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Abstract. Color is inaccessible for individuals who are blind or visually im-
paired, as it is a purely visual feature. Given that many everyday tasks rely on 
color including coordinating clothing, social interactions, etc., the inaccessibil-
ity of color has an adverse effect on daily life. We propose an interactive, wear-
able assistive device that can recognize and convey colors of scenes or objects. 
As computer vision is challenging in real world environments due to, e.g., illu-
mination or pose changes, computer vision algorithms can be augmented with 
sub-systems that can provide information on working environments of a recog-
nition algorithm, and how it affects the recognition accuracy. In this paper, we 
introduce a framework that incorporates such measures, herein called confi-
dence measures, in wearable assistive devices. By communicating to the user a 
quantitative measure that signifies the difference between optimal working  
conditions and the real environment working conditions, we can convey the  
reliability of system-made decisions, which enables the user to take action to 
improve confidence. Given that color recognition is challenging in real world 
settings, our system is built within our proposed framework for confidence 
measures. Finally, we present user recognition accuracies, both with and with-
out confidence measures. 

1   Introduction 

Color information is inaccessible to individuals who are blind or visually impaired as 
it is a purely visible feature, unlike multimodal features such as shape or texture. 
Many everyday tasks rely on color such as coordinating clothing, sorting laundry, 
shopping, social interactions, etc., and hence, the inaccessibility of color has an ad-
verse effect on daily life. Several commercial color recognizers are available includ-
ing ColorTest Memo, Color Teller and Speechmaster Colour Detector [9]. However, 
these devices have several limitations: (1) they are only reasonably accurate; (2) they 
cannot detect the colors of scenes or distal objects; and (3) most cannot detect com-
plex color profiles. In this paper, we propose an interactive, wearable assistive device 
that can recognize and convey colors of scenes and multicolored objects, both proxi-
mal and distal. 

The challenge with most vision-based wearable assistive devices is obtaining satis-
factory performance in real world conditions; illumination changes, pose changes, 
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scale changes, image blur and noise can be problematic for computer vision algo-
rithms. Illumination conditions, motion blur and noise all adversely affect color rec-
ognizers. Some robustness to lighting variations can be obtained through the use of an 
illumination invariant color space, such as Normalized RGB (NRGB) [5]. Unfortu-
nately, color spaces invariant to intensity changes, such as NRGB, cannot distinguish 
between colors that vary only with intensity such as white and black, or red and dark 
red. The color space selected for the work presented here is RGB, which is sensitive 
to lighting conditions, but can be used to recognize a wide gamut of colors. To ensure 
robustness against environmental variations (our focus here is lighting variations and 
motion blur), we propose a collaborative framework wherein the user and system 
work together to solve a task, that alone, the system can not. 

The majority of wearable assistive devices, e.g., systems for assisting individuals 
who are blind in perceiving or navigating environments, do not seek assistance or 
feedback from users to help accomplish challenging tasks such as object recognition, 
face recognition, etc. Repetitive delivery of incorrect results to users causes a decline 
in system usability and reliability. A strategy to avoid leaving the user out of the 
“loop” is by communicating the confidence of a system-made decision to the user, 
which conveys the reliability of the decision, and allows the user to take action to im-
prove confidence. Humans often associate a probabilistic measure with judgments and 
can state a confidence level involved in their judgment. For example, we might be 
100% sure that the object on the table in front of us is a cup, but if lighting in the 
room is poor, we may not be as sure since lighting is not optimal. Pattern recognition 
algorithms such as Naïve Bayes, Bayesian networks, etc., are designed to provide a 
judgment on the recognized category and convey a measure of how reliable or accu-
rate the recognized class is. Such systems are detrimental to wearable systems be-
cause humans are sensitive to wrong judgments.  

In this paper, we propose a collaborative framework that can augment recognition 
algorithms by quantitatively analyzing the working conditions of the system, and 
comparing it to its optimal working conditions. A measure of the difference between 
the current working condition and the optimal working condition is herein referred to 
as a Confidence Measure. A framework for confidence measures exploits the human 
capacity by involving the user during problem solving to improve system usability 
and reliability. The novelty of the proposed approach lies in (1) development of an in-
tuitive measure of the difference between real working conditions and optimal work-
ing conditions of an algorithm and (2) development of algorithms to derive confi-
dence measures.  

