
C. Stephanidis (Ed.): Universal Access in HCI, Part III, HCII 2007, LNCS 4556, pp. 142–149, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Improving Accessibility for Existing Websites Spanning
Multiple Domains

Takashi Sakairi1, Takuya Ohko2, and Hidemasa Muta1

1 IBM Japan, Tokyo Research Laboratory
2 IBM Japan, Accessibility Center

1623-14, Shimo-tsuruma, Yamato, Kanagawa 242-8502, Japan
{sakairi,ohkot,hmuta}@jp.ibm.com

Abstract. There are demands for improving accessibility in existing websites
by enlarging text and changing the colors. Typical solutions use technologies
such as ActiveX that can only run on a specific client environment. JavaScript
is supported in many Web browsers, and it can be used to add new functions for
improving the accessibility of existing websites. However, Web browsers pro-
hibit JavaScript from accessing webpages of another domain, so it is difficult to
improve accessibility for related websites spanning multiple domains. This pa-
per describes a method that solves the problem.

Keywords: Accessibility, Websites, Dynamic HTML, JavaScript, Same Origin
Policy.

1 Introduction

The Web plays important roles in daily life and business. Many organizations develop
websites for various purposes, such as to deliver information and for electronic com-
merce. Meanwhile, the ratio of senior citizens is increasing and will soon be increas-
ing quite rapidly in many countries. However, there are many obstructions to senior
citizens’ access to the Web. Due to the complications of weak eyesight, many seniors
are uncomfortable about browsing webpages crammed full of information and using
small, hard-to-read fonts. In response, many websites’ owners recognize that accessi-
bility is increasingly important [1, 2, 3]. It is possible to improve accessibility for
people with limited vision by enlarging the text and by changing the colors.

Fig. 1 shows two types of accessibility tools. The first type is an accessibility tool
for a Web browser (a). Users install such an accessibility tool by themselves [4]. Us-
ers can access any Web server with the tool, but it is difficult for novice users to in-
stall such tools. The second type is an accessibility tool for a Web server (b). Provid-
ing accessible websites without troubling the user is important for many
organizations, especially for public institutions. This paper describes an accessibility
tool for a Web server.

When a website’s owner decides to improve accessibility, it is not always the case
that the affected webpages are in a single domain. For example, a local government
may have a website, http://www.city.jp/, but a university established by the local gov-
ernment may have a separate website, http://www.u-city.ac.jp/, in another domain.

 Improving Accessibility for Existing Websites Spanning Multiple Domains 143

Fig. 1. Two types of accessibility tools: (a) an accessibility tool for a Web browser, and (b) an
accessibility tool for a Web server

Fig. 2 shows three methods for a website’s owner to improve the accessibility of
the website. The first method is by generating personalized webpages on the Web
server (a). The text size, the text color, and the background color of the webpages are
changed according to each user’s preferences. This method is not acceptable for many
website owners, because they already have a lot of content in their website and this
method usually requires modification of the existing content to parameterize it. The
second method is transcoding webpages at a Web intermediary [5, 6, 7] (b). This
method does not require modification of the existing content, but lots of computing
power is required for the Web intermediary if the number of users is large. The third
method involves sending a program to the Web browsers, and the program modifies
the appearance of the webpages on the Web Browsers [8, 9, 10] (c). This method also
requires no modification of the existing content. In addition, this method is scalable,
because the changes of the webpages’ appearances are made by the users’ machines.
This paper describes an approach using the third method.

Most of the proposed solutions [8, 9, 10] to improve websites’ accessibility use
technologies available only on a specific client environment (such as ActiveX for
Internet Explorer). With such solutions, users have to use a specific operating system
and a specific Web browser. Our work addresses this problem.

A Web browser
that has an accessi-
bility tool installed

Any Web servers

A Web server
that installs an
accessibility tool

Any Web brows-
ers

(a) (b)

144 T. Sakairi, T. Ohko, and H. Muta

Fig. 2. Three types of method to improve website accessibility: (a) generating personalized
webpages on a Web server, (b) transcoding webpages by a Web intermediary, and (c) sending a
program to a Web browser

The remainder of this paper is organized in the following way: Section 2 presents
the basic methods to improve accessibility for an existing website using JavaScript™.
Section 3 suggests ways of enhancing the method for related websites in multiple do-
mains. Section 4 concludes the paper and describes our future work.

2 Improving Accessibility Using JavaScript

Our proposed method uses JavaScript [11] to add new functions to improve accessi-
bility. JavaScript is supported in many Web browsers and such Web browsers run on
many operating systems, so users can access these accessible websites from heteroge-
neous client environments. In addition, users do not have to install a program when
using JavaScript. JavaScript programs are executed without special installation.

