
C. Stephanidis (Ed.): Universal Access in HCI, Part III, HCII 2007, LNCS 4556, pp. 167–176, 2007.
© Springer-Verlag Berlin Heidelberg 2007

DHTML Accessibility Checking Based on Static
JavaScript Analysis

Takaaki Tateishi, Hisashi Miyashita, Tabuchi Naoshi, Shin Saito, and Kouichi Ono

Tokyo Research Laboratory, IBM Research
1623-14 Shimotsuruma, Yamato-shi, Kanagawa-ken, 242-8502 Japan

{tate,himi,tabee,shinsa,onono}@jp.ibm.com

Abstract. DHTML accessibility is being standardized by W3C, which provides
metadata for UI widgets commonly implemented by HMTL and JavaScript.
However it is difficult to check that webpages always have correct metadata
according to the standards of DHTML accessibility since UI widgets can be
updated by JavaScript programs. Thus we propose a technique for checking
accessibility of UI widgets. In this check, we use static program analysis
techniques so that we can check accessibility without executing a program. In
addition, we developed a prototype system based on the proposed technique and
applied it to a simple DHTML application.

Keywords: DHTML accessibility, JavaScript, Static program analysis.

1 Introduction

Rich internet applications based on DHTML are spreading globally. One key
component is a client-side scripting language, JavaScript in the most common case.
Such a JavaScript program can operate directly on the internal tree representation of a
webpage called a DOM (Document Object Model) instance, and contributes to
enhance both the functionality and usability of dynamic Web applications. One of the
popular methods to enhance the functionality and usability is to create UI widgets
such as checkboxes and tab panels. Such UI widgets are represented by a DOM
instance and JavaScript programs called event handlers. However a lot of UI widgets
are inaccessible since they don’t provide information about what is represented by
DOM instances, and thus a screen reader cannot identify them as UI widgets.
Consequently people with visual disabilities cannot understand what UI widgets are
on a webpage.

DHTML accessibility [13, 14, 15] is being standardized by W3C to address such
situations, and some of these features are supported by Firefox [5]. The key concept
of the standards is a set of accessibility metadata, called accessibility roles and states,
for identifying classes of UI widgets such as Checkbox and those valid accessibility
states such as “checked” or “unchecked”. It also supplies rules for state changes to
specify how UI widgets should behave. Assistive technologies such as screen readers
can provide useful information for people with visual disabilities by interpreting the
accessibility metadata. Thus proper accessibility metadata should be a part of HTML

168 T. Tateishi et al.

documents so that people with visual disabilities can understand the structures of the
UI widgets and their states.

For the development of DHTML applications, developers should write event
handlers for UI widgets that operate on DOM instances according to the DHTML
accessibility standards. One of the methods to check accessibility metadata is
validation of an HTML document against the standards, but this is not adequate, since
we actually need to check the DOM instance each time it is updated by the program,
and also check the behavior of the UI widgets. In addition, testing is a popular
technique to verify the behavior of software applications as well as dynamic Web
applications, but it is hard to check all of the possible DOM instances updated by the
program.

In this paper, we propose a novel technique to check that an UI widget behaves
according to the DHTML accessibility standards by using a static program analysis
technique called DOM analysis [7] to assist developers in writing accessible DHTML
applications. Static program analysis involves techniques for predicting values or
approximations to the set of possible results that will arise at run-time without running
a program. A number of approaches to static program analyses are being studied for
different purposes. We also developed a DOM analysis for the purpose of predicting
the set of DOM instances updated by a JavaScript program.

With this technique, we formally define a constraint on the accessibility metadata
and state changes, called an accessibility rule, for each UI widget based on the
DHTML accessibility standards. Such an accessibility rule is described with a state
transition diagram and schemata. A state transition diagram consists of states and state
transitions, and specifies how the accessibility states are changed. Each schema is
associated with a state of the state transition diagram and defines the validity of the
roles and states such as the valid states for the roles and the parent-child relationships
between roles.

This paper is organized as follows: Section 2 describes the accessibility roles and
states with a simple example, and then formalizes accessibility of UI widgets for
DHTML applications. In Section 3 we explain how to check the accessibility of UI
widgets against the accessibility rules. In Section 4 we comment on our experiments
with a prototype system. In Section 5 we briefly describe some related techniques and
tools for checking DHTML accessibility. In Section 6 we conclude this paper.

