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Abstract. In order to provide information and communication services without 
disrupting human activity, information services must implicitly conform to the 
current context of human activity. However, the variability of human environ-
ments and human preferences make it impossible to preprogram the appropriate 
behaviors for a context aware service. One approach to overcoming this obsta-
cle is to have services adapt behavior to individual preferences though feedback 
from users. This article describes a method for learning situation models to 
drive context-aware services. With this approach an initial simplified situation 
model is adapted to accommodate user preferences by a supervised learning al-
gorithm using feedback from users. To bootstrap this process, the initial situa-
tion model is acquired by applying an automatic segmentation process to sam-
ple observation of human activities. This model is subsequently adapted to 
different operating environments and human preferences through interaction 
with users, using a supervised learning algorithm. 

1   Introduction 

Research in intelligent environments seeks to provide an enabling technology for a 
variety of new services. The key to acceptability for such services is unobtrusive be-
havior. Services that create distractions and unwanted interruptions are unlikely to 
find acceptance. Services must conform to human social conventions, and comply 
with rules for polite interaction.  Such services must be able to perceive and make 
sense of human activities, and respond and learn from implicit and explicit feedback 
obtained through interaction with humans. 

Unfortunately, human behavior is complex and unpredictable. Even within a given 
context, actions and reactions vary from one individual to another. Unobtrusive ser-
vices must be able to adapt to individual variations and to the evolutions of prefer-
ences for a given individual. Adaptation is fundamental to unobtrusiveness in the 
sense that adaptation makes a system evolve with human behavior and needs. How-
ever, in order to create socially acceptable services, the user should be kept in the loop 
and in control whenever possible [9]. 

Human activity is situation dependent and does not necessarily follow plans. Ser-
vices within intelligent environments need information about the current situation to 
respond correctly without disrupting human activity. A strong contextual model is 
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necessary for representing humans within the environment and their activities. The 
situations of this model can be decorated with system services to provide to the users 
in the environment. The construction process for such a model and the associated ser-
vices accommodate and assimilate human preferences. We have investigated the use 
of machine learning methods in order to provide a technology in which naturally ex-
pressed human reactions is used as feedback to adapt the behavior of context aware 
services.  

This article motivates and introduces a general approach for learning situation 
models from user feedback. In the first part of this article, we describe a method to 
automatically acquire an initial model with minimal human intervention. We then 
propose a method to adapt an existing situation model with user feedback given on 
appropriate system services. The proposed approach has been implemented and 
evaluated with experiments in our augmented meeting environment. 

2   A Scenario 

Bob is dreaming of a new intelligent home. The new home provides services to make 
Bob’s life easier and more convenient. Bob hopes to reduce all that technical stuff that 
he needs to switch on/off, regulate, configure, etc. His ideal environment should pro-
vide entertainment and communication services with little or no configuration, adapt-
ing according to his preferences with a minimum of disruption and feedback. Bob 
should only need to indicate which service he wants and the system should adapt  
accordingly. 

For instance, Bob enjoys jazz music when he is eating on the couch, but he does 
not want to be disturbed when eating with his girlfriend. Bob is willing to give feed-
back for learning to the system by giving specific voice commands in the environment 
or even, if needed, by clicking on services to provide on his PDA. 

To satisfy Bob, the environment needs to be equipped with visual and acoustic sen-
sors. For example, video cameras and a video tracking system and microphone array 
with speech detection and recognition can provide basic information about Bob’s cur-
rent location and activity. Of course, hand crafting of detection routines is not suffi-
cient for Bob’s dream as he wants the system to evolve, constantly adapting to his 
preferences. Thus a general model of the environment needs to be designed and then 
adapted according to Bob’s remarks. The situation model has proved to be very useful 
for this task, being applied to various problems and domains [2]. 

A situation is a temporal state describing activities and relations of detected entities 
(persons) in the environment. Perceptual information from different sensors in the en-
vironment are associated with situations. In general, individual basic activities are 
first detected and then combined to situations [4]. For example, posture detection re-
sults from the video tracking system may help characterizing the situation “sitting at 
table”. The different situations of the situation model are connected within a network. 
A path in this network describes behavior in the scene. System services to be provided 
are associated with the different situations in the network.  
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3   Initial Situation Model 

In order to build a situation model for Bob’s home, we start with an initial model de-
scribing Bob’s very basic behavior. This model can be seen as default configuration 
of the system for the environment, being general and providing little detail. The pic-
ture below shows an example of such a default situation model for Bob’s home. 