A webpage loaded in a Web browser is represented by a tree structure called a
Document Object Model (DOM) [12]. JavaScript can handle events generated by a
DOM, and can modify the DOM to change the webpage’s appearance. For example,
JavaScript can highlight a text element under the mouse pointer, and can show the
text in another frame with larger text. Fig. 3 shows an example of enlarged text.

(a)

(b)

(c)

Personalized webpages

Personalized webpages Existing webpages

Existing webpages + programs

A Web browser

A Web browser

A Web browser

A Web server

A Web server

A Web server

A Web intermediary

 Improving Accessibility for Existing Websites Spanning Multiple Domains 145

Fig. 3. Example of enlarged text

Fig. 4. Modification of a DOM

Our method uses several frames: one frame (the content frame) is used for displaying
existing webpages and the other frames are used for additional functions such as dis-
playing buttons and showing enlarged text. When an existing webpage is loaded in the
content frame, an “onload” event handler for the content frame is called. (Although the

<P>

The Web plays important roles in daily
life and business. Many organizations
develop websites for various purposes.

<P>

The Web plays important roles
in daily life and business.

Many organizations develop
websites for various purposes.

A frame that shows
an existing webpage

A frame that shows
enlarged text

Zoom In
A frame that shows
control buttons Zoom Out

146 T. Sakairi, T. Ohko, and H. Muta

“onload” event handler for the “FRAME” element is not actually defined in HTML
specification [13], it is enhanced in both of the major Web browsers Internet Explorer
and Mozilla.) The handler modifies the appearance of the webpage and sets event han-
dlers for “mouseover” and “mouseout” events on the page. By setting up the event han-
dlers, we can manipulate the webpage’s DOM when events are generated.

The “mouseover” event occurs when the pointing device is moved onto an HTML
element, and the “mouseout” event occurs when the pointing device is moved so it is
no longer over an HTML element. We can highlight the pointing HTML element, and
show the enlarged text in the other frame by the event handlers.

It is sometimes necessary to modify the DOM in the “onload” event handler to ac-
cess fine-grained mouse events. For example, a “P” element can be divided into sev-
eral “SPAN” elements to get mouse events for the individual sentences (Fig. 4).

When a link in a webpage (in the content frame) is followed to another webpage in
the same domain, the “onload” event handler is executed and the accessibility func-
tions work fine. However if it is followed to another webpage in another domain, the
“onload” event handler cannot be executed and the accessibility functions do not
work. Script programs cannot access a DOM loaded from another domain. This is
called the Same Origin Policy [14].

3 Enhancement for Multiple Domains

We enhanced our method so that the added functions for improving accessibility can
be used without requiring the users to make special efforts between related websites

Fig. 5. Related Web servers install the accessibility tools

Related Web servers
install the accessibility tools

Any Web brows-
ers

http://www.city.jp/

http://www.u-city.ac.jp/

 Improving Accessibility for Existing Websites Spanning Multiple Domains 147

in multiple domains. Suppose a website’s owner want to improve the accessibility for
two related websites such as http://www.city.jp/ and http://www.u-city.ac.jp/ (Fig. 5).
And some of the webpages in the websites are linked to each other. Our goal is to let
users navigate from one website to the related website while using the accessibility
capabilities without special efforts.

Each website has a dynamic webpage for generating an accessible page with a
frameset: http://www.city.jp/EasyWeb and http://www.u-city.ac.jp/EasyWeb. The
URL of the content frame is specified as a parameter. It is possible to access the web-
page http://www.city.jp/news.html with improved accessibility by specifying
http://www.city.jp/EasyWeb?content=news.html.

Following is an example of generating an accessible webpage implemented with
JavaServer Pages™. The second frame is a content frame, and the “src” attribute is
specified by the “content” parameter. The other frames are used for additional func-
tions.

<HTML>
<HEAD>
<%@ page language=”java” contentType=”text/html” %>
<TITLE>Easy Web</TITLE>
<SCRIPT type=”text/javascript” src=”easy.js”></SCRIPT>
</HEAD>
<FRAMESET rows=”20%,*,30%”>
 <FRAME src=”controller.html” name=”controllerFrame”>
 <FRAME src=”<%=request.getParameter(“content”)%>”
 name=”contentFrame” onload=”init(contentFrame)”>
 <FRAME src=”magnifier.html” name=”magnifierFrame”>
</FRAMESET>
</HTML>

We added the following two steps to the “onload” event handler for the content
frame to support multiple domains. First, we check the “href” attribute of all “A”
elements and the “action” attribute of all “FORM” elements in the content frame’s
page. Next, if the attribute value is specifying a page in a related website, we change
the value to be a corresponding URL for improved accessibility, and change the “tar-
get” attribute to “_top”. “_top” means that loading a new webpage does not occur into
the content frame but into the topmost window. When the user navigates to the modi-
fied URL, the webpage contains a “FRAMESET” and the webpage in the content
frame have the same origin so the “onload” event handler can execute. By using these
steps, users can navigate to the pages of the related websites with improved accessi-
bility.

