Making Multimedia Internet Content
Accessible and Usable

Hisashi Miyashita, Hironobu Takagi, Daisuke Sato, and Chieko Asakawa

IBM Research, Tokyo Research Laboratory, Japan
{himi, takagih, daisuke, chie}@jp.1ibm.com

Abstract. Although multimedia content containing streaming media is now
widely used on the World Wide Web, there exist considerable difficulties for blind
users to access such content, due to its dynamic changes, keyboard inoperability,
and audio interference with the speech from assistive software. In particular, the
third problem of audio interference is serious for blind users, since multimedia
content often contains streaming media such as video and music which continu-
ously play sounds, and thus they cannot hear the speech, which is masked by the
loud media.

In this paper, we propose a new accessible browser that can directly manip-
ulate such multimedia content. In order to control Flash contents, our browser
relies on a transcoding HTTP proxy to inject special scripts into the Flash con-
tent and then manipulates the embedded streaming media and sound objects via
the injected scripts. By using our browser, users can easily turn the volume up
or down, play, stop, or pause the streaming media with shortcut keys. Since the
users do not need to focus on buttons or sliders for these operations, they can
immediately stop or fade out the intrusive media when listening to speech from
assistive software.

1 Introduction

Since the Web is extending to a wider range of applications, in new Web sites, mul-
timedia content is becoming increasingly popular for richer user experiences. Many
prominent Web sites such as YouTubeEl, Yahoo! Vide(ﬂ and MTVE distribute multime-
dia content and are accessed by enormous number of users. The multimedia content we
discuss here has the following characteristics.

Dynamic changes. Most of the traditional HTML webpages are static. That is, the
rendered information is not subject to change once the page is loaded. Unlike sta-
tic contents, owing to the programmability of JavaScript or Flash with scripting,
multimedia contents can change dynamically in response to various inputs.

Interactive user interface. Users want to interact with multimedia content for a vari-
ety of reasons, such as selecting movies, playing or stopping the media, and control-
ling the volume. Therefore, such multimedia content often has its own interactive
user interfaces using a mouse or keyboard.

! http://www.youtube.com
2 http://movies.yahoo.com
3 http://www.mtv.com

C. Stephanidis (Ed.): Universal Access in HCI, Part III, HCII 2007, LNCS 4556, pp. 98 2007.
(© Springer-Verlag Berlin Heidelberg 2007

Making Multimedia Internet Content Accessible and Usable 99

Streaming media. Much multimedia content provides streaming media such as a movie
or music in addition to text, GUI, or document information. Such streaming media is
unique among media types in the sense that it delivers transient sounds and images
in response to user’s operations.

However, with typical accessible user agents such as screen readers and self-talking
browsers, this multimedia content is hard for visually impaired people to access due to
the following issues.

Issue 1: User agents miss dynamic changes. Most of the dynamic changes in multi-
media content are simply ignored by many accessible user agents. For example,
many media players show the current time of the movie or music but many ac-
cessible user agents cannot handle such dynamically changing information. This is
partly because Web browsers or Flash players do not notify the assistive software
components of the changes.

Issue 2: Content cannot be controlled using the keyboard. Much multimedia con-
tent is heavily dependent on mouse operations rather than keyboard operations. For
example, volume sliders in a media player may not be controlled with the keyboard.
Whether or not the content accepts keyboard operations often depends on scripts in
the content and much multimedia content does not support keyboard operations.

Issue 3: Streaming media interferes with the synthesized speech Since streaming
media emits sounds, it interferes with the voices synthesized by accessible user
agents. Users cannot easily listen to mixed synthesized voices and media sounds.
By controlling the volume of the streaming media, we can considerably reduce this
problem. However, none of the user agents can directly control streaming media
without using the appropriate button or slider.

These issues are critical for blind people accessing multimedia content on the Internet.
According to the User Agent Accessibility Guidelines 1.0 [9]], multimedia players shall
allow users to start, stop, pause, and navigate multimedia and support full keyboard
access. Thus, solving these problems is quite important in order to make multimedia
content accessible. To the best of our knowledge, in the existing studies on the Web
accessibility, although multimedia content has been discussed, this paper describes the
first attempt to make the existing Internet multimedia content accessible.