 
Bob sitting on 

couch 

Bob sitting at
table 

Bob working
on PC 

 

Fig. 1. Initial situation model for Bob’s home 

An open question, however, is from where to obtain a suitable initial model in or-
der to minimize adaptation costs and user disruption. Normally, an expert constructs 
these models when setting up the system within environment. However, expert hours 
are expensive. An expert should at least be aided by automatic processes. In the fol-
lowing, we propose a schema for creating the initial situation network with a mini-
mum of expert knowledge input. We exploit the addition of human expertise only  
for providing the situation labels. The derivations of the situations are, however,  
automatic, based on the recorded sensor signals. 

The schema of the process of creating an initial situation model is depicted in  
Fig. 2. Given sensor recordings of Bob’s activity in the environment, the automatic 
extraction of situations provides a first segmentation of sensor signals. This first seg-
mentation is then labeled by an expert, integrating his expert knowledge. We assume 
here that expert knowledge and obtained automatic segmentation have a minimum of 
compatibility allowing the integration of expert situation labels. A supervised learning 
scheme is used to associate the situation labels with the recorded perceptions. 

Expert  
Knowledge

Sensor  
perceptions

Supervised Situation 
Learning 

Initial situation 
network 

Automatic Extraction of 
Situations 

 

Fig. 2. Overview of the process of creating an initial situation model 
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The method for initializing the situation model is based on the stream of perceptual 
events coming from different sensors in the environment. The method detects changes 
in the overall event distribution and provides a first segmentation based on the de-
tected changes. The method has been tested on audio and audio-visual recordings of 
small group and individual activities, producing an overall segmentation correctness 
of over 0.9 (Q value [10]) [3]. 

A supervised learning scheme [5] can be adopted to associate the situation labels 
with the recorded sensor perceptions (Fig. 3). 

 A. For each learner class do:
a. {optimization step} 

 For each situation label do: 

• Select learner/set of learners 

• Apply learner to given perceptions 
b. {validation step} 

Calculate ratio of between-situation and within-
situation distance 

c. Repeat a.-b. until optimal ratio is obtained 
 
B. Choose learner class with best ratio of between-

situation and within-situation distance 

 

Fig. 3. Scheme for supervised learning of situations 

The idea is to use discriminant pattern recognition to recognize situations. There-
fore, we first iterate over the possible learner classes (SVMs, Bayesian classifier,  
decision tree etc.) applicable for the task (part A). For each learner class, we select pa-
rameters and apply the learner to perceptual signals for each situation label (provided 
by an expert). The set of parameters that gives the best discrimination of the situations 
is retained (part A, step c.). Situations representations produced by the learner class 
with the best discrimination are retained (part B). As this is a general scheme, differ-
ent forms of discriminant learning may be used interchangeably. The proposed super-
vised learning scheme has been evaluated on video surveillance data from the 
CAVIAR project, providing an overall recognition rate of 93.78 % [5]. 

The outputs of the supervised situation learning scheme are the situation represen-
tations for the initial situation network. The connections between the situations are 
constructed by considering the recorded sensor perceptions and existing transitions 
between the detected situations. 

4   Integrating User Preferences 

The initial situation model is simple, with insufficient detail about Bob's preferences. 
General situations, such as “Bob sitting on couch”, must be refined to obtain sub-
situations incorporating the preferred system services. A possible adapted situation 
model could look like in Fig. 4. 
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Bob sitting on 
couch “alone”

Bob sitting at
table 

Bob working 
on PC 

Bob sitting on couch
“with others” 

 

Fig. 4. Adapted situation model for Bob’s home 

“Sitting on couch” has been split into “Sitting on couch -alone-” and “Sitting on 
couch -with others-”. Sensor perceptions need to be associated to the new sub-
situations. Bob is, however, not interested in recruiting a system engineer implement-
ing the new sub-situations. This refining process, and in particular the association of 
sensor perceptions to the new sub-situations, should hence be as automatic as possi-
ble. The new sub-situations need thus to be learned from recorded sensor perceptions 
as well as Bob’s given feedback (via his voice or PDA) using machine learning meth-
ods. The supervised learning scheme (Fig. 3) can again be adopted to associate sensor 
perceptions to the new sub-situations. 