4 Conclusion and Future Work

We developed a prototype system for our proposed method, and confirmed that our
method can improve accessibility for existing websites spanning multiple domains.
We also confirmed that our method works on several combinations of operating

148 T. Sakairi, T. Ohko, and H. Muta

system and Web browser: Windows™ with Internet Explorer, Windows with Mozilla,
Linux™ with Mozilla, and Mac with Mozilla.

The IBM® Tokyo Research Laboratory developed an assistive Web browsing sys-
tem, Easy Web Browsing [8, 9], in 2002. The system has already been adopted by
some IT leaders among local governments, ministries of the central government, and
IT companies in Japan and other countries. It enlarges the displayed characters,
changes background and character colors, and reads text aloud. The currently released
version is implemented with ActiveX, so it works only on the combination of Win-
dows with Internet Explorer. Although installing Easy Web Browsing is not difficult,
users do have to install it on their computers.

We plan to enhance Easy Web Browsing by using our new method. Although it is
possible to implement most functions required for improving the accessibility of web-
pages by using JavaScript, it is not possible to implement some functions that way.
For example, reading text aloud is not possible with JavaScript. We have to imple-
ment such functions by using another technology, and call the functions from
JavaScript.

References

1. World Wide Web Consortium, Web Accessibility Initiative (WAI)
http://www.w3.org/WAI/

2. Section 508: The Road to Accessibility http://www.section508.gov/
3. Rowan, M., Gregor, P., Sloan, D., Booth, P.: Evaluating Web Resources for Disability Ac-

cess. In: Proceedings of the 4th ACM Conference on Assistive Technologies, pp. 80–84
(2000)

4. Asakawa, C., Itoh, T.: User Interface of a Home Page Reader. In: Proceedings of the 3rd
ACM Conference on Assistive Technologies, pp. 149–156 (1998)

5. Barrett, R., Maglio, P.P.: Intermediaries: An approach to manipulating information
streams. IBM System Journal 38(4), 629–641 (1999)

6. Huang, A.W., Sundaresan, N.: A Semantic Transcoding System to Adapt Web Services
for Users with Disabilities. In: Proceedings of the 4th ACM Conference on Assistive
Technologies, pp. 156–163 (2000)

7. Fairweather, P.G., Hanson, V.L., Detweiler, S.R., Schwerdtfeger, R.S.: From Assistive
Technology to a Web Accessibility Service. In: Proceedings of the 5th ACM Conference
on Assistive Technologies, pp. 4–8 (2002)

8. Muta, H., Ohko, T., Yoshinaga, H.: An Active-X-based Accessibility Solution For Senior
Citizens. In: Proceedings of CSUS’s 20th Annual International Conference (2000)

9. IBM Japan, Easy Web Browsing
http://www.ibm.com/able/solution_offerings/EasyWebBrowsing.html

10. Hitachi Government & Public Corporation System Engineering, ZoomSight
http://www.zoomsight.jp/demo/zsmd/lang/en/html/help/about_help.html

11. ECMA International, ECMAScript Language Specification, Standard ECMA-262, 3rd
edn. (December 1999) http://www.ecma-international.org/publications/files/ECMA-
ST/Ecma-262.pdf

12. World Wide Web Consortium, Document Object Model (DOM) Level 2 HTML Specifica-
tion Version 1.0, W3C Recommendation (January 09, 2003) http://www.w3.org/TR/2003/
REC-DOM-Level-2-HTML-20030109/

 Improving Accessibility for Existing Websites Spanning Multiple Domains 149

13. World Wide Web Consortium, HTML 4.01 Specification, W3C Recommendation (De-
cember 24, 1999) http://www.w3.org/TR/1999/REC-html401-19991224/

14. Ruderman, J.: The Same Origin Policy
http://www.mozilla.org/projects/security/components/same-origin.html

IBM is a registered trademark of International Business Machines Corporation in the

United States, other countries, or both.
Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.
Windows is a trademark of Microsoft Corporation in the United States, other coun-

tries, or both.
Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

	Introduction
	Improving Accessibility Using JavaScript
	Enhancement for Multiple Domains
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

