
Whole-System Programming of Adaptive
Ambient Intelligence

Simon Dobson and Paddy Nixon

Systems Research Group, School of Computer Science and Informatics
UCD Dublin IE

{simon.dobson, paddy.nixon}@ucd.ie

Abstract. Ambient intelligence involves synthesising data from a range
of sources in order to exhibit meaningful adaptive behaviour without ex-
plicit user direction, driven by inputs from largely independent devices
and data sources. This immediately raises questions of how such be-
haviours are to be specified and programmed, in the face of uncertainty
both in the data being sensed and the tasks being supported. We explore
the issues that impact the stability and flexibility of systems, and use
these issues to derive constraints and targets for the next generation of
programming frameworks.

1 Introduction

Ambient intelligence faces an uncomfortable duality. On the one hand, sys-
tems must be constructed from networks of independently-constructed and -
programmed devices, often having very restricted local functionality; on the
other, these systems must produce user-centric behaviour which reacts to com-
plex scenarios in a way that retains a clear focus on the users’ activities on an
ongoing basis. While it is attractive to think that user-centric behaviour will
simply “emerge” from the interactions of individual devices, there are strong
reasons to suspect that a more directed approach will be needed in most cases.
This suggests that ambient intelligence requires a “script” of some kind for each
service or application being hosted, provided at the level of the network rather
than the level of the individual devices.

While numerous pervasive applications have been demonstrated, large-scale
systems remain elusive. It is hard to recognise what is happening in the real
world; hard to translate this into meaningful adaptive behaviour; hard to en-
sure that the adaptive behaviours remain within an acceptable envelope; hard
to ensure that individual services compose without interference; and hard to
deal with the inevitable mistakes that occur when performing complex actions
without explicit user instruction.

We have previously conjectured [1] that whole-system descriptions of adaptive
systems provide both a more principled approach to design and a more verifiable
platform upon which to perform development. Experience has borne-out this
conjecture, but has also raised the significance that the uncertainty of sensor

C. Stephanidis (Ed.): Universal Access in HCI, Part II, HCII 2007, LNCS 4555, pp. 73–81, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

74 S. Dobson and P. Nixon

data and task inference have for ambient intelligence applications. Our goal in
this paper is to explore two questions which we believe are of critical importance
for any platform for adaptive systems:

1. What impact do the low quality, diffuse and semantically heterogeneous
nature of sensor data and task inference have on programming? and

2. What do these imply for the creation of middleware and other programming
support frameworks for ambient intelligence?

We conclude that ambient intelligence is not primarily about sensing, but
rather relies on leveraging information from a diverse range of sources with rich
interconnections. This in turn changes the fundamental problem from being one
of sensing and reasoning to one of information management and truth mainte-
nance: a holistic view of the system’s responses to its changing environment.

Section 2 explores the nature of sensing and inference in ambient systems,
from which section 3 derives some criteria that must be met by any suitable
programming platform. Section 4 concludes with some possible directions for
future research.

2 Uncertainty in Sensing and Inference

The literature on pervasive computing and ambient intelligence contains a large
number of example applications. Typically these follow a similar storyline (fig-
ure 1): a collection of sensors is fitted to an environment and used to collect
data about the activities of users within that space, who may be using various
electronic and networked devices. Events from these devices are used to select
behaviour for the system to exhibit, which in turn is visible to and affects the
environment. This closing of the feedback loop is characteristic of adaptive and
autonomic systems [2].

Unfortunately this abstract description elides all the issues which make am-
bient intelligence problematic – and also those which make it most useful.

2.1 The Uncertainty of Sensors

Traditional applications provide a bounded context within which interaction may
occur. For most systems there is very little uncertainty in these interactions: a
user presses a key or selects a menu item, or doesn’t. In some systems there may
be errors due to lost, garbled or repeated messages which are typically handled
using middleware; in almost all systems there will be operator errors which must
be correctable in some way, typically with minimal impact1. The point is that
interaction, while it may be wrong, is at least definite.
1 Although not always: accountancy software, for example, will typically not allow an

erroneous transaction to be deleted, forcing the user to explicitly record a cancelling
transaction. This of course if the “correct” behaviour for this particular application
domain.

Whole-System Programming of Adaptive Ambient Intelligence 75

Sensors Decision and
context

BehaviourEnvironment

Feedback

Fig. 1. Archetypal ambient intelligence applications match sensor data to a task
description

Ambient interaction exhibits completely different characteristics. Interaction
occurs (at least in part) by way of sensors observing “everyday” actions. Even
within a single category such as location, each family of sensor has often radically
different characteristics (figure 2).