In order to address these issues, we are now trying to make a multimedia accessi-
ble browser. In this paper, we mainly focus on Issues 2 and 3. For these issues, our
browser can directly manipulate the media player for Flash content by using the tech-
nology discussed in [13]]. Since our browser directly accesses the internal object model
of Flash, we can control media players without any mouse operations. In addition, with
our browser, users can immediately change the volume of streaming media at any time
without focusing on a volume slider or a mute button. This does not affect the volume
of the speech synthesized by the browser. Therefore, users can reduce the volume of a
movie or music when they have problems hearing the synthesized speech. For Issue 1,
although some activities are now being reported [14U1]], since this issue involves many
difficult problems involving detecting changes and properly notifying users, we are not
addressing it in this paper.

The rest of this paper is organized as follows. In Section 2] we examine the prob-
lems that browsing typical multimedia content creates for a blind user by describing a

100 H. Miyashita et al.

motivating example. Our solutions to these problems appear in Section Bl where we
describe our multimedia accessible browser, its architecture, and the current implemen-
tation. In Sections [and[3] we discuss some related work and our conclusions.

2 Accessibility Issues of Internet Multimedia Contents

In this section, we consider a motivating example of actual multimedia content in order
to clarify the problems.

We are considering a movie distribution site, which is one of the most popular web
sites, delivering over 100 million video clips per day to users. In Figure[Il we show an
example of the multimedia content this site delivers. In such content, a movie player
is embedded in the upper-left corner, and the rest is used for showing DHTML content
related to the selected movie. In order to control the movie, these contents provide some
Flash widgets at the bottom of the media player. At the left side, we see a play/pause
toggle button and skip buttons and at the right side, we see a volume slider and a mute
button. In the center, we see the current time and the total time of the movie.

e Opening Entertai

Media player Related
by Flash contents by
DHTML [l e
Retsted More Worm Py user Playtaty
Eause/Stop/Skip Volume shder —— . I “
uttons o B
W -“& === |5
+*)

Comments & Responses

L] - d
Latngteer ¢ 2990/, gt 2 Je.
-

Fig. 1. An example of multimedia contents

-t -

For bind people using assistive talking systems such as screen readers and self-
talking browsers, such content is difficult to access for the following four reasons.

— The movie starts immediately after the page is loaded (Issue 3). Thus, many blind
users using assistive talking systems will get confused since the synthesized speech
for guiding the users is suddenly interfered with by the audio of the movie.

— None of the widgets in this media player have any text information (Issue 2). There-
fore, typical screen readers only say “Button one, Button two, ...” so that blind users
cannot understand what button is for playing or stopping the movie.

Making Multimedia Internet Content Accessible and Usable 101

— The volume control slider at the right side cannot be controlled with the keyboard
(Issue 2) even if the user knew the meaning of the widget, because this player only
accepts mouse operations for this slider. Therefore, blind users cannot change the
volume of the movie.

— It needs considerable effort for a blind user to control the movie (Issue 3). In order
to listen to synthesized speech to navigate in the DHTML part, users need to stop
or mute the movie. However, to press the stop or mute button, they have to suspend
the navigation in the DHTML part, select the appropriate button, and then push the
enter key. These operations are quite irritating for the users.

Based on our investigation of the several sites hosting multimedia content, we found
this site is not unusually inaccessible. Almost all of the sites have the similar problems.
We believe this situation is partly because making Flash content accessible is not yet a
priority [4] and sites that heavily rely on Flash tend to exploit the fancier GUI features,
such as the streaming feature with FLV (FLash Video), and the eye-catching vector
graphic animation features.

3 Multimedia Accessible Browser

As already shown, multimedia content on the Internet is highly unfriendly for blind
users. Therefore, we are now making an accessible multimedia browser, which we call
“aDesigner Runtime”. Our browser can analyze multimedia content in Flash and di-
rectly control the streaming and sound objects. By taking this approach, users are not
forced to manipulate the buttons and sliders offered by the multimedia content. Instead
they can use predefined shortcut keys to control the media. In this section, we describe
the detailed architecture of our browser.

