
C. Stephanidis (Ed.): Universal Access in HCI, Part II, HCII 2007, LNCS 4555, pp. 479–487, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A DIYD (Do It Yourself Design) e-Commerce System for
Vehicle Design Based on Ontologies and 3D Visualization

L. Makris, N. Karatzoulis, and D. Tzovaras

Informatics & Telematics Institute
1st Km Thermi-Panorama Road, PO Box 361,

GR-57001 Thermi-Thessaloniki, Greece
{lmak, nkaratz, tzovaras}@iti.gr

Abstract. The state of the art in vehicle configuration is still very much charac-
terized by a face-to-face sales situation. In addition, web browsers are becoming
market places. But direct sales over the internet, without contact with a sales
person constitute still a small segment of the market, of only a few percent for
European manufacturers. The internet is more used as a medium to gather in-
formation. A standardised DIYD vehicle configuration is thus a must for Euro-
pean manufacturers today. This paper presents an Intelligent DIY e-commerce
system for vehicle design, based on Ontologies and 3D Visualization, that aims
at enabling a suitable representation of products with the most realistic possible
visualisation outcome. The platform, designed for the automotive sector, in-
cludes all the practicable electronic commerce variants and its on-line product
configuration process is controlled by an ontology, that was created using the
OWL Web Ontology Language.

1 Introduction

This paper presents an intelligent and user-friendly e-commerce solution, by adopting
additional technologies, such as a configuration utility, supported by an intelligent
help desk system and 3D visualisation in a virtual reality environment. The focus of
this paper is on the automotive sector; however the intention is that the system to be
developed will be suitable for suppliers, and wholesalers, from other sectors, such as
clothing, bicycles, etc. The conception of the system is as generic as possible, in order
to facilitate knowledge transfer to other industrial sectors.

The technical contribution of this paper is to present how to: (i) integrate and de-
velop a product Visualisation Tool, capable of handling different media types (2D and
3D), (ii) introduce a novel configuration module, which is capable of integrating dif-
ferent functionalities, input and output devices, and (iii) provide enhanced workflow
mechanisms and tools for an easy integration into modern legacy systems (ERPs).

The implementation of this work has started in the context of the CATER Euro-
pean project (CN 035030), funded under the 6th EU framework, which aims to aims
to deploy intelligent agents and knowledge management based N-business systems,
that will support modular personalisation of the automotive products to the explicit
as well as emotional needs and wants of the international clients, as well as mass

480 L. Makris, N. Karatzoulis, and D. Tzovaras

customisation and reverse engineering of product fulfilment and flexibility of ser-
vices, to meet the needs of customers, suppliers, sales, marketing and the concurrent
engineering team and, within this framework, to develop a customisation database
structure and functionality with exemplary product data for vehicle configuration.

The described platform, called hereafter CATER platform, has been designed for
industrial automotive design products, that can be configured on-line. The main mod-
ules of the CATER platform are the Intelligent Configurator Module (and its ontol-
ogy structure) and the 3D Visualisation Module. These two modules combined,
comprise an advanced automotive design system, that offers different products and
services to customers, based on their demand and not on a fixed product line.

The paper is structured as following: in section 2 the intelligent configurator mod-
ule is presented, with special focus on its architecture and ontology structure. In sec-
tion 3 the 3D visualization module is analysed and in section 4 the e-shop solution
and its integration with existing ERPs, is discussed. Finally, section 5 presents some
experimental results and concludes the paper.

2 Intelligent Configurator Module and Ontology

The Intelligent Configurator module is a web based application, that allows the user
to assembly vehicles, based on the available vehicle parts, that are being stored in the
systems repository, maintained by the vehicle manufacturer. Figure 1 displays the
Units of the Configurator module.

Fig. 1. The Units of the Configurator Module

The Assembly Unit allows the user to insert individual 3D objects to the scene, that
can consist of a fully functional vehicle. The user can compose the desired vehicle
according to his/her needs, by selecting the vehicle’s parts. The vehicle part and the
texture selection processes are being controlled by the restriction mechanisms, that
are generated from the system Ontology [1, 2, 3]. The main functionalities of the
Assembly Unit are the following: (i) Insertion of 3D object parts, (ii) Selection of
texture and (iii) Assembly process based on rules (e.g. weight).

The purpose of the Visualization Unit is to record and store the 3D object assembly
steps in real-time. The assembly sequence is being stored in the 3D animation reposi-
tory for future reproduction.

The Animation Unit allows the reproduction of the vehicle parts assembly proc-
esses, that are stored in the animation system repository. In the Animation Unit the
user can control the viewpoints and the playback of the loaded vehicle assembly proc-
ess. The web interface of the Configurator Module is depicted in Figure 2.

 A DIYD (Do It Yourself Design) E-Commerce System 481

Fig. 2. The web interface of the Configurator

2.1 Configurator Architecture

The Configurator is implemented (Figure 3) using Java programming language. The
system runs on Apache Jakarta Tomcat [4], as Java Servlet, and is based on the Jena
framework [5], which is a Java framework for building Semantic Web applications.