System Range Precision
GPS Global 1m
GSM triangulation Global 50m
RFID Building room/door
Wifi triangulation Local-area 20-50m
Ultra-wideband Room 10-30cm
Cameras Room 10cm

Fig. 2. The precision of location sensing can vary dramatically

First we must recognise the distinction between precision and accuracy –
two terms that are sometimes used almost synonymously. A location sensor’s
precision describes the smallest detail it can resolve – or, to put it another way,
the minimum distance that an object must move before the sensor registers a
change. A sensor’s accuracy describes the extent to which the location it reports
for an object corresponds to that object’s “real” position. For example, a Wifi
location system such as PlaceLab might generally report a device’s position to
within 10m (precision), but might also (because of reflections or beacon mis-
placement) exhibit sporadic or systematic errors [3] which place a device in a
totally different position unrelated to the way it is actually sensing at the physical
level (accuracy). The terms apply analogously to most sensors.

This raises an interesting mis-match. The design of an application in the style
of figure 1 will typically be phrased in terms such as “when A and B are in
room X, perform action 1”. No single sensor is likely to provide information of
sufficient precision to make this decision with any confidence.

76 S. Dobson and P. Nixon

If these issues sound exotic, they can appear in some very simple scenarios.
Suppose we build a system that detects meetings being held in an office, using
an ultra-wideband location system such as Ubisense2 (figure 3). When all the
participants enter the office (area A), the meeting behaviour – whatever it is –
is executed. If however one of the participants stands near the door for whatever
reason (for example to draw on a badly-placed whiteboard near area C), the
location system may report the person’s location as being outside the office:
the precision of the location report straddles two spaces. The system may then
erroneously end the meeting. If the next location reported is inside the room
again, the system may start another meeting (because all the participants are
together again), or may do nothing (since the meeting is ended) – or do something
else entirely.

There are a number of issues to be teased out here. Firstly, there is an interest-
ing interaction between the sensors’ imprecisions, the layout of the real world,
and the behaviour a user will observe. For the system to potentially exhibit
undesirable behaviour, a user must stand in an area in which, at the location
sensor’s resolution, straddles two spaces, and those spaces must exhibit differ-
ent behaviours, and the user must stand in the area without meaning proceed
into the other space. If any of these conditions does not pertain, the system
will be more likely to behave correctly: if, for example the whiteboard is moved
away from the door to the other side of area A, a user standing in the zone of
uncertainty is less likely to be an unwanted transient.

The underlying problem is that we cannot assign meaning to a single action,
only to a constellation of actions taken in context. Some actions “just happen”,
and so we need to be careful that we do not designate innocuous actions as
triggers for behavioural change.

2.2 From Sensing to Task

Event-driven pervasive systems address this issue by providing a model of the
tasks which the application is supporting. The events received are used to “move
the task along” in the manner of a workflow system. Unfortunately processes in
pervasive systems tend not to be well-specified – and if they are, users will
anyway tend not to follow them with the precision required of workflow. In
scenarios in which the process can be followed precisely (such as for the computer
theatre of Pinhanez and Bobick [4]) then temporally-enriched forms of workflow
such as [5] can usefully be used: in less structured cases, however, experience has
shown that such systems do not provide significant benefits and have problems
with their expressive power.

Things become even more complicated when we consider ambient systems
containing several applications or services. A given action may then be inter-
preted by several applications simultaneously, each of which may then exhibit
a behaviour. These behaviours are “independent”, in the sense of not affecting
one another; however, they may also be “dependent” in that one application’s

2 http://www.ubisense.net

Whole-System Programming of Adaptive Ambient Intelligence 77

Area AArea B

Area C

Fig. 3. There are some subtle interactions at play between sensor imprecision,
behaviour and task

behaviour may detrimentally affect another’s. The classic example is having two
applications controlling the lighting level in a room: if they disagree on the
“right” level, which is selected?

3 Designing and Programming with Uncertainty

To summarise, any data used to drive a pervasive computing system is inherently
uncertain in ways that improved sensor technology will not completely address.
The relationship of this data to the scenarios being supported by the pervasive
systems is tentative, since an action often cannot be unambiguously assigned
a particular meaning in a process that is subject to the uncertainties of users’
everyday actions. This implies that any decision taken within a task may be
wrong, in that it may be driven by data that has been mis-interpreted.

What does this imply for systems? One might take the pessimistic view that
ambient intelligence is a flawed dream which cannot be achieved because of the
limitations of sensing the real world. A more balanced view is that any decision
may be taken incorrectly. This has a significant impact on programming. We can
split the problem into two parts: how can we determine that a decision has been
taken in error?, and what can be done if and when the mistake is detected?

Although sensors are individually imprecise, a sufficiently sensor-rich environ-
ment may be able to compensate for these individual deficiencies and develop
a more accurate consensus estimate of the values being sensed. This raises a

78 S. Dobson and P. Nixon

question about when an environment is sufficiently sensor-rich – a question to
which we have no principled answer.