3.1 Overall Architecture

The aDesigner Runtime is designed as a self-talking browser like Home Page Reader [J3].
In Figure 2] we show the schematic diagram of our browser.

Our browser first injects special scripts into the incoming multimedia Flash content
in a special transcoding HTTP proxy, using the same technology discussed in [13].
Then, the base browser runtime such as Microsoft Internet Explorer with the Adobe
Flash Player receives the transcoded content and renders it. Our browser internally has
a unified DOMf-based interface, which comes from the HTML DOM provided by Inter-
net Explorer and the Flash objects provided by the injected scripts in the Flash contents.
Since these DOM objects are integrated into one tree, any program using this interface
can access the documents in a uniform way.

By using this DOM-based interface, the user interface part (Ul part) provides a
speech interface for users. From the UI part, users can navigate in the content and con-
trol the media player with the keyboard. Fixed keyboard shortcuts are specially assigned
as media player controls, such as play, stop, pause, volume up, volume down, and mute
the media. Thus, users can immediately manipulate the actively playing media.

* Document Object Model. See http://www.w3.org/DOM/ for details

102 H. Miyashita et al.

aBrowser -
Scripts to access

Flash Objects

Flash Transcoding
Internet Proxy Internal
@r DOM-based Interface
— /N <:> User Interface
I Inject HTML part
Multimedia =
Contents T 5
Base Browser Runtime <:> %) <@
(IE/Flash player) Flash part = é
User

Fig. 2. Overall architecture

3.2 Flash Transcoding Proxy

Our browser uses a special transcoding HTTP Proxy to inject some ActionScript (AS)
into the incoming Flash content. The injected AS has two roles: 1) it transforms the
Flash objects into a DOM (e.g. a treelike object model), 2) it searches for streaming
media objects (e.g. in the NetStream class) and sound objects (e.g. in the Sound
class) and invokes some methods in these objects.

Since Role 1) is discussed in detail in [13]], here we only add a few comments about
it. The AS embedded in Flash contents traverses the structure of Flash objects from the
root stage such as level0. By limiting this traversal to visible objects, we can form
a tree in which each node represents a visible Flash object. By using this tree, we can
provide a DOM-base interface for Flash content.

For Role 2), we try to traverse all of the objects in the Flash content in order to find
as many as possible of the streaming media objects and sound objects. Therefore, we
traverse the global property as well as the root stage. We also look into the nonvisual
objects. Since the structure built of entire objects in Flash content may contain cyclic
references, we track whether or not the next object has already been visited. This may
still fail since objects may be stored in local variables where we cannot access from the
external AS. However, in our experiments, we were able to all of the critical objects
using these steps.

Once we find out the streaming media objects, we can invoke the pause method to
play or pause the streaming media, and use the seek method to set the current position.
By accessing the sound objects, we can use the setVolume method to set the volume
of the media. Sometimes, Flash content contains more than one sound objects, not all
of which are linked to streaming media objects. Even in such cases, we can adjust
the volume of all of the sound objects with keeping the ratios among their volumes.
This treatment is comparable to controlling a master volume control of all of the sound

Making Multimedia Internet Content Accessible and Usable 103

sources in the Flash content and helps blind users listen to the synthesized speech from
the assistive software, including aDesigner Runtime itself and other screen readers.

3.3 DOM-Based Interface

The aDesigner Runtime internally provides a DOM-based interface by accessing the
HTML DOM supported by Internet Explorer and the DOM-based interface by the in-
jected AS explained in Section[3.2] The reasons why we choose DOM as the common
interface for the accessible browser are as follows.

— DOM is a well accepted standard for Web developers, since Web browsers and Web
application frameworks support DOM for document manipulation.

— By leveraging the tree structure of a DOM, we can seamlessly integrate totally
different content such as HTML and Flash, in a single DOM tree. Through this
integration, the component using this interface (the Ul part) does not need special
considerations of their differences when we navigate in the DOM tree.

