
Architectural Backpropagation Support for
Managing Ambiguous Context in Smart

Environments

Davy Preuveneers and Yolande Berbers

Department of Computer Science, K.U. Leuven
Celestijnenlaan 200A, B-3001 Leuven, Belgium,

{davy.preuveneers, yolande.berbers}@cs.kuleuven.be
http://www.cs.kuleuven.be

Abstract. The evolution to ubiquitous information and communica-
tion networks is evident. Technology is emerging that connects everyday
objects and embeds intelligence in our environment. In the Internet of
Things, smart objects collect context information from various sources
to turn a static environment into a smart and proactive one. Managing
the ambiguous nature of context information will be crucial to select
relevant information for the tasks at hand. In this paper we present
a vector space model that uses context quality parameters to manage
context ambiguity and to identity irrelevant context providers. We also
discuss backpropagation applied in the network architecture to filter un-
used context information in the network as close to the source as possible.
Experiments show that our contribution not only reduces the amount of
useless information a smart object deals with, but also the distribution
of unused context information throughout the network architecture.

1 Introduction

The next wave in the era of computing will be outside the realm of the tradi-
tional desktop. In the Internet of Things paradigm [1], everything of value will
be on the network in one form or another. Everyday objects, such as shoes,
cars, coffee cups, refrigerators, bath tubs, will be in the communication range
of interconnected devices, and provide relevant context information to create a
smart and proactive environment. This context information [2] is considered to
be a key ingredient to create a whole range of smart entertainment and business
applications that are more supportive to the user.

In a less than ideal world, however, smart objects must be aware of the us-
ability of the imperfect context information that they are provided with [3]. If
not, a smart context-aware object may mistakenly assume that the information
it retrieves from other smart objects in the network (i.e. the context providers),
is accurate and relevant for the purpose of its actions. Therefore, the smart ob-
ject needs a way to distinguish context providers based on the relevance of the
information they provide.
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In this paper we first discuss how ambiguous and imperfect context is mod-
eled and verified before usage. This model is based on several information specific
context quality parameters that contribute to the diminution of information am-
biguity, such as precision and up-to-dateness [4]. Other non-information specific
parameters model the reliability of a context provider delivering its informa-
tion to a particular smart object in the network. Secondly, given these two sets
of context quality parameters, we designed an algorithm to identify and ig-
nore invaluable context providers. To further improve the quality of the context
information propagated through the network, we developed a backpropagation
mechanism to inform the context providers about the usage of their information.
This mechanism allows smart objects in the network to selectively redirect in-
formation to where it is considered useful. Our technique is compared to context
dissemination using network hops as a boundary for propagation. After a brief
period of learning, our solution reduces ambiguity by ignoring irrelevant con-
text providers early on, and improves the bandwidth usage ratio of the valuable
context information passing through a smart object in the network.

In section 2 we discuss several context quality parameters and show how
they are represented in an information model that helps the smart object to
decide whether information is relevant for its purposes or not, and to identify
(ir)relevant context providers. In section 3 we describe the algorithm to back-
propagate the information relevance to the context providers. In section 4 we
conduct experiments that illustrate the improvement of the quality of the context
information that passes through and is being used by a smart object. Section 5
provides an overview of related work on the distribution of ambiguous context
information. We end with conclusions and future work in section 6.

2 Modeling the Ambiguity of Context Information

A smart object may rely on external context providers to take well-informed de-
cisions. Ambiguity arises when multiple parties deliver different information due
to the diverse circumstances in which they operate. In this section, we clarify the
boundaries that are needed in terms of spatial and temporal relevance, accuracy
and precision, and semantic interpretability to understand these situations.

2.1 Disambiguation with Context Quality Parameters

Many aspects of information quality have already been investigated in the last
decade [5,6]. In this section, we will only discuss a selection of these information
properties that are used as context quality parameters in our model:

1. Accuracy: Accuracy refers to the degree of veracity. It describes the close-
ness of the measured value to the actual true value, or the extent to which
the provided information is correct (e.g. 36.8 ◦C vs. 37.1 ◦C, or 99%).