2 DHTML Accessibility and Its Formalization

In this section, we first explain the accessibility roles and states and then formally
define the accessibility of an UI widget using a state transition diagram and schemata.

2.1 UI Widgets and Accessibility Metadata

Accessibility roles and states are added to an HTML document as XML attributes for
identifying classes of UI widgets and their valid accessibility states. By interpreting
the accessibility roles and state, assistive tools such as a screen reader can recognize
the HTML element as an UI widget having a valid accessibility state.

 DHTML Accessibility Checking Based on Static JavaScript Analysis 169

Figure 1 is a HTML fragment representing a checkbox. The appearance of the
checkbox is defined by the class attribute specifying a style sheet. The x2 and state
are namespaces, defined in the drafts of W3C standards [14, 15], for accessibility
roles and states respectively.

<span class="checkbox" id="chbox1" x2:role="role:checkbox"

state:checked="true" tabindex="0"
onkeydown="return checkBoxEvent(event);"
onclick="return checkBoxEvent(event);" >

a checkbox sample

Fig. 1. A HTML fragment representing a checkbox widget

In addition, behavior of the checkbox is implemented by a JavaScript program
specified by the onkeydown attribute and the onclick attribute as shown in Figure 2.
The program reacts to user events of mouse click and key down, and changes the
accessibility state of the checkbox with the setAttributeNS function.

function checkBoxEvent(event){
if ((event.type == "click" && event.button == 0) ||

(event.type == "keydown" && event.keyCode == 32)) {
var checkbox = event.target;
if (checkbox.getAttributeNS("http://www.w3.org/2005/07/aaa", "checked")

== "true") {
checkbox.setAttributeNS("http://www.w3.org/2005/07/aaa" "checked",

”checked”,”false”);
} else {

checkbox.setAttributeNS("http://www.w3.org/2005/07/aaa",
"checked",”true");

}
return false;

}
return true;

};

Fig. 2. An event handler for the checkbox widget

Such a UI widget has a set of constraints on its accessibility states and state
changes called an accessibility rule. A constraint on the accessibility states determines
how to specify the accessibility state of a UI widget. For example, a checkbox widget
must have a checked attribute and its value must be true or false. In addition, from
those valid states we can define a constraint on state changes. For example, if there is
a click event and the current value of a checked attribute is true, it should be changed
to false. Otherwise it should be changed to true. We call such a set of constraints an
accessibility rule. In the next section, we formalize the accessibility rule.

170 T. Tateishi et al.

2.2 Formal Description for Accessible UI Widgets

We define an accessibility rule for each UI widget using a state transition diagram and
a schema language playing a similar role with DTD based on regular expression type
[3, 4] to describe the behavior of the UI widget and constraints on accessibility state
respectively. In addition, the schema language is equivalent to the regular tree
grammar [2].

For example, the following schema represents a checked checkbox where each
attribute is considered as a label with prefixed @ and String represents an arbitrary
string.

Checkbox span[Id, Class, Checked]

Id @id[String]

Class @class[String]

Checked @checked[true]
This schema is corresponding to the following DTD definition.
 <!ELEMENT span EMPTY!>

 <!ATTLIST span id #PCDATA!>

 <!ATTLIST span class #PCDATA!>

 <!ATTLIST span checked true!>
The syntax of the schema language is defined as follows.

A schema consists of a set of rules. Each rule constrains the structure of a tree with a
pattern Tree and is referred to by Var so that the pattern can be used in other rules.
Such a pattern can represent a tree labeled by Label, a sequence of trees separated by
“,” or a choice of trees by “|”, where the label represents HTML elements or attributes.
In addition, “()” represents an empty sequence and “{}” means that there is no choice.
An arbitrary number of trees is represented by “*”, and it is defined as follows.

 Var Tree* = Var Tree Var | ()
In our accessibility rules, the schema of the checked checkbox is generally defined

by the following schema where Any represents an arbitrary element and A represents
all the attributes except checked.