— By using the DOM, we can leave room for other Web-based technologies such as
XPath and XSLT. For example, XPath can easily be introduced by using the DOM
interface, which is greatly helpful for queries and for evaluating multimedia content.

This DOM-based interface provides some extensions as well as the standard DOM
functions. These extensions can be classified into two groups: (a) navigation functions
and (b) multimedia-content control functions. By using (a), we can click a node, obtain
a heading node, and do some other tasks to provide an accessible UI. By using (b), we
can search for streaming media objects and sound objects, and control the media by
accessing them.

3.4 User Interface

The UI part of our browser is designed as a distinct component. This approach has
the clear merit that we can present another Ul by just replacing this component. For
example, we could use a Braille display for blind users to navigate and control multi-
media content or use tactile devices to quickly present lots of information. Otherwise,
we would have to provide formatted text to other assistive programs such as screen
readers by showing it in an appropriate window. This type of flexible user interface will
be welcomed by the users who are familiar with their own favorite screen readers. The
DOM-based interface is flexible enough for various Ul components to provide good
user experiences.

3.5 Implementation

We implemented aDesigner Runtime on top of the Eclipse Rich Client Platform (RCPE.
Most of the components in our browser are written in Java, though we use C++ to access
the HTML DOM and the Adobe Flash Player via the COM (Component Object Model)

3 http://wiki.eclipse.org/index.php/Rich Client Platform

104 H. Miyashita et al.

and to access the Microsoft SAPI (Speech APIﬁ for TTS (Text-to-Speech) feature.
We also use ActionScript to write the scripts injected into the Flash content by the
transcoding HTTP Proxy.

In Figure 3l we show a screen shot of our browser. In the current implementation,
the user interface is based on tree navigation. That is, we can move up and down and
go to the next and previous siblings in the tree made from the content. In the left panel,
our browser shows the tree structure and the tree item currently selected. Every time the
user moves in the tree, our browser announces the currently selected item. In addition,
our browser has useful navigation commands such as “skip to heading” or “skip to next
form input item,” similar to typical accessible browsers such as Home Page Reader.
Note that all of these features can be implemented through the DOM-base interface.

EEX

iener Runtime

Favorites ~ File Help
PoE0S
[Navigation by Tree .. 57| = O

= Wi il in action |
7 Address o [»)
.

= - o s "
+ Search Wild Bill in action
+ DI

[o — o 5 e

" e _—
% - . PUp— ——
- Tree Navigation is - s o
- -

shown here

W s W8 15 {
R)
L2

.]

-
L4 L >3 0 -
Property | Vale ' d L
-
" p——
— .
2 S Py

Fig. 3. A screenshot of aDesigner Runtime

Our browser is different from the others in that users can directly control embedded
media by simply pressing shortcut keys. For example, by pressing Ctr1+J, Ctrl+kK,
or Ctrl+M, users can increase, decrease, or mute the volumes of the playing media, re-
spectively. Likewise, by pressing Ctr1+P, Ctrl+S, or Pause, they can play, stop, or
pause the media, respectively. Currently, our browser supports this direct media control
for Flash and FLV contents, but we will also be able to support Windows Media Player
by using the standard API, which will be easier than supporting Flash content.

® http://www.microsoft.com/speech/default. mspx

Making Multimedia Internet Content Accessible and Usable 105

4 Related Work

4.1 Screen Readers and Self-talking Browsers

There exist a number of studies to access Web contents with special browsers for blind
people [BUT7I10]. However, there is relatively little research on making multimedia con-
tents accessible. Recently, some accessible browsers and screen readers have begun to
support multimedia content. For example, Home Page Reader [3] by IBM now supports
multimedia applications such as Flash and Windows Media Player. Some screen read-
ers such as JAWS] and Window-Eyesﬁ also support such multimedia contents. However,
all the existing softwares uses MSAA (Microsoft Active Accessibilityﬂ to access Flash
contents. Therefore, such software can only notify users using functions that are sup-
ported for multimedia content in MSAA. Thus, they do not have special functions to
control multimedia contents as our browser does. It means that with these programs,
we have to focus on the buttons or sliders that are shown by the multimedia content and
use them to control the playing media.