Two specific working conditions that can influence the recognition accuracy of 
computer vision systems include (1) illumination conditions and (2) motion blur. 
Consider the following example for clarity: a vision-based wearable assistive device, 
for an individual who is blind, reports that an object’s color is red. Without the use of 
confidence measures, the system conveys the recognized class, and the user must trust 
that the system is correct. With confidence measures, the system conveys this same 
decision with a confidence rating of, e.g., 70%, and informs the user that a large 
amount of motion blur was detected in the image. Understanding the cause of low 
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confidence, the user may act to increase the system’s confidence (in this example, he 
or she may stand still while the system takes another image for analysis). Hence, this 
is a collaborative framework in which the user and system work together through a 
human-in-the-loop (HIL) strategy. 

The rest of the paper is organized as follows. Section 2 reviews related work.  
Section 3 presents the conceptual framework. Section 4 covers the experimental 
methodology and results. And finally, Section 5 presents possible directions for future 
work. 

2   Background and Related Work 

A number of handheld color recognizers are available commercially [9]. These de-
vices recognize a color by analyzing the amount of reflected light when the sensor is 
held firmly against a surface. Hence, accuracy depends on illumination conditions, 
surface texture and density [9]. ColorTest Memo, from the ColorTest 2000 series de-
veloped by Caretec, can recognize over 1,000 color categories, from common colors 
(red, blue, etc.) to more complex colors (bright red, light yellow, etc.) [9]. ColorTest 
Memo can also convey a color’s percentages of red, green and blue, and the amount 
of brightness and saturation. Moreover, the system is capable of conveying the colors 
of multicolored patterns. Similarly, Brytech’s Color Teller offers color identification 
of common and complex colors, but lacks the additional analysis that ColorTest 
Memo offers and is much less accurate [9]. Finally, Cobolt System’s Speechmaster 
Colour Detector can detect common colors and intensity variations (light, dark, etc.) 
with reasonably accuracy, but the operation of the device is challenging and requires a 
calibration step before each use [9]. 

In the way of vision-based color recognizers, Hub et al. developed a portable de-
vice for object identification [8]. An object’s color can be estimated from a distance, 
but the device is limited to recognizing and conveying simple color profiles. Next we 
review the relevant literature on HIL strategies to improve system performance. 

The human-in-the-loop strategy has been utilized mostly in content-based retrieval 
[2] and collaborative virtual environments [4,6]. Relevance feedback in content-based 
retrieval [2] improves query results by enabling the user to inform the system about 
the relevant retrieved items. Based on the user’s feedback, the system adapts its 
search to find more relevant items. Collaborative virtual environments often lack real-
ism due to problems such as a lack of realistic haptic feedback, network delay, etc. 
Rather than attempt to reduce or ignore network delay, Gutwin et al. [6] proposed to 
reveal it using visual ornaments called decorators to help users develop coping strate-
gies. Experiments revealed that decorators for telepointers help users adapt to delay in 
the form of jitter and latency using a fading cursor effect and halo technique, respec-
tively. These decorators are an example of computational aids that help individuals 
adapt to working conditions and work in symbiosis with systems.  

Fraser et al. [4] investigated the limitations of virtual environments, and techniques 
to reveal these limitations to users to enhance communication and collaboration. Is-
sues identified include limited field-of-view, lack of haptic feedback and network de-
lays. A limited field-of-view causes confusion during interaction as it is not clear to  
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users what is in another user’s view. To alleviate this limitation, the authors suggested 
displaying the extent of a user’s field-of-view using lighting. As haptic feedback de-
vices are still in their infancy, the authors recommended conveying haptic feedback 
through other media such as audio or vision. And lastly, the authors suggested  
conveying network delay using visual indicators such as slider widgets. 

In summary, confidence measures have been utilized in many fields such as con-
tent based image retrieval and online virtual environments. In this paper, we present a 
system to aid in recognition and analysis tasks. Lighting variations are often an im-
pediment in visual recognition of stimuli. Another problem in wearable systems is 
motion blur, which can significantly affect recognition. We present a system for  
providing intuitive information on lighting conditions and motion blur to a user. 

3   Conceptual Framework 

An important element of wearable systems is to design human-in-the-loop method-
ologies wherein the system and user work collaboratively towards achieving certain 
tasks. We propose a framework for color recognition that utilizes confidence meas-
ures to enable the user and system to interact and achieve accurate color perception. 
In our system, confidence measures have been designed to assess poor lighting condi-
tions and motion blur caused by excessive movement. The system generates a prob-
abilistic measure of color of objects (distal or proximal), and evaluates if motion blur 
or poor lighting are encountered. The recognized color(s) and information on motion 
blur and lighting is conveyed to the user in an intuitive manner. This enables a col-
laborative interaction between the user and system to make judgments about color. In 
Section 3.1, we discuss the framework for color recognition, and in Section 3.2, we 
propose a framework for confidence measures. 