Bob’s feedback Initial situation 
network 

Service adaptation 

Situation split 

Supervised Situation 
Learning 

Adapted situation  
network

Adapted situation 
network

 

Fig. 5. Overview of the process of integrating user feedback into the initial situation model 

The overall process of the automatic integration of Bob’s feedback can be seen in 
Fig. 5. Bob’s feedback and the initial situation network are the input. First, the algo-
rithm tries to adapt simply the services associated to the given situations (“if service 
A is associated to S, and Bob indicates a preference for service B, then associate ser-
vice B with S and dissociate service A”). If successful, the result is an adapted situa-
tion network integrating Bob’s wishes. No situation split is necessary. However, if 
Bob’s feedback indicates further that the concerned situation is too general, i.e. sev-
eral distinct services are to be associated with one situation, the algorithm splits the 
situation into sub-situations. The sensor perceptions describing the new sub-situations 
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are learned using the supervised learning scheme. The proposed supervised scheme is 
run with Bob’s feedback and the recorded sensor perceptions. Once the sub-situations 
are learned, they are inserted into the whole network by eliminating conflicts and 
erasing obsolete situations. The result is an adapted situation network with new sub-
situations. A first evaluation in the PRIMA augmented office environment provided 
an overall performance of 94.3 % of correctly executed services for the evaluated 
scenarios [6]. 

 

Fig. 6. 3D video tracking system fusing information of 3 2D trackers to a 3D representation 

5   Experimental Evaluation 

We evaluated the integral approach on 3 scenarios recorded in the PRIMA augmented 
home environment. The scenarios involved up to 2 persons doing different activities 
(introduction/address of welcome, presentation, aperitif, playing a game, siesta {1 
person}) in the environment. A 3D video tracking systems [1] detected and tracked 
the people in the scene (Fig. 6.).  

An individual activity detector [4] [8] has been applied to the extracted properties 
of the detected targets (persons). Additionally, the participants wore head micro-
phones detecting whether the participant is speaking or not. A room microphone de-
tected ambient noise in the scene. The association between video targets and head  
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microphones has been manually done by a supervisor at the beginning of each sce-
nario recording. The observation generated by the system for each target is a code be-
tween 0 and 52, combining posture (sitting, standing, lying), movement (gesturing, 
changing position, walking), speech and ambient sound. The whole system runs in 
real-time, i.e. 25 frames per second. 

The first step of our proposed approach is to create the initial situation model. We 
extract the situations from the sensor perceptions, i.e. the observations generated for 
the targets in the scene using our automatic segmentor [3]. The automatically ex-
tracted segments and the ground truth for the scenarios are depicted in Fig. 7. The 
overall segmentation exactitude Q [10] is best for scenario 2. This can be explained 
by the fact that the algorithm has difficulties to distinguish ground truth segments 
“game” and “aperitif”. In scenario 1 and scenario 3, “game” and “aperitif” are de-
tected as one segment. As in scenario 2 “playing game” and “aperitif” are separated 
by “presentation”, these segments can be correctly detected. 
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Fig. 7. Extracted situation segments and the corresponding ground truth for scenario 1 (Q = 
0.68), scenario 2 (Q = 0.95), scenario 3 (Q = 0.74) 

The supervised learning scheme is applied on the detected segments. As expert 
knowledge, we inject the situation labels: “introduction”, “presentation”, “group ac-
tivity” (=aperitif or game), “siesta”. We will adopt hidden Markov models [7] as 
unique learner class, iterating over left-right hidden Markov models of state numbers 
between 8 and 16 (=parameters of the class). To evaluate, we did 3-fold cross-
validation, taking the detected segments + expert labels of 2 scenarios as input for 
learning and the third scenario as basis for recognition. As our system should be as re-
sponsive as possible, we evaluated different window sizes used for recognition. The 
results can be seen in Fig. 8. If we limit the observation time provided for recognition 
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to 10 seconds (i.e. 250 frames with a frame rate of 25 frames/sec), we get a recogni-
tion rate of 88.58 % (Fig. 9). The recognition rate of “siesta” is poor due to the fact 
that in two of the three scenario recordings wrong targets have been created and de-
tected when a person lay down on the couch, resulting in a disturbance of the existing 
target properties. 
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Fig. 8. Recognition rate of situations “introduction”, “presentation”, “group activity” (=aperitif 
or game) and “siesta” for different observation window sizes (in frames) 