Fig. 3. Configurator Architecture

482 L. Makris, N. Karatzoulis, and D. Tzovaras

The ontology is created using Protégé [6], which is an open source knowledge-base
framework. The persistent store of the ontology is achieved using the persistence
subsystem of Jena, while the 3D visualization was developed using the VRML [7]
standard and External Authoring Interface (EAI) mechanisms.

2.2 Ontology Development

The ontology was created using the OWL Web Ontology Language [8], and the Pro-
tégé OWL-Plugin [9], which is an extension of Protégé, with support for the Web
Ontology Language (OWL).

The OWL-DL profile, used in order to create the ontology, is based on Description
Logics. Description Logics are a decidable fragment of First Order Logic2 and are
therefore amenable to automated reasoning. It is therefore possible to automatically
compute the classification hierarchy and check for inconsistencies in an ontology that
conforms to OWL-DL [10].

The classes of this Ontology are interpreted as sets that contain individuals. They
are described using formal descriptions, that state precisely the requirements for
membership of the class. For example, the class “Vehicle” contains all the individuals
that are of type Vehicle in the CATER domain. The taxonomy of the classes is being
achieved using the superclass-subclass model hierarchy.

Table 1. Example of the class hierarchy of the class “Vehicle” and an example of an Object
Type Property for the individual “vehicle_1”

Class Model Object Type Property

There are two types of properties supported by our ontology a) Data Type Proper-
ties and b) Object Type Properties. These OWL Properties represent relationships
between two individuals.

In OWL, properties are used to create restrictions. In our ontology, restrictions
were used to restrict the individuals that belong to a class. We used the universal
quantifier ∀ restrictions to constrain the relationships along a given property to indi-
viduals that are members of a specific class. For example, the universal restriction
∀ hasCabin cabin_1 describes the individuals, whose hasCabin relationships are
members of the class Cabin.

 A DIYD (Do It Yourself Design) E-Commerce System 483

Cardinality restrictions were used to define the order in which the individual object
parts should appear during the 3D assembly process (i.e. real-time animation). The
cardinality restrictions provided the way to describe the class of individuals that have
at least, at most or exactly a specified number of relationships with other individuals
or datatype values.

The hasValue restrictions, denoted by the symbol ∋, were used to describe the set
of individuals that have at least one relationship along a specified property to a spe-
cific individual. For example, when we wanted to predefine the dimensions of an
individual object, we used a hasValue restriction (dimensions ∋ “40-50-80”).

2.3 Ontology Reasoning

Ontology reasoning was achieved using the Jena OWL reasoner (Figure 4). The Jena
OWL reasoner can be described as instance-based reasoner, that works by using rules
to propogate the if- and only-if- implications of the OWL constructs on instance data.
Reasoning about classes is done indirectly - for each declared class a prototypical
instance is created and elaborated. The sub-class and sub-property lattices are cached
using the embedded OWL reasoner. Each domain, range, sub-property and sub-class
declaration is eagerly translated into a single query rewrite rule. The result of a query
to the graph will be the union of the results from applying the query, plus all the re-
written versions of the query to the underlying graph [11].

Fig. 4. The Jena Inference API layering [12]

3 3D Visualisation Module

The 3D Visualization Module is realized on the Visualization and Animation Units.
The structure of the individual 3D scenes, supported by the 3D Visualization Module,
can be seen in Figure 5.

The 3D scene contains the viewpoints, the lighting of the 3D world, the back-
ground, the 3D objects and the object functionalities (interactions), that are created
dynamically, according to the ontology specifications. The user interaction with the
3D scene is achieved by the use of predefined VRML Protos. For every 3D object that
is inserted in the 3D scene an animation, representing its assembly process, is dy-
namically generated.

484 L. Makris, N. Karatzoulis, and D. Tzovaras

Fig. 5. The 3D scene structure of the 3D Visualization Module

The playback functionalities of the assembly process are controlled by a panel
(Figure 6), that was developed using several VRML sensors (TouchSensor & Plane-
Sensor).

Fig. 6. The assembly process control

4 The e-Shopping Platform in Practice

The use of the CATER platform “brings” advantages to both suppliers and buyers,
regarding (i) the cutback of transaction costs, (ii) the use of automated supply proce-
dures, (iii) economies of scale, (iv) wide access on both local and international
markets, (v) dynamic real-time price mechanisms/modules and (vi) the use of com-
patible/expandable technologies.

 A DIYD (Do It Yourself Design) E-Commerce System 485

The requirements of the described CATER platform for automotive products, that
together with the Intelligent Configurator Module and the 3D Visualisation Module
comprise the advanced 3D Shop system, are:

• search and present all the available products, based on multi-criteria search
engines;

• group products into multilevel categories (set by the e-shop administrator);
• make offers/ sales and promote them;
• update both the product catalogue and all items’ availability (set by the e-shop

administrator);
• create/use shop baskets (by the end buyers);
• provide several convenient pay/ receive methods;
• provide a secure e-payment credit card transaction (with the use of HTTPS and

SSL protocols).

