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Abstract. This paper presents a novel approach to natural demonstration of 
manipulation skills for multimodal interactive robots. The main focus is on the 
natural demonstration of manipulation skills, especially grasping skills. In order 
to teach grasping skills to a multimodal interactive robot, a human instructor 
makes use of natural spoken language and grasping actions demonstrated to the 
robot. The proposed approach emphasizes on four different aspects of learning 
by demonstration: First, the dialog system for processing natural speech is 
considered. Second, an object detection and classification scheme for the robot 
is shown. Third, the correspondence problem is addressed by an algorithm for 
visual tracking of the demonstrator’s hands in real time and the transformation 
of the tracking results into an approach trajectory for a robotic arm. The fourth 
aspect addresses the fine-tuning of the robot’s hand configuration for each 
grasp. It introduces a criterion to evaluate a grasp for stability and possible 
reuse of a grasped object. The approach produces stable grasps and is applied 
and evaluated on a multimodal service robot. 

1   Introduction 

The field of human-robot interaction has seen a lot of advances in recent years. 
Especially, the way how robots can be programmed by simple teaching-by-showing 
via teach pendants, explicit robot programming languages, or task-level programming 
languages. The latter language enables the user to give sub-goals to the robot, rather 
then defining each single action the robot has to perform to solve a given problem. 
Although robot programming has been simplified by these developments, only a few 
and skilled experts are able to handle them. Robot programming still lacks the 
benefits of human teaching and learning such as a natural and versatile learning 
scheme of demonstration and imitation. In this paper we propose a framework for 
natural demonstration of manipulation skills, especially grasping skills. These skills 
are basic for a service robot and crucial to manipulation tasks and interaction with the 
environment. Service robots operate in scenarios which demand very flexible and 
robust behaviors like e.g. office environments. This robustness to non-static 
environments cannot be achieved by the classic robot programming techniques. 
Therefore, it is important to further simplify interaction between robots and humans. 
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The proposed framework meets these challenges through the integration of multi-
modal techniques for human-robot-interaction and enables a user to program a service 
robot by the scheme of learning by imitation. The natural interaction between the user 
and the robot is emphasized by only using spoken dialog and gestures performed by 
the user. Neither additional sensors like data gloves, which have to be worn by the 
user, nor complicated sensor setups installed in the environment are needed. 

 

 

Fig. 1. TASER – TAMS Service robot (left), TASER operating a light switch (right) 

The proposed approach is applied to the service robot of the TAMS Institute at the 
University of Hamburg, the TAMS-Service-Robot (TASER). Figure 1 shows the 
robot TASER and how it is manipulating a light switch. The robot operates during 
normal workdays in an office environment. It is used as an experimental platform to 
point out the usability of the proposed approach. 

The remainder of the paper is organized as follows: In section 2 an overview of 
related research is given. Section 3 covers natural demonstration of manipulation 
skills, whereas in section 3.1 the service robot TASER and the scenario is introduced. 
Section 3.2 describes the dialog system. Section 3.3 focuses on learning by 
demonstration and section 3.4 examines grasp analysis. Conclusions and future work 
are presented in Section 4. 

2   Related Research 

A good overview of learning by demonstration is given in [1]. A multimodal 
approach using language, vision and motor based on a hierarchical architecture is 
presented in [2]. It enables a student robot to learn three different behaviors (‘go’, 
‘pick’, ‘lift’) from a teacher robot. A model for robot imitation also using language, 
vision and motor input based on the concepts of the modularity in the brain and mirror 
neuron system is given in [3]. 
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To determine the best imitation strategy, a method for extracting goals and 
constraints of a demonstrated task is presented in [4]. Simple reaching tasks are 
considered and captured via magnetic field sensors and stereo-cameras and encoded 
into Hidden Markov Models (HMMs). Trajectories are reproduced according to a 
metric based on invariants of time, which measures the quality of reproduction. 

The work of [5] is built on the closed-world assumption, which emphasizes the 
exact observation of the human operator. The whole work cell is modeled using 
accurate scene data acquired by data gloves and stereo cameras. In the work cell dual-
arm manipulation tasks are demonstrated for humanoid robots [6]. For the reason of 
robust and accurate data acquisition (as shown in [4], [5], [6]), data gloves and 
magnetic sensors are common tools to observe the demonstrator's actions. But 
techniques for contact-free and easy-to-use human-robot-interaction interfaces are 
important to simplify the application of learning by demonstration. Especially the 
imitation of manipulation tasks requires a robust tracking of the human hands. There 
are many approaches to this topic, e.g. [7] proposes a method for the tracking of 
articulated finger motion in monocular images, where a geometric model of a hand is 
used to generate contours which are matched with observed monocular edge and skin 
color images. A hierarchical Bayesian filter is developed to allow the integration of 
temporal information. 