Other interesting research coping with simultaneously presenting multimedia con-
tent and TTS is Streaming Speech® [7]]. They proposed an extension to SMIL [2]], a
standardized multimedia integration language, in order to support 3D spatialization of
multiple audio sources. Their approach makes use of the human ability to select mul-
tiple audio sources by 3D placement, in contrast to our approach. However, it has not
yet been proved whether or not 3D spatialization of multimedia content is accessible
for blind users.

4.2 Web Content Adaptation

Adaptation of Web content by transforming or analyzing it is another approach to pro-
vide more comprehensible information to a wide range of users [12/T3/TTI8I6/T6]. Also
using this approach, there are a few research projects on multimedia content. For ex-
ample, Rousseau et al. proposed an adaptable multimedia presentation framework [12]]
by extending HTML. Thus, multimedia content has already been described using an
extended format. Although HearSay [[[1] automatically analyzes Web pages and en-
ables audio navigation, it does not address multimedia content. DeMeglio et al. showed
a customizable multimedia player, called AMIS, for DAISY content [6], which has to
be natively accessible. Weimann et al. proposed a time-dependent presentation system,
called MultiReader, for multimedia content. MultiReader uses XSL stylesheets to reor-
ganize content into accessible forms and also offers multimedia synchronization meth-
ods, which can be specified in JavaScript. However, this system also requires a special
transcoding rule for each piece of content.

5 Conclusions and Future Work

We described a new accessible browser that tackles some of the issues when browsing
multimedia content. Although lots of multimedia content poses problems for blind users

7 http://www.freedomscientific.com/fs products/software jaws.asp
8 http://www.gwmicro.com/Window-Eyes/
? http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msaa/msaastart 9w2t.asp

106 H. Miyashita et al.

using assistive speech software, our browser is an important step toward a multimedia-
accessible browser. Our browser can directly control multimedia content without con-
sidering any special context such as finding special buttons and pressing them. In par-
ticular, controlling the volume of multimedia content is indispensable for blind users
who need to hear the speech from their assistive software. Our browser can directly
control multimedia Flash content by injecting AS code into that Flash content with a
transcoding HTTP proxy. With our browser, users can easily do basic operations on the
media such as changing the volume with unchanging shortcut keys.

As we have discussed so far, there is a long way to go to make multimedia content ac-
cessible. One of the important issues is about more flexible media control of multimedia
content. Currently, our browser meets a minimum requirement of multimedia control
such as play, stop, pause and volume controls. Since many blind users have prominent
ability to recognize high-speed audio [3]], in order to leverage their ability for more effi-
cient browsing, we believe that more flexible user interface of multimedia content such
as variable speed control and audio skimming control which extracts important sections
is valuable especially for blind users to effectively access such content.

The other significant issue we should cope with is dynamic changes of multimedia
content. Lots of multimedia content heavily uses dynamic visual changes. Since most
of those changes are only eye candy, notifying visually impaired people of all of the
changes is simply annoying and unhelpful. Some activities such as WAI-ARIA [14] are
now tackling this problem by defining metadata for DHTML (Dynamic HTML). With
WAI-ARIA, Web developers can add some metadata to DHTML content to articulate
changes. However, since WAI-ARIA is defined as a set of internal metadata specific
to DHTML, it has two limitations. First, we cannot apply it to other media types than
DHTML, such as Flash. Second, we have to change the content itself to provide the
metadata.

Therefore, we are now considering external metadata which can be applied to various
types of media including Flash and DHTML. We do not have to change the multimedia
content itself to attach such external metadata. With such metadata, accessible browsers
can appropriately notify the users about dynamic changes of the contents.