We may observe, however, that an ambient system can be made significantly
richer without heavy investment in sensors. Using location as an example, a
system may have many potential sources of information as to an individual’s
location: sensors form one part, but there are also diary entries, actions taken
that correlate to locations, default behaviours that may be assumed, and so
forth [6]. Such alternative sources are of low precision – people’s diaries do not
generally reflect their movements precisely – but this is simply a feature they
share with any other sensor. We may therefore extract low-precision location
information from a diary (for example) and combine it with the sensor readings
we are obtaining from the environment. It is simply another aspect of context
that can be “mined” for location information.

The important point is that we decouple behaviour from observations taken
in isolation, and instead use a holistic model of the environment which is driven
by all aspects of the environment that we can sense. This leads is to a somewhat
different abstract model than we used in figure 1: use sensed data to maintain
and refine a model of the world that is the “best fit” to the observed data.
Applications and services, in this model, test scenario hypotheses against the
world and activate those that are supported by the current consensus (figure 4).
Scenarios are deactivated when they cease to be supported.

Sensors Consensus
context

Behaviour and
“anti-behaviour”

Environment

Feedback

Scenarios

Checking

Fig. 4. We need to constantly check the validity of hypotheses, including past ones,
against the evolving context

This leads to a number of general statements about programming platforms
for this class of systems:

Events are too noisy to serve directly as a basis for programming.
An event derived from a sensor, such as an observation of an individual in a
particular space, may be issued in error. If the application reacts to this event it
will react to noise, so applications must attempt to identify noise locally before
performing actions. In many cases the signal-to-noise ratio will be low, and
applications can become cluttered with noise-handling code at the expense of

Whole-System Programming of Adaptive Ambient Intelligence 79

application logic. This is hard to do purely at the event level, without reference
to a wider context, and suggests that “composite” event systems such as those
of Hayton et alia [7] may not be suitable for pervasive applications.

It is important to stress that this is not a criticism of events as a communica-
tions construct, where they can provide a very flexible and scalable communica-
tions framework. Rather, it is a criticism of using events directly as a program-
ming construct, since they seem to devolve too much of the system’s complexity
onto applications programmers under an abstraction model that makes it diffi-
cult to deal with locally.

Don’t take anyone’s word for anything. One solution to noise is to
construct systems which “damp” erroneous observations by fusing observations
across a range of sources. By maintaining a context model, distributed across
the pervasive system, which maintains a running “consensus estimate” of values
of interest, a single observation has less scope for skewing the consensus.

A corollary of this approach is that it provides a way of dealing with se-
mantically heterogeneous data sources. Each sensor can deliver data in its lower
ontology, which can then be mapped to an upper used by applications [8]. The
advantage is that applications are insulated from the details of the individual
sensors available, reducing the impact of changes in the sensor population. The
upper ontology can present the on-going consensus estimate of values such as
location, allowing context fusion to occur within the platform and away from
individual applications. This is the approach we are taking with the Construct
platform [9,10].

Interconnection is more important than data. Although it is a com-
monplace to think of ambient intelligence as pertaining to sensors, it might
be more useful to think of it in terms of leveraging information from a richly-
interconnected model. It is possible to build ambient intelligence with little or
no traditional sensor data for example: a location-aware system could be driven
by asking the user to spot landmarks, or by using default assumptions about
behaviour.

By contrast, we cannot deem a system “ambiently intelligent” if it is sim-
ply driven by sensor events, taking no account of other factors. The model, its
relationships and the ability to extract information through fusion is far more
characteristic of the domain than the availability of sensors.

Any decision needs a mitigation strategy. No matter how successfully
we perform consensus, however, it is inevitable that errors will remain, and these
errors can cause major problems for applications. At a suitably abstract level,
the issue is simple: a decision is made at time t, and at some subsequent time
t + δ information becomes available to show that the decision was made incor-
rectly. The problem is then to incorporate this new information into the on-going
computation. This may happen as a result of sensor error, of mis-interpreting an
action intended for another service, or simply because new information arrives
over time.

The classical approach to such problems is rollback as found in databases.
This will no work for pervasive computing: one might literally be shutting the

80 S. Dobson and P. Nixon

stable door after the horse has bolted! We must therefore investigate non-classical
solutions such as, for every action a resulting from a decision, providing an
action a−1 that can be performed if action a is determined to have been in error.
Actually the situation is a bit more subtle, since the appropriate action a−1 is
actually a function of δ, and will vary depending on when the error is recognised.

The general point, however, is that applications must be written with failure
in mind. In programming language terms, mistakes are often dealt with using
exceptions; in ambient intelligence, failure is not exceptional and so requires a
different programming idiom. It is by no means clear how to provide such an
idiom without cluttering a system with mitigating code.