However, the efficiency and overall quality of an e-commerce service depends
“heavily” on its automatic connection with the existing ERP (Enterprise Resource
Planning) system for the catalogue, prices, stock and product update. In order to inte-
grate all the available ERP data with the e-shop database, a powerful staging mecha-
nism is developed and securely transfers all necessary data. This staging process uses
a smart “track changes” algorithm, to enhance the update speed.

There are two staging processes, Real Time Staging and Off Line Staging (that
uses an automated batch process). The characteristics of the two staging “methods”
are compared in the following table.

Table 2. Staging Procedures Comparison

 Real Time Staging Off Line Staging
Data Update (+) All data are updated at all

times
(-) All data are updated
at specifically defined
time periods

Infrastructure (-) Reliable, high speed, tech-
nical infrastructure is neces-
sary, available on a 24x7x365
basis

(+) Not so advanced
technical infrastructure
is necessary

Security (-) The system can be secure
but certain “protective” actions
must be taken

 (+) Security is obvious

The previous table shows that a real time staging procedure should be followed
only if the nature of the commodity traded imposes the constant database update. In
our case, an every day off line procedure is chosen for both security and convenience
reasons.

Yet, if we try to deduct a general case example we must notice that each com-
pany’s and product’s needs, concerning the use of an e-market, are different; therefore

486 L. Makris, N. Karatzoulis, and D. Tzovaras

the connectivity solutions (between an e-shop and an ERP) provided vary, depending
on: (i) the ERP used (it can be a widely used international ERP such as SAP, Oracle
Applications, etc. or it can be a custom made system, that fits to specific needs), (ii)
the transaction volume and the form of the data transferred, (iii) the importance of the
information transferred (regarding time, safety etc. aspects), (iv) the use of unilateral
or bilateral communication and (v) whether it is an on-line or a batch transfer of data.

5 Experimental Results and Conclusions

E-commerce services offered through a B2C (business to consumer) or B2B (business
to business) system, provide the necessary infrastructure for real time e-business and
an added value package of services, that guarantee faster and more efficient buy and
sell transactions, access to a broadened database of buyers/suppliers and business
opportunities, through the development of new partnerships.

In conclusion, in this paper we presented an interactive and user-friendly e-
commerce solution for the vehicle sector, but appropriate for other sectors as well.
Volvo Technology Corporation (VTEC) has been the end-user responsible for using
and testing the CATER platform, so a number of its vehicles were integrated in the
platform for evaluation and testing purposes.

Finally, the main contribution is that our approach integrates additional technolo-
gies, such as an intelligent configurator module and a 3D visualisation environment
aiming at enabling a suitable representation of products, in order to achieve the most
realistic possible visualization and simulate a realistic shopping procedure.

Acknowledgements

We wish to acknowledge to the CATER project Consortium for their valuable
contributions to this work. The CATER project is partially funded by the EC.

References

1. Kompatsiaris, I., Mezaris, V., Strintzis, M.G.: Multimedia content indexing and retrieval
using an object ontology. In: Stamou, G., Kollias, S. (eds.) Multimedia Content and the
Semantic Web: Methods, Standards and Tools, pp. 339–371. Wiley, Chichester (2005)

2. Tsampoulatidis, I., Nikolakis, G., Tzovaras, D., Strintzis, M.G.: Ontology Based Interac-
tive Graphic Environment for Product Presentation. In: Proc. CGI 2004, pp. 644–647,
Heraklion, Crete, Greece (June 2004)

3. Mezaris, V., Kompatsiaris, I., Strintzis, M.G.: An Ontology Approach to Object-Based Im-
age Retrieval. In: Proc. IEEE International Conference on Image Processing (ICIP 2003),
Barcelona, Spain, vol. II, pp. 511–514 (September 2003)
http://www.iti.gr/db.php/el/publications/details/532.html

4. Apache Jakarta, http://jakarta.apache.org/
5. Jena, A Semantic Web Framework for Java, http://jena.sourceforge.net/
6. Protégé, An Ontology Editor and Knowledge-base Framework, http://protege.stanford.edu

 A DIYD (Do It Yourself Design) E-Commerce System 487

7. Web 3D Consortium, VRML Standard, http://www.web3d.org/x3d/vrml/
8. Protégé OWL Plugin, http://protege.stanford.edu/plugins/owl/
9. The OWL Web Ontology Language, http://www.w3.org/TR/owl-features/

10. Horridge, M., Knublauch, H., Rector, A., Stevens, R., Wroe, C., Practical, A.: Guide To
Building OWL Ontologies Using The Protégé-OWL Plugin and CO-ODE Tools, Edition
1.0, The University of Manchester (August 2004)

11. Carroll, J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson, K.: Jena: Im-
plementing the Semantic Web Recommendations, Digital Media Systems Laboratory, HP
Laboratories Bristol (2003)

12. Jena 2 Inference Support, http://jena.sourceforge.net/inference/

	Introduction
	Intelligent Configurator Module and Ontology
	Configurator Architecture
	Ontology Development
	Ontology Reasoning

	3D Visualisation Module
	The e-Shopping Platform in Practice
	Experimental Results and Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