2. Precision: This parameter is closely related to the accuracy parameter. It
describes how detailed a measurement is stated (e.g. 36.9 ±0.1 ◦C ). Mea-
surements that are precise are not necessarily accurate, and vice versa.
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<ContextItem>
<ProviderUID>32afc954-a85e-c7b1-f636-123564831237</ProviderUID>
<Class>http://localhost/context#Temperature</Class>
<Value type=‘http://localhost/units#Celsius’>20.6</Value>
<Precision type=‘absolute’>0.2</Precision>
<Accuracy type=‘relative’>0.95</Accuracy>
<TimeStamp>2006-09-37 09:37:41+01:00</TimeStamp>
<Coverage>http://localhost/context#Room</Coverage>
<Location type=‘http://localhost/context#Office’>02.45</Location>

</ContextItem>

Fig. 1. A Temperature information instance of a sensor on the network

3. Spatial coverage: This parameter defines the geographic scope of the in-
formation. For example, the temperature provided by an outside weather
station is unusable for controlling the central heating in a building.

4. Timeliness: Timeliness refers to how current the provided information is
at the time of delivery. If not sufficiently up-to-date, the temperature infor-
mation may not be useful either for the task at hand.

5. Semantic interpretability: Some context providers may use semantically
related terms, e.g. ’Corridor’ and ’Hallway’. If these relationships are not un-
derstood, any relevant information specified in these terms will be neglected.

The previous parameters help to disambiguate the information itself. The fol-
lowing parameters describe the ability of a context provider to reliably provide
useful information to a particular smart object:

1. Objectivity: The objectivity property describes the reliability and trust-
worthiness of the information source. The context provider may have specific
intentions to deliver biased information.

2. Availability: A smart object is never sure if a context provider will be
able to deliver the required information. The context provider may leave the
network or its information may be dropped under way.

3. Completeness: This parameter reflects the amount of missing or unin-
terpretable context quality parameters that make the context less reliable
without comparison to other available information sources.

These three subjective parameters are not set by the context provider itself, but
by the receiving end. They have values between 0 and 1 and are quite likely to
be different for each receiving smart object. Fig. 1 illustrates a sample of infor-
mation delivered by a context provider with a specific ProviderID. It provides
Temperature information using the Celsius scale. The Precision and Accuracy
are specified in terms of relative or absolute values. The information is times-
tamped and the location and coverage are specified as well. Ontologies are used
for semantic annotation of the Class, Value, Coverage and Location properties.
Multiple values can be provided in different scales (e.g. Celsius and Fahrenheit)
or specified semantically (e.g. Office and Room). For example, the context infor-
mation in Fig. 1 is not relevant when requesting the Body temperature, because
an Office is not semantically part of a Body. These relationships are modeled
in an ontology as shown in Fig. 2. Subsumption (is-relationship) and semantic
distance (has-relationship) in the shortest path between two concepts is used
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Fig. 2. Ontology specifying semantic containment

Fig. 3. A relevant and irrelevant context vector in a 2D and 3D vector space model

as a semantic metric for selecting relevant information. For unrelated concepts,
the distance is defined infinite (∞). In Fig. 2, the distance between Building and
Room is 2. Between Room and Office, the distance is 0 due to the is-relationship
between the two concepts.

2.2 Modeling Context Quality in a Vector Space Model

In this section, we present a model that represents the context quality parameters
in a vector space model to efficiently filter irrelevant context information.