Everything interesting comes from composition. The final criterion in-
volves the nature of systems. While it is possible to address many of the issues
we have highlighted within a single application, such ad hoc approaches will
inevitably break down when confronted with more complex systems, and espe-
cially with systems composed of applications which are not known a priori. It
is therefore essential that ambient intelligence is constructed on a well-founded
basis which is compositional in nature.

At the present state of the art, placing two ambient services in the same space
is a somewhat fraught activity. We have no way of deciding whether two systems
will interact positively or interfere. Similarly, independent behaviours may be
suitable to run together or may not, or one may take precedence over another.
The details of a particular system are not important for the current argument:
what is important is the idea that composing applications and services has a
system-wide impact, and the results of composition should be well-definable
ahead of time. This is the only way in which we can reliably deploy large-scale
ambient intelligence with the degree of confidence needed by a large organisation.

4 Conclusion

Ambient intelligence involves synthesising data from a range of sources in order
to exhibit meaningful adaptive behaviour without explicit user direction. The
imprecisions, inaccuracies, incompleteness and contradictions implicit in sensor-
and inference-driven decision-making place strong requirements on the stability
and flexibility of systems, which in turn impact on the programming solutions
deployed.

In this paper we have attempted to highlight some of these issues in a way that
lends itself to the development of programming platforms suitable for ambient
intelligence. The challenges centre around dealing with through-going uncer-
tainty in a principled fashion, whilst providing an environment in which services
may be safely composed with known impact. This involves developing tools and
techniques – at design, programming and analytic levels – which can improve
the confidence with which we make decisions based on often flimsy data. Ex-
actly what sort of programming environments will emerge to address these chal-
lenges is an open – and exciting – area of current and future research across the
community.

Whole-System Programming of Adaptive Ambient Intelligence 81

In some ways the current activity mirrors that of parallel and distributed
programming. Initial approaches based on semaphores, suitable for simple ap-
plications but with rapidly intractable complexity as systems grow, were replaced
by more structured approaches such as transactions and skeletons together with
middleware abstractions reflecting the realities of the underlying domain. We
hope that ambient intelligence will evolve similar mechanisms for manging the
complexity of systems.

Acknowledgements

This work is partially supported by Science Foundation Ireland under grant
numbers 05/RFP/CMS0062 (“Towards a Semantics of Pervasive Computing”),
04/RPI/1544 (“Secure and Predictable Pervasive Computing”), and
03/CE2/I303-1 (“LERO: the Irish Software Engineering Research Centre”).

References

1. Dobson, S., Nixon, P.: More principled design of pervasive computing systems.
In: Bastide, R., Palanque, P., Roth, J. (eds.) Human computer interaction and
interactive systems. LNCS, vol. 3425, Springer, Heidelberg (2005)

2. Kephart, J., Chess, D.: The vision of autonomic computing. IEEE Computer 36,
41–52 (2003)

3. Hightower, J., LaMarca, A., Smith, I.: Practical lessons from PlaceLab. IEEE Per-
vasive Computing 5, 12–19 (2006)

4. Pinhanez, C., Bobick, A.: Human action detection using PNF propagation of tem-
poral constraints. In: Proceedings of CVPR’98, pp. 898–904 (1998)

5. Allen, J., Ferguson, G.: Actions and events in interval temporal logic. Journal of
Logic and Computation 4, 531–579 (1994)

6. Dobson, S.: Leveraging the subtleties of location. In: Bailly, G., Crowley, J., Privat,
G., eds.: Proceedings of Smart Objects and Ambient Intelligence, pp. 175–179 (
2005)

7. Hayton, R., Bacon, J., Bates, J., Moody, K.: Using events to build large-scale dis-
tributed applications. In: Proceedings of the 7th ACM SIGOPS European workshop
on systems support for worldwide applications, ACM Press, pp. 9–16. ACM Press,
New York (1996)

8. Clear, A.K., Knox, S., Ye, J., Coyle, L., Dobson, S., Nixon, P.: Integrating multiple
contexts and ontologies in a pervasive computing framework. In: Contexts and
ontologies: theory, practice and applications (2006)

9. Coyle, L., Neely, S., Rey, G., Stevenson, G., Sullivan, M., Dobson, S., Nixon, P.:
Sensor fusion-based middleware for assisted living. In: Nugent, C., Augusto, J.C.
(eds.) Smart homes and beyond, pp. 281–288. IOS Press, Amsterdam (2006)

10. Dobson, S., Coyle, L., Nixon, P.: Hybridising events and knowledge as a basis for
building autonomic systems. Journal of Autonomic and Trusted Computing, To
appear (2007)

	Introduction
	Uncertainty in Sensing and Inference
	The Uncertainty of Sensors
	From Sensing to Task

	Designing and Programming with Uncertainty
	Conclusion