3.1   Color Recognition and Segmentation 

Given an image, each pixel is first classified independently of its neighboring pixels 
using Bayesian classification. A pixel is classified as the color category that maxi-
mizes the posterior probably conditioned on the pixel value: 

1

( | ) ( )
( | )

( | ) ( )

i i
i n

j j
j

p x C P C
P C x

p x C P C
=

=
∑

 
(1) 

where 
iC  is the thi  color category, x is the pixel value and n is the number of color 

categories. As shown in (1), the posterior probability is equal to the likelihood of 
iC  

times the prior probability of 
iC  divided by a normalization factor, which can be ig-

nored for the task of classification. The prior probability is the number of occurrences 
of a certain color category divided by the total number of pixels in the training set. 
The likelihood of 

iC  can be estimated using Maximum Likelihood Estimation 

(MLE). Assuming the densities are Gaussian, MLE is achieved by computing the 
mean and covariance matrix of each color category. 
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Given that vision-based wearable systems are (1) usually equipped with low-cost 
off-the-shelf video equipment, and (2) must operate in real world conditions with ex-
treme environmental variations, point-based color classification often misclassifies 
pixels, resulting in noisy segmentation results. Instead, we can take into account a 
pixel’s neighborhood to improve segmentation. In our framework, we use the meth-
odology of [1], which uses the Iterated Conditional Modes (ICM) algorithm [3] to 
maximize a pixel’s conditional probability based on its neighborhood. As in [1], we 
assume that the classes of neighbors are known, and each color category is treated as 
an independent process, modeled by the first order Gibbs-Markov random field: 
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where N  is the neighborhood, 
iN  is the number of pixels in the neighborhood that 

fall into color category 
iC , Z is the normalization factor, which can be ignored since 

it is constant across posterior probabilities, and λ  is the clique potential, which de-
termines the dependence of a pixel on its neighborhood. As | |λ  increases, a pixel’s 

dependence on its neighborhood strengthens. In the ICM algorithm, (2) is applied to 
the image multiple times until a stopping criterion is met. 

Once an image has been segmented into n or less color categories, colors are con-
veyed to the user as proportions. For example, if an object’s color profile is half green 
and half red, the colors of the object would be conveyed to the user as approximately 
50% red and 50% green. As motion blur, lighting variations and noise introduce seg-
mentation errors, colors that make up a negligible portion of the image, determined by 
a certain threshold, e.g., 2%, are ignored. 

The wearable system operates under two modes: distal and proximal. In the distal 
mode, the user may perceive all the colors present in a scene, and in the proximal 
mode, the user may hold an object in his or her hand, and move it in front of the 
wearable camera to assess its color profile. Before the colors of the proximal object 
are recognized, the foreground is segmented from the background, which can be ac-
complished through automatic cropping or more advanced techniques. Finally, once 
an image is captured and color segmented, color proportions are conveyed to the user. 

3.2   Confidence Measure Framework 

The proposed framework for confidence measures for wearable systems is shown in 
Figure 1. Given input from the environment, e.g., an image or video, the system ana-
lyzes the input and reports its decisions to the user on estimated motion blur and light-
ing conditions. Recognition algorithms are either deterministic or stochastic in nature. 
Deterministic algorithms assign a recognition class label. On the other hand, stochas-
tic algorithms assign a probability value to a recognized class. Often, the probability 
value assigned to the recognized class can be employed to present users with some 
level of information on how well the algorithm performed. However, this measure is 
often not associated with the cause for performance degradation leaving users with 
the difficult task of guessing why the system is not performing with high reliability. 
Here, stochastic algorithms are grouped under algorithm-dependent factors, and may 
help provide an initial confidence measurement. 



756 T.L. McDaniel, K. Kahol, and S. Panchanathan 

 
 

Fig. 1. Confidence measures framework 

Environment factors such as illumination, motion blur, and noise can be taken into 
account for confidence calculation in our framework. Based on these factors, penalties 
or rewards are issued for the current estimate of the recognized class. In this paper, we 
propose algorithms for confidence measurement based on illumination and motion 
blur, which are presented in the next two subsections. At the final stage, context-
dependent factors are considered, which may include object category or features, con-
text, etc., depending on the application. As an example of context-dependent factors, 
consider an object that is classified as a bowl with 95% confidence. The system may 
further investigate other features of this object such as its material or size. If the mate-
rial of the object is classified as cloth with high confidence, then the object is most 
likely not a bowl, and the original 95% confidence is penalized. On the other hand, if 
the material is classified as ceramic, then the object is likely a bowl, so confidence is 
increased. (Confidence cannot exceed 100%.) 