This vector space model allows to explicate the required criteria to which de-
livered context information should conform. Each dimension of this model repre-
sents a context quality parameter, and for each of these dimensions a boundary
for acceptable values is defined by the smart object for the task at hand. Together
they form a bounding box. Two examples are illustrated in Fig. 3. Numeric pa-
rameters are represented as such. Semantic parameters use the semantic metric
to represent their value in the model if conversion is not possible. Each context
information instance is represented as a vector in the model. In a d -dimensional
quality parameter space Q, a context vector −→c is defined as follows:
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−→c = (c1, c2, ..., cd) ∈ Q with |−→c | =
√

c2
1 + c2

2 + ... + c2
d

The optimal quality vector −→q represents a context vector that is 100% accurate
and precise, up-to-date, and completely relevant for the smart object’s purposes.
The value of d depends on the number of requirements of the smart object. The
relevance R−→c of any context vector −→c can then be measured by computing the
weighted distance between the vectors:

R−→c = |−→q − −→c | =
√

w1(q1 − c1)2 + w2(q2 − c2)2 + ... + wd(qd − cd)2

The weights w determine the priority of the quality parameters. The smaller the
value of R−→c is, the more relevant the context information is.

2.3 Strategy for Identifying (Ir)relevant Context Providers

A first selection of useful context providers is based on the bounding box de-
scribed above. The smart object collects incoming information during a certain
period of time. All the context vectors are properly aligned (e.g. semantically
converted or rescaled to the same type) within the same vector space model.

Given that multiple context providers deliver relevant context information,
the actual data should be similar in value as they all comply with a minimum
Accuracy and Precision. Outliers are detected and expunged from the dataset
using Grubb’s iterative test [7]. For such outliers, including those with unde-
fined quality parameters, the smart object adjusts the subjective context qual-
ity parameters (Objectivity (O), Availability (A) and Completeness (C)) for the
corresponding context provider. When outliers in the values are detected, the
Objectivity quality parameter of the context provider P is reduced:

OP ← OP × Requested Relative Accuracy with 0 ≤ OP ≤ 1

If the requested accuracy is low and the context provider claims it complies
although its value is an outlier compared to the others, then it is penalized
more than if the requested accuracy would have been set higher. If some quality
parameters are not provided (e.g. timestamp or location), then its information
is more ambiguous and therefore its Completeness parameter is reduced. The
Availability parameter describes how frequent a context provider was able to
respond in time. This parameter is crucial when a smart object relies on only
1 provider. Together with the relevance value Rc of the context vector −→c , the
three subjective context quality parameters are used to determine an overall
score SP,−→c that defines a rank among the context providers:

SP,−→c =
R−→c

OP × AP × CP
≥ 0

The smart object can then choose to use the value of the context provider with
the lowest score SP,−→c or to compute a weighted average value using these scores.
The high-level overview of the algorithm is shown below:
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Algorithm 1. SortContext(in: info[], out: context[], score[], irrelevant[])
1: (BoundingBox box, Vector optimalvector) = ComputeContextQualityBoundaries()
2: for each ContextItem ci in info do
3: ci.vector.AlignContextVector(box)
4: if (!box.Contains(ci.vector)) then
5: ci.Move(info, irrelevant)
6: ContextItem[] outliers = info.ValueOutlierDetection()
7: outliers.UpdateSubjectiveParameters(box)
8: outliers.Move(info, irrelevant)
9: (context, score) = SortRescaledDistance(info, optimalvector)

3 Relevance Backpropagation in the Network

Our last contribution in this paper is a backpropagation mechanism to inform
context providers in a large-scale and dynamic network architecture about the
usage of their information. Proven technologies, such as Bloom filters [8], are
used for efficient filtering of the information as close to the source as possible.
Intermediate nodes will decide where to forward the information to based on
feedback backpropagated by its peers. Whereas the algorithm in a neural net-
work changes the weights of a neuron to converge the error in the output to a
local minimum, does our backpropagation algorithm limit the information prop-
agation in the network, possibly impeding the context provider completely from
disseminating unused information.

A smart object forwards context information to adjacent smart objects, unless
a maximum number of hops is reached. Each forwarding smart object reduces
the hop counter, appends its UID to the message delivery chain, and marks the
message if the information is relevant for its purposes. Backpropagation to the
delivering peer is initiated whenever any of the following conditions arises:

– Irrelevant context: The smart object cannot use the context information
for its own purposes (see Algorithm 1) and the maximum number of hops is
reached or it has no other adjacent peers to forward to.