introduction group activity presentation siesta
introduction 0,97 0,00 0,00 0,03

group activity 0,00 1,00 0,00 0,00
presentation 0,03 0,03 0,83 0,11

siesta 0,40 0,00 0,08 0,52  
 

TP rate FP rate Precision Recall F-measure
introduction 0,97 0,07 0,41 0,97 0,58

group activity 1,00 0,02 0,98 1,00 0,99
presentation 0,83 0,02 0,95 0,83 0,89

siesta 0,52 0,03 0,72 0,52 0,61  

Fig. 9. Confusion matrix and information retrieval statistics for each situation (observation 
window size=250 frames). The overall situation recognition rate is 88.58 %. 

We have now learned an initial situation model with the situations “introduction”, 
”group activity”, ”presentation” and ”siesta”. In order to integrate user preferences 
into this model, a user can give feedback to our system. The feedback is recorded and 
associated to the particular frame when it has been given. The initially learned model 
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is then adapted according to this feedback (Fig. 5). For our scenarios, the user wants 
to integrate the following services: 

• S1: Introduction  normal light and no music 
• S2: Aperitif  dimmed light and jazz music 
• S3: Game  normal light and pop music 
• S4: Presentation  dimmed light and no music 
• S5: Siesta  dimmed light and yoga music 

The user gives one feedback indicating the corresponding service during each 
situation. As the initial situation model does not contain any situation-service associa-
tions, S1, S4 and S5 can then be simply associated to the corresponding situations. 
For S2 and S3, there is only one situation “group activity” which is too general in  
order to associate both distinct services. This situation needs thus to be split into sub-
situations. The learned situation representation for “group activity” (here: a HMM) is 
erased and two distinct situation representations (here: HMMs) for “aperitif” and 
“game” are learned. The observations necessary to learn these situations are taken 
around the time points when the user gave the corresponding feedback. The size of 
the observation window used for learning the new sub-situations can be varied. We 
will adopt the double of the detection window size, i.e. 500 observation frames 
around the feedback time points to learn “aperitif” and “game”. The obtained results 
of the 3-fold cross validation for recognition window size of 250 frames are depicted 
in Fig. 10. 

introduction aperitif game presentation siesta
introduction 0,97 0,00 0,00 0,00 0,03

aperitif 0,00 0,72 0,27 0,00 0,01
game 0,00 0,19 0,81 0,00 0,00

presentation 0,03 0,00 0,03 0,83 0,10
siesta 0,40 0,00 0,00 0,08 0,52  

 
TP rate FP rate Precision Recall F-measure

introduction 0,97 0,07 0,41 0,97 0,57
aperitif 0,72 0,08 0,70 0,72 0,71
game 0,81 0,09 0,81 0,81 0,81

presentation 0,83 0,02 0,95 0,83 0,89
siesta 0,52 0,04 0,72 0,52 0,60  

Fig. 10. Confusion matrix and information retrieval statistics for each situation (observation 
window size=250 frames) after the split of “group activity”. The window size for learning the 
new sub-situations is 500 frames. The overall situation recognition rate is 76.48 %. 

6   Conclusion 

In this paper we have described and evaluated a first approach for learning situation 
models in order to provide context-aware services. The obtained results are encourag-
ing, but much remains to be done.  First, the sensors necessary for a reliable sensing 
of Bob's activities are not sufficiently reliable and require expensive installation.  
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Multiple cameras, microphones or other sensors must be installed and calibrated in 
Bob's home. Clearly we will need automatic procedures for configuration and calibra-
tion of whatever sensors are used for such a system to be economically viable. Sec-
ond, even though our results are encouraging, the error rates are still too high. Further 
improvements in detection and learning algorithms are necessary in order to provide a 
reliable system that could be accepted by Bob in his daily life. One way to alleviate 
this is to provide explanations to Bob. When errors occur (and corresponding system 
explanations are good), Bob could understand and correct wrong system perceptions 
and reasoning himself. 
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