Illumination Classification. Illumination classification attempts to match the 
illuminant of the scene to one of several illuminant models. One algorithm for 
illumination classification is an object-based approach developed by Hel-Or and 
Wandell [7]. For each illuminant, given the set of all surface reflectances of an object 
and the set of camera sensors, a cluster of points in 3D sensor output space is 
generated. When an image is captured, object segmentation is performed, and each set 
of pixels belonging to the object in question forms a cluster in 3D sensor space. Each 
image cluster is classified as the closest illuminant using Mahanalobis distance. The 
disadvantage to this approach is that object segmentation is required, which, in 
general, is still an unsolved problem. We propose an algorithm for real-time 
illumination classification that does not require scene segmentation. Our illuminant 
classifier categorizes the current illuminant into one of several coarse illuminant 
classes: poor (too dark), good (a little dark), great, good (a little bright) or poor  
(too bright). 

To obtain an estimate of the illuminant of a scene, its luminance is estimated by 
computing the mean grayscale value of its image. This value is then classified using 
Bayesian classification to categorize the illuminant as one of the five proposed 
classes. The priors reflect how often each of the five illuminants occurs. Class-
conditional densities are estimated using MLE. Assuming the probability density 
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functions are Gaussian, the unknown parameters mean and variance are estimated by 
the sample mean and sample variance of the mean grayscale values of the training 
data, where sample mean and variance calculations are done separately for each class. 

Motion Blur Classification. A variety of approaches exist for estimating motion blur 
in an image [5]. These algorithms estimate motion blur parameters, utilizing a 
degradation function H, to restore a blurred image. In this paper, we instead wish to 
classify the amount of motion blur using a measure that can be categorized as one of 
several motion blur levels. One approach is a no-reference, perceptual blur metric 
developed by Marziliano et al. [10]. This algorithm measures edge spread through 
edge detection followed by computing the average edge width, where edge width is 
defined as the local extrema locations closest to the edge. In the context of confidence 
measures, it is important to know why confidence has been penalized as this 
communicates to the user what must be done to increase confidence, and hence, 
improve reliability. Unfortunately, the approach of [10] is sensitive to any type of 
blur, and thus is not useful in this context. 

We propose a real-time algorithm for classifying the amount of motion blur con-
tained in an image, which requires no reference image and is sensitive to only motion 
blur. Our algorithm aims to classify the overall motion blur present in an image, 
whether this blur is caused by user and/or object movement. Further, our algorithm 
takes an indirect approach in that it does not directly classify motion blur, but overall 
movement, which is a good indicator of the amount of motion blur in an image. Our 
proposed algorithm for motion blur classification is described next.  

The algorithm takes as input the current frame of the video stream as well as the 
previous frame. A difference image is computed by subtracting the current and previ-
ous frames. If a pixel value remains the same between the previous and current frame, 
it will have a value of zero in the difference image; otherwise, it will have a value 
greater than zero. A binary threshold is then performed on the difference image, and 
the image is scanned both horizontally and vertically to detect vertical and horizontal 
lines, respectively. The average width of vertical and horizontal lines is computed. A 
line is vertical if its height is more than its width, and a line is horizontal if its width is 
more than its height. The larger of these two averages is then classified as one of four 
motion blur classes: no motion blur, small motion blur, large motion blur or extreme 
motion blur. The range of average line widths is divided into four sub-ranges repre-
senting the four classes. These sub-ranges are determined though experimentation 
such that motion classifications predict the corresponding motion blur levels. 

4   Experimental Methodology 

We built a vision-based wearable assistive device for color perception based on our 
proposed framework. The system consists of a pair of sunglasses with an embedded 
video camera, headphones for audio output, USB number pad for input and a laptop. 
The proposed framework for color recognition and segmentation was implemented. 
Training data consisted of manually segmented color images taken from the COREL 
color image database. Our color categories, and respective pixel counts for training, 
included white (1600), gray (300), black (1072), red (1100), light red (400), dark red 
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(400), green (600), light green (100), dark green (300), blue (1100), light blue (400), 
dark blue (400), orange (500), purple (600), yellow (500) and brown (600). Both pri-
ors and class-conditional probabilities were estimated and used in (1). We assumed 
Gaussian densities, and used MLE to estimate the means and covariance matrices. 

Through experimentation, we estimated parameters for (2). We found a neighbor-
hood size of 3 and 3, and a clique potential of -5 and -0.1, to work well for proximal 
and distal mode, respectively. Our stopping criterion was when the number of classi-
fication updates is below a threshold, which is recommended by [1]; we found a 
threshold of 1000 to work well. As a preprocessing step, noise is reduced using me-
dian filters before point-based classification. See Figure 2 for segmentation results. 