– Unused context: The context information is relevant along the delivery
chain, but is not used that frequently. Inform the forwarding peer or the
context provider to increase the transmission interval.

– Duplicate detection: The smart object has already received the infor-
mation from another peer through a quicker trajectory. Stop sending the
information along this path.

Bloom filters [8] − compact data structures for testing whether an element is
part of a set − are used to check if the context information is invaluable for
its own purposes and for propagation to adjacent smart objects. Algorithm 2
describes the backpropagation for context information delivery. When a Dupli-
cate or Irrelevant backpropagation message is received, the smart object adjusts
its forwarding filters. For an Unused message, the frequency of forwarding is
reduced. The receiving peer backpropagates the message further down to the
source using the labels in the message delivery chain.
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Algorithm 2. BackpropagateRelevance(in: fromPeer, contextMessage)
1: (messageRelevant, messageUnused, messageForwarded) = (false, false, false)
2: if (InFilterReceived(contextMessage.ID)) then
3: BackpropagateMessage(fromPeer, DUPLICATE, contextMessage.ID)
4: else
5: AddFilterReceived(fromPeer, contextMessage.ID)
6: if (InFilterRelevant(contextMessage)) then
7: messageRelevant = true
8: if (InFilterUnused(contextMessage)) then
9: messageUnused = true

10: LabelMessage(contextMessage, UNUSED)
11: else
12: LabelMessage(contextMessage, IRRELEVANT)
13: if (contextMessage.hopsLeft > 0) then
14: contextMessage.hopsLeft = contextMessage.hopsLeft - 1
15: for each Peer p in ForwardFilter(adjacentPeers, contextMessage.ID) do
16: messageForwarded = true
17: ForwardMessage(p, contextMessage)
18: if (not messageForwarded) then
19: if (not messageRelevant) then
20: BackpropagateMessage(fromPeer, IRRELEVANT, contextMessage.ID)
21: else if (messageUnused) then
22: BackpropagateMessage(fromPeer, UNUSED, contextMessage.ID)

4 Experimental Evaluation

Finding a realistic test scenario of a reasonable size without the detrimental side
effects of a real-life network setup is not straightforward, especially for deter-
mining the significance of our algorithms on the outcome of the experiments.
We therefore chose to simulate and compare the algorithms and mechanisms on
an artificial network. The network is generated by means of a weighted location
dependent wiring. For k nodes, the first one n1 is situated in the center of a unit
square. The other nodes nj , j = 2...k, are randomly placed in the unit square
and connected to at most m existing nodes ni that each minimize a different
function Fm:

Fm(ni, nj) = H(n1, nj) + wm.D(ni, nj)

with H = number of hops to node n1, D = Euclidean distance, and m different
weights wm = parameter that influences the geographical dependency.

4.1 Experiments

A network is generated with the following parameters: k = 1000 nodes, at most
m = 3 connections with weights w1 = 10, w2 = 5, w3 = 1, and about 100 nodes
provide context information of which the characteristics are shown in Table 1.
In this smart environment scenario, the Movement and Wireless Body Sensors,
and the Inhouse Thermometer make use of the Clocks and Position Beacons
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Table 1. Parametrization of the network architecture

Type Quantity Coverage Update Hops
Weather Forecast Website 5 1.0 30 min 100
Outside Weather Station 5 0.5 10 min 100
Clock 10 2.0 1 min 50
Movement Sensor 10 0.1 1 min 20
Inhouse Thermometer 10 0.1 5 min 10
Wireless Body Sensor 20 0.05 1 min 5
Position Beacon 40 0.05 2 min 3

Fig. 4. Evolution of context information usage and throughput

to set their own timestamp and coverage. The Wireless Body Sensor is used to
announce the presence of a particular person. The Inhouse Thermometers are
used to control the central heating within a specific room related to the person
that was detected. The Clock is also used to turn on the lights before 8:00 and
after 18:00 if movement is detected in the current or nearby room.