In [8] a method for imitation learning based on visuo-somatic mapping, ranging 
from the observed demonstrator's posture to remembering the self-posture, is 
presented. This happens via mapping from the self-motion observation to the self-
posture of a robot. The mapping from postures to posture space and the mapping from 
trajectories in posture space onto a motion-segment space is both done by SOMs. 
Optical flow from the demonstrator's motion is mapped onto a flow-segment space 
where flow data is connected with the corresponding motion segments in motion-
segment space. The connection with self-motion is done via Hebbian Learning. 

A brief overview of the special field of robot grasping is given in [9]. Canny et. al. 
[10] presents a grasp quality measure based on the approximation of the grasp wrench 
space (GWS). Due to the computational complexity of the problem Borst et. al. [11] 
presents a method to reduce the complexity by using a specialized task wrench space 
for object grasping. In [12] the author presents a method to generate grasps from 
prototypes using an object wrench space taking the object geometry into account. An 
efficient way to check form closure properties of a grasp is given in [13] where the 
authors present an approach to find form-closure grasps for n-hard fingers of 3-D 
objects, which are represented by a model of discrete points. In contrast Han et al. 
[14] suggest a method transforming the problem into linear matrix inequalities 
(LMIs), which solves grasp evaluation and grasp force optimization. 

Most of the presented approaches above use the force or form-closure of a grasp 
wrench space as criterion for a grasp. This criterion guarantees resistance of the grasp 
against any external force, which might be applied to the grasped object. This often 
leads to large forces and torques at the grasping points. [15] considers this problem 
and proposes a method where a task wrench is generated and mapped to the grasp 
matrix in the form of a virtual contact acting with a certain magnitude. By the use of a 
LMI method it is possible to find the force necessary to resist the internal force. 
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3   Natural Demonstration of Manipulation Skills 

In the following the approach to natural demonstration of manipulation skills and its 
implementation on the service robot TASER (section 3.1) is presented. The main 
focus is on the natural demonstration of grasping skills, which has to produce stable 
grasps and consider the reuse of the grasped object. For an easy and naturally-to-use 
application of this technique it is important to embed the learning process into a 
versatile interface for human-robot-interaction, which is capable of a dialog-driven 
communication between the robot and its user. The developed dialog system is 
intended to make the interaction between the robot and humans simpler and more 
intuitive and therefore uses speech-recognition alongside with speech-generation to 
drive the dialog (see section 3.2). 

However natural demonstration also requires the robot to capture the data by itself 
without restricting the environment by the demands of special hardware, like data 
gloves, magnetic field sensors, head-mounted eye trackers or special sensor 
installations, which are cumbersome to set-up, calibrate and use. Therefore, only the 
onboard sensors (video, audio, laser) of the service robot TASER are used to gather 
data, when a human teacher demonstrates a grasping task. In doing so, it is important 
that the robot first detects an action and learns how to reproduce this action and then 
decides which type of grasp is suitable for further handling of the grasped object 
considering different constraints, e.g. like the fill level of a cup of tea. In the case of 
grasping a specific object, the robot has to detect the object (section 3.3), learn an 
approach trajectory and the tag point (section 3.4) as well as an adequate force for a 
stable grasp and the type of grasp with respect to the further handling of the grasped 
object (section 3.5). 

3.1   The Service Robot TASER in Its Office Environment 

A lot of service robots described in literature are built from special hardware which is 
designed for certain robot systems only. Furthermore, their manipulation and grasping 
skills seem to be rather limited because many robots only have a two-finger parallel 
jaw gripper. One of the particular objectives in building the robot TASER [16] was to 
assemble it mainly from off-the-shelf hardware. 

TASER’s mobile platform is equipped with a differential drive with integrated 
wheel encoders, two laser-range finders and a gyroscope for navigation. The 
localization reaches an accuracy of ±1cm in position and ±1º in orientation. The 
manipulator system of TASER currently consists of two Mitsubishi PA10-6C robot 
arms. A BH-262 BarrettHand and a micro-head camera are attached as a tool to each 
arm. With this design the system attains a humanlike workspace and silhouette. The 
PA10-6C has six degrees of freedom (DoF) and a kinematic length, which is similar 
to the length of a human arm. The BarretHand is a three-finger robot hand with 8 
DoF, force sensors and a TorqueSwitch mechanism similar to a human hand [17]. 

