48(6), 74–80 (2005)

12. Chang, C.-F., Ger, S.-H.: Enhancing 3D Graphics on Mobile Devices by Image-Based
Rendering. In: IEEE Pacific Rim Conference on Multimedia, pp. 1105–1111 (2002)

13. Jeschke, S., Wimmer, M., Purgathofer, W.: Image-Based representations for Accelerated
rendering of complex scenes. In: EUROGRAPHICS, pp. 1–20 (2005)

14. Khodakovsky, A., Schröder, P., Sweldens, W.: Progressive Geometry Compression. In:
SIGGRAPH, pp. 271–278 (2000)

15. Gueziec, A., Taubin, G., Horn, B.: A framework for streaming Geometry in VRML. IEEE
Computer Graphics and Applications 19(2), 68–78 (1999)

16. Cohen-Or, D., Levin, D., Remez, O.: Progressive Compression of Arbitrary Triangular
Meshes. In: the Proceedings of Visualization, pp. 67–72 (1999)

17. Chow, M.M.: Optimized Geometry Compression for Real-time Rendering. In: Proc. IEEE
Visualization’97, Computer Society Press pp. 347–354 (1997)

18. Joint Video Team of ITU-T and ISO/IEC JTC 1, Draft ITU-T Recommendation and Final
Draft International Standard of Joint Video Specification (ITU-T Rec. H.264 | ISO/IEC
14496-10 AVC), document JVT-G050r1 (May 2003)

19. Nam, J.Y., Man, R., Huh, Y., Kim, M.: Visual content adaptation according to user percep-
tion characteristics. IEEE Transactions on Multimedia 7(3), 435–445 (2005)

20. Hsu, C.-Y., Ortega, A., Khansari, M.: Rate control for robust video transmission over
burst-error wireless channels. IEEE Journal on Selected Areas in Communication 17(5),
756–773 (1999)

21. OpenGL.: http://www.opengl.org
22. SGI - OpenGL Performer.: http://www.sgi.com/products/software/performer/

	Introduction
	A Graphics Adaptation Framework
	Adaptive Media Streaming Server
	A Client Viewer
	Streaming Protocol

	Implementation and Results
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