The simulation environment assumes that all connections have similar char-
acteristics. In the first experiment, the information is flooded in the network
and only limited by the number of hops for forwarding. Filtering and backprop-
agation as proposed in this paper is applied in a second experiment using the
same parameters and network. In Fig. 4 we compare the evolution of the aver-
age amount of valuable information for a smart object in the network (with and
without backpropagation), and the average network load at a smart object.

4.2 Discussion of the Results

Clearly, the results of this experiment and the graphs in Fig. 4 are only relevant
for this particular network parametrization. Nonetheless, for other experiments
with different results in terms of absolute values, we could draw similar qual-
itative conclusions. The left figure shows that the average amount of relevant
information (for a peer to which it forwards or for itself) increases up to 75%.
This can be improved with larger Bloom filters. They have the characteristic of
allowing false positives but no false negatives when testing membership. Bloom
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filters cannot handle the deletion of item either when forwarding requirements
change. In that case, they are reinitialized which means that less valuable infor-
mation is again being propagated.

During the initial learning phase, the backpropagation enabled scenario per-
forms slightly worse due to backpropagation messages being sent to the deliver-
ing peers, as shown in the right figure. After the learning period, some context
providers became inactive as their information was not being used, and others
were limited to sending out information into certain directions. The experiment
resulted into a significant drop in the overall bandwidth usage in the network.

However, we are aware that the current context propagation is not optimal.
In the presence of high speed and low speed connections, it is possible that
highly volatile context information is propagated through the slow links, whereas
long-lived information is saturating the fast links. As a result, some relevant
information might not be considered as our backpropagation mechanism does
not take the bandwidth of the network links into account.

The most important advantage is that the smart objects did not need any
configuration on where to get their information. They only required connectivity
to other smart objects in the network and learned by themselves which context
provider was able to deliver relevant information for their purposes.

5 Related Work

Buchholz et al. [9] identified parameters that quantify the quality of context and
the uncertainty of sensed values. Henricksen et al. [10] identified similar imper-
fection aspects and proposed a graphical model and a software infrastructure
for the management and use of imperfect context. In our research, we included
extra parameters to explicitly deal with context distribution.

Chalmers et al. show in [11] how contextual information can be formulated
in the presence of uncertainty using interval arithmetic for uncertain numerical
context values. The authors define the within and overlap relationships to test
whether a sensed value range is within a test range and to what degree two
values overlap. Our work reuses the same idea in multiple dimensions, but their
tree based approach differs from our semantic metric for abstract values.

Dey et al. [3] suggest to leverage off techniques such as Bayesian networks and
neural networks, as these approaches cannot remove all the ambiguity of sensed
information. The authors propose to involve mobile users in aware-environments
for the refinement of imperfect context and for reducing ambiguity in context
information through a process called mediation to deal with context conflicts.
We envision that for large-scale networks this approach will be impractical.

6 Conclusions

In this paper, we have discussed several context quality parameters that affect
the ambiguity and uncertainty of context information. We have shown how they
can be represented in a multi-dimensional vector space model to allow a smart
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object to quickly decide whether any delivered context information is relevant
for its purposes or not. We also discussed backpropagation support to provide
feedback about the usefulness of the information for any of the smart objects in
the network to the respective context providers. We have conducted experiments
that illustrate that the amount of information that is propagated through the
network but not needed by any of the smart objects on its path is significantly
lower than for hop limited context propagation.

Part of our future work, is to take the timeliness of the context information
into account to improve the usage of the network capacity. The goal is to achieve
just in time context information delivery to the requesting smart objects. Further
research will investigate how the bounding box model with its sharp boundaries
can be improved by using a normal distribution of the requested context quality
parameters, and how the efficiency of the relevance testing is affected.
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