References

1. Accessibility/IAccessible2 http://www.linux-foundation.org/en/
Accessibility/IAccessible?2

2. Synchronized multimedia integration language (SMIL 2.0) - [2nd edn]. W3C Recommenda-
tion (January 07, 2005) http://www.w3.0org/TR/2005/REC-SMIL2-20050107/

3. Asakawa, C., Itoh, T.: User interface of a home page reader. In: Assets *98: Proceedings of
the third international ACM conference on Assistive technologies, pp. 149-156. ACM Press,
New York (1998)

4. Asakawa, C., Itoh, T., Takagi, H., Miyashita, H. Accessibility evaluation for multimedia con-
tent. In: UAHCI (2007)

5. Asakawa, C., Takagi, H., Ino, S., Ifukube, T.: Maximum listening speeds for the blind. In:
International Community for Auditory Display 2003, pp. 276-279 (2003)

6. DeMeglio, M., Hikkinen, M. T., Kawamura, H.: Accessible interface design: Adaptive mul-
timedia information system (amis). In: ICCHP 2002, pp. 406—412 (2002)

http://www.linux-foundation.org/en/Accessibility/IAccessible2
http://www.linux-foundation.org/en/Accessibility/IAccessible2
http://www.w3.org/TR/2005/REC-SMIL2-20050107/

10.

11.

12.

13.

14.

15.

16.

17.

Making Multimedia Internet Content Accessible and Usable 107

. Goose, S., Kodlahalli, S., Pechter, W., Hjelsvold, R.: Streaming speech®: a framework for

generating and streaming 3D text-to-speech and audio presentations to wireless PDAs as
specified using extensions to SMIL. In: WWW pp. 37-44 (2002)

. Huang, A.W., Sundaresan, N.: Aurora: a conceptual model for web-content adaptation to

support the universal usability of web-based services. In: CUU 00: Proceedings on the 2000
conference on Universal Usability, pp. 124—131. ACM Press, New York, USA (2000)

. Jacobs, L., Gunderson, J., Hansen, E.: User agent accessibility guidelines 1.0. W3C Recom-

mendation (December 17, 2002) http://www.w3 .org/TR/UAAG10/

King, A., Evans, G., Webbie B.P: a web browser for visually impaired people. In: Proceed-
ings of the 2nd Cambridge Workshop on Universal Access and Assistive Technology, pp. 35—
44 (2004)

Ramakrishnan, 1.V., Stent, A., Yang, G.: HearSay: enabling audio browsing on hypertext
content. In: WWW ’04: Proceedings of the 13th international conference on World Wide
Web, pp. 80-89. ACM Press, New York, USA (2004)

Rousseau, F., Garcia-Macias, J.A., de Lima, J.V., Duda, A.: User adaptable multimedia pre-
sentations for the world wide web. Computer Networks 31, 11-16, 1273-1290 (1999)
Saito, S., Takagi, H., Asakawa, C.: Transforming flash to xml for accessibility evaluations.
In: ASSETS, pp. 157-164 (2006)

Schwerdtfeger, R.: Roadmap for accessible rich internet applications (WAI-ARIA roadmap).
W3C Working Draft (December 20, 2006)
http://www.w3.org/TR/aria-roadmap/

Takagi, H., Asakawa, C., Fukuda, K., Maeda, J.: Site-wide annotation: reconstructing exist-
ing pages to be accessible. In: ASSETS, pp. 81-88 (2002)

Weimann, K., Langer, 1., Weber, G.: Adaptation of multimedia browsing techniques. In: IC-
CHP, pp. 135-142 (2004)

Zajicek, M., Powell, C., Reeves, C.: A web navigation tool for the blind. In: Assets *98:
Proceedings of the third international ACM conference on Assistive technologies, pp. 204—
206. ACM Press, New York, USA (1998)

http://www.w3.org/TR/UAAG10/
http://www.w3.org/TR/aria-roadmap/

	Introduction
	Accessibility Issues of Internet Multimedia Contents
	Multimedia Accessible Browser
	Overall Architecture
	Flash Transcoding Proxy
	DOM-Based Interface
	User Interface
	Implementation

	Related Work
	Screen Readers and Self-talking Browsers
	Web Content Adaptation

	Conclusions and Future Work