Checkbox Any[A*, Checked, A*]

Checked @checked[true]

A (@id[String]|@class[String]|…)

Schema := Rule, Rule, …

Rule := Var → Tree

Tree := Label [Tree]

| Tree,Tree

| Tree|Tree

| Var

| ()

| {}

 DHTML Accessibility Checking Based on Static JavaScript Analysis 171

If we define a schema for an unchecked checkbox, we use false instead of true in
the rule for Checked.

The behavior of a UI widget is defined by a state transition diagram that consists of
states and transitions. A transition has an event and a guard condition to determine
when an accessibility state is changed. With a state transition diagram and schemata,
we define the accessibility rules of UI widgets in which each state of a state transition
diagram is associated with a schema representing an accessibility state.

Figure 3 shows an example of an accessibility rule for the checkbox. In the
accessibility rule, CheckedSchema is a schema of the checked checkbox and it is
associated with the checked state. UncheckedSchema is a schema of the unchecked
checkbox and it is associated with the unchecked state. Each transition says that a
checkbox changes its state when a user clicks the widget using a left button which is
represented by 0 in JavaScript.

click[button=0]

click[button=0]

Checked Unchecked

CheckedSchema:
Checkbox Any[A*, Checked, A*]
Checked (@checked[true]
A ((@id[String]|@class[String]|…)

UncheckedSchema:
Checkbox Any[A*, Checked, A*]
Checked @checked[false]
A (@id[String]|@class[String]|…)

Fig. 3. State transition diagram representing behavior of the checkbox

3 Checking DHTML Accessibility

In this section, we describe how to check the accessibility of a UI widget against a
corresponding accessibility rule. The main idea for this check is to verify that the UI
widget is always accessible. More properly, it satisfies the corresponding schema as
long as it behaves according to the corresponding state transition diagram. However
the DOM instance representing a UI widget can be updated without limit and we
cannot check all of the DOM instances. Therefore we focus on repeated updates and
omit the checks against the repeated updates. Consider the example of the checkbox.
The state of the checkbox is changed to checked and unchecked alternately as shown
in Figure 4. Thus if we verify that (1) any DOM instance representing a checked
checkbox is transformed to one representing a unchecked checkbox and (2) any DOM
instance representing a unchecked checkbox is transformed to one representing a
checked checkbox, we can omit the verifications of the other same transitions. This
leads to the conclusion that we can divide the verification against the state transition
diagram into one for each state transition, and check that each DOM instance
satisfying a schema associated with a pre-state is transformed to one satisfying a

172 T. Tateishi et al.

schema associated with a post-state. If all of the verifications of state transitions are
successful, then the target UI widget satisfies the accessibility rule.

In order to describe the verification more precisely, we first briefly explain the
static program analysis techniques used by the verification, and then describe how to
use those techniques for the verification.

checked unchecked

unchecked

checkedSchema uncheckedSchema

validate validate

repeat

checked

checkedSchema

checked

validate

(1) (2)

Fig. 4. Verifying an UI widget against an accessibility rule

3.1 Static Program Analyses

In the verification, we use the two complementary static program analysis techniques
called dynamic slicing [8] and DOM analysis [7].

Dynamic Slicing
The dynamic slicing is a technique for extracting statements affecting the values of

variables for particular input data. A collection of extracted statements is called a
slice. As a simple example, consider a program shown in Figure 5 with input data
event.type, event.button and event.target such that event.type is “click”, event.button
is 0 and event.target is a DOM element that has a checked attribute with the value
“true”. The deleted (struck-out) statements do not affect the DOM elements
“checkbox” and we can extract the other statements as a slice.

Fig. 5. A slice of a JavaScript program

DOM Analysis
DOM analysis is a technique for inferring DOM instances as updated by a program.
Such inferred DOM instances can be represented by a schema. Thus we can check
that the inferred DOM instances are accessible by checking that they are included in
the schema of an accessibility rule. For example, if we have a set of DOM instances

if (event.type == "click" && event.button == 0) {

 var checkbox = event.target;

 if (checkbox.getAttribute("checked") == "true") {

 checkbox.setAttribute("checked", "false");

 } else {

 checkbox.setAttribute("checked",”true");

 }

 return false;

}

return true;

 DHTML Accessibility Checking Based on Static JavaScript Analysis 173

represented by the CheckedSchema