Distal mode uses the entire 320x240 captured image, whereas in proximal mode, to 
segment the foreground from the background, we crop the image from each side by 
50 pixels. Hence, to use proximal mode successfully, the user must hold small objects 
close and large objects farther from the camera. This segmentation technique,  
although simple, was effective for our purposes. 

Algorithms for illumination and motion blur classification were implemented and 
integrated into our system. Motion blur categories no motion and small motion did not 
penalize confidence, but large motion and extreme motion each generated a penalty of 
30%. Both poor illumination categories generated a penalty of 20%, and both good il-
lumination categories generated a penalty of 10%. Illumination category great did not 
penalize confidence. In our system, the initial confidence begins at 100%. The confi-
dence measure based on illumination was trained using 1200 images of indoor and 
outdoor environments, captured from the wearable system. Each image was manually 
labeled as one of the five illuminant classes. Ten-fold cross-validation was used to 
evaluate the algorithm, which provided a classification accuracy of 96%.  To train the 
confidence measure based on motion blur, we manually adjusted the decision bounda-
ries until the four motion levels corresponded with the four motion blur classes. To 
test the algorithm, we collected 400 image pairs from video recorded from the wear-
able system. These image pairs were manually labeled, and then classified by our al-
gorithm with an accuracy of 95%. 

Two experiments were designed to test the validity of the system. Both were per-
formed in an office setting, and involved three participants who are totally blind and 
one participant who is visually impaired but has some color perception (this partici-
pant was blind-folded during the experiment). The first experiment tested system us-
ability (in the proximal mode) without confidence measures. During the training 
phase, participants learned how to use the system and were asked to perceive the color 
profiles of five, randomly presented objects. Before the experiment, participants were 
informed that motion blur and lighting can affect system accuracy. Participants re-
peated the training phase until all color profiles were estimated correctly. During the 
testing phase, ten novel objects are randomly presented, and participants were asked 
to estimate each color profile. Moreover, for five of these objects, which were ran-
domly selected, the lights were turned off to simulate an environment with poor light-
ing. The test objects are the same for all participants; the set consists of a red bowl; 
black cup; yellow and white cup; green pail; white bowl; red and green block; red, 
blue and yellow block; blue and green block; block wrapped in wallpaper with a floral 
pattern; and a block covered in brown sandpaper. (The blocks were made from 
LEGO® blocks.) 
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During the training phase for experiment two, participants learned about confi-
dence measures and how to use them. For example, if there is motion blur in the im-
age, the participant may try again, but this time, reduce movement. Or, if lighting is 
not optimal, then the participant may, e.g., change their orientation or the orientation 
of the object with respect to the lights, or instruct the experimenters to adjust the 
lighting in the room (e.g., turn the lights up), and then try again. Participants first 
went through a training phase similar to before but with confidence measures, and 
then tested on the set of ten objects described before while using confidence meas-
ures. Similarly, objects were perceived in the proximal mode, and lights were turned 
off for five randomly selected test objects. 

Table 1. User/System accuracies for Experiment 1 and 2. Accuracies are documented as the 
number of objects correct out of the total number of objects. 

 Experiment 1 Experiment 2 
Participant 1 2/10 7/10 
Participant 2 3/10 7/10 
Participant 3 3/10 6/10 
Participant 4 4/10 7/10 

User/System accuracies are shown in Table 1. An object is classified correctly if all 
its colors are identified and proportions are within 20% of the actual proportions. 
Colors with proportions of 10% or less were considered noise and ignored. These re-
sults show that our system can allow accurate perception of complex color profiles 
with the use of confidence measures. Further, these results show a major improve-
ment in user/system accuracy when confidence measures are utilized as they allow the 
user to interact with the system to achieve better results. 

                        
                               (a)                                         (b)                                        (c) 

                   
                                (d)                                         (e)                                       (f) 

Fig. 2. Segmentation results for proximal (a-c) and distal (d-f) mode. (a) and (d) are the original 
images, (b) and (e) are point-based classified images (cropped if proximal mode) and (c) and (f) 
are the final, segmented images. 
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5   Conclusion and Future Work 

An interactive, wearable assistive device for color perception was proposed. Further, 
a framework to integrate confidence measures with wearable assistive devices was 
presented, along with algorithms for classifying illumination and motion blur, which 
can be used for confidence measurement. Results demonstrate that confidence meas-
ures can help make systems more reliable and usable by involving both the user and 
system in problem solving. Future work will involve continued testing with more par-
ticipants, and the use of additional environmental and context-dependent factors. 
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