TASER’s interface for human-robot-interaction is intended to provide a simple and 
intuitive interaction between the robot and humans. The main sensors for the 
interaction are several camera systems mounted on the robot. In addition to the micro-
head cameras on the hands, the system has a stereo-camera system mounted on a pan-
tilt unit and an omnidirectional vision system (see Fig. 1). In order to teach TASER a 
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grasping skill, a human instructor uses natural speech and demonstrates the grasping 
action to the robot. This involves a human instructor standing opposite the service 
robot (see Fig. 2) and demonstrating a grasping skill by saying ‘start’, performing the 
grasp and then saying ‘stop’. This process is repeated several times until the robot has 
collected sufficient data to analyse according to forces and reusability. 

 

Fig. 2. Instructor demonstrates a grasping skill (left) and TASER reproduces the skill (right) 

3.2   Dialog System 

A finite-state based dialog system was developed for the robot. The robot can be 
queried for information or given a task through the dialog-system. It is a model of a 
finite-state automate, which contains a sequence of predetermined states [18] and is 
used to guide the user through a dialog. A rough overview of the dialog system is 
given in Fig. 3. Every time a dialog step is completed, which means that all the 
required information has been given by the user, the system state changes and reaches 
its end state. The advantage of a finite-state based system compared to a frame-based 
system, which has no predetermined dialog, or compared to an agent-based system, 
which includes intelligent behavior, is its simplicity. The semantics of the system is 
clear and intuitive. Moreover, as the user’s responses are restricted, fewer 
technological demands are put on the system components, particularly the speech 
recognizer. Additionally, there is a smaller likelihood of errors in the more 
constrained system. An example of a dialog in which the system verifies the user’s 
input [19] is given in table 1. 

The instruction for grasping an object is received by speech recognition. The 
recognized sentence is passed to the verifier, which parses the instruction. The 
instruction is transferred to the speech output, which repeats it. If the user confirms 
the speech output to the dialog system, this confirmation is brought to the analyzer, 
which consists of the dialog manager, the context manager and the controller. If the 
user does not confirm the speech output of the robot, the dialog-system returns to  
the subsequent state of the last confirmed state. The user can then repeat his  
speech input. Thus, only instructions confirmed, are processed by the analyzer. Each 
command is assigned to a context and administrated by the context manager. The 
command [‘Grab’, ‘Cup’] consists of a list, which defines current and further possible 
functions and objects in this context. In the example above, the possibility of two 
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Fig. 3. Dialog system 

identical cups, which can both be grasped is given. This constitutes a mnemonic 
ambiguity [20], which takes place when an input reference is ambiguous to the 
robotÊs context. The dialog manager gets the list from the context manager and 
initiates a speech output, which dissolves the ambiguous user instruction. After all 
these steps are accomplished, an order is sent by the dialog manager to the controller 
to execute the instruction. 

Table 1. Resolved ambiguity in a dialog between user and robot 

 User Robot 
Get the cup.  

 May I bring you the cup? 
Yes  

 There are two cups, would you like the green 
cup or the red cup? 

The green cup  
 Do you want the red cup? 

No  
 There are two cups, would you like the green 

cup or the red cup? 
The green cup  

 Do you want the green cup? 
Yes  

--- Robot is grasping the green cup --- 
 Done. Can I do something else for you? 

3.3   Learning by Demonstration 

Learning by demonstration is used to determine the trajectory of the instructor’s hand 
while performing the grasping action and to estimate the tag point, where the hand 
touches the object. But before the robot can do so, it has to detect the object, its 
position and its orientation with the help of its stereovision system. This is done by 
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the use of scale-invariant features (SIFT) [20]. To each object several SIFT key points 
are assigned and correspondence is established between the stereoscopic images. 
Therefore, the coordinates of those key points can be measured in 3D. The position 
and orientation of the object is determined by solving a linear equation system. 

To learn a grasping skill through demonstration, it is necessary to know how the 
demonstrator grasps an object. Therefore the trajectory as well as the configuration of 
the hand, e.g. the articulation of the fingers, has to be known. In order to track the 
demonstrator's hands in stereoscopic images in real-time, active contours [21] and an 
expectation-maximization-like algorithm [22] is adapted and applied to local binary 
patterns [23] and color histograms [24]. The robot repetitively tracks the 
demonstrator's grasping actions and feeds the tracking results into a three-dimensional 
self-organizing map [24], to minimize discrepancies between intended and tracked 
trajectories. In this process the robot’s dialog system is used to inform the robot about 
the time when the instructor will start and end his demonstration. The topology of the 
SOM is arranged to correspond to the three-dimensional space in which the user's 
hand is tracked. After convergence, the SOM gives a spatial description of the 
collected data and serves as the input data structure for an RL algorithm. The RL 
algorithm finds trajectories and hand configurations optimized for use by the robot 
arm and hand (Fig. 4) and serves as starting point for the following grasp analysis. 

 

  

Fig. 4. Hand tracking results and generated trajectory of box grasping skill 

3.4   Grasp Analysis 

Most of the grasp evaluation criteria presented in section 2 are related to forces and 
torques. This is very useful if stability is the main criterion in grasping objects with an 
artificial hand. Our approach goes beyond this and defines a criterion which is related 
to the reusability of an object grasped with a certain grasp. The criterion has been 
introduced in [25] and [26]. For example the grasp shown in Fig. 5 might be very 
stable according to forces and torques, but it is unusable if somebody wants to fill 
something into the cup. For this reason we defined four sub-criteria related to 
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Fig. 5. Grasping a mug with a BarrettHand 

operations being performed with a grasped object that is evaluated automatically 
during grasp analysis. A rating for the grasp is generated from the evaluation result. 
For each criterion, a list of constraints is defined which must be satisfied.  

One of the four criteria is the operation Pour-In. It is defined as a gain in weight 
and a free area around the feed opening of the object. The free space around the ``feed 
opening'' of e.g. the cup is defined as “keep-out-area” with the shape of a flat cylinder 
around the top of the object. The weight gain could be formulated in the form of a 
task wrench space, like in [12] or [15]. 

Similar to the Pour-In operation the operation Pour-Out can be defined as a loss in 
weight and a free area around the “feed-opening”. The keep-out-area makes sure that 
the opening is nod occluded by parts of the manipulator. Additionally, the grasp has 
to resist the forces which occur during the rotation movement. 

The main criterion for a service robot is the Handover operation. It is defined by 
the free spaces on the object, which are needed to pass the object from one hand to the 

 

  

  

Fig. 6. Simulation of grasping a mug and evaluation of the Pour-In criterion (top row), 
evaluation of the Handover criterion for grasping a banana (bottom row) 
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other. The space is firstly defined by the shape of the object and secondly by the 
position which the opponent wants to grasp. Examples for handover grasp evaluation 
are shown in Fig. 6 (green volume marks spaces for possible Handover operations). 

For some objects it is useful to define the operation Movement as a criterion for a 
grasp. For the evaluation of the criterion, the forces occurring during execution of a 
user-defined motion are considered. The motion can be defined via a transform or as a 
combination of basic movements like up, down, left, right, rotate etc. After the 
constrains for the selected criteria have been checked, a score for the object is built 
from a weighted sum of the four computed grasp criteria where s is the resulting score 

ja is the factor of each constraint and jC is the value for the constraint.  

j

n

j j Cas ∑ =
=

1
                                                       (1) 

If the user restricted the object’s purpose to some of the criteria the weighted sum can 
yield different results in different contexts. E.g. it is useless to compute if Pour-Out 
and Pour-In operations are possible for a hammer. 

4   Conclusions 

The realization of a framework for natural demonstration of grasping skills on a 
multimodal interactive service robot has been presented. It enables the user to perform 
a natural human-like learning process with the service robot TASER. A dialog system 
based on natural spoken language makes the interaction between the robot and 
humans simpler and more intuitive. Furthermore, it is used to solve problems of 
ambiguity and keeps the users hands free while demonstrating a grasping action. 
Additionally the dialog system can be used to command the robot e.g. to carry out 
tasks like turning the light on or transporting items. 

The criteria used for grasp evaluation have the great advantage that they are easy to 
understand, even if somebody has no idea about robotics or physics. They further 
simplify the interaction and communication process between the robot and a human 
instructor. They also enable the robot to choose task-specific grasps from a grasp 
database according to the current context.  

The next step will be to extend the framework to increase TASER’s usability. In 
this step the variety of the high-level functions like object grasping and multimodal 
interaction will be increased by more distinct manipulation of objects, like taking a 
printer’s output and transport it to the user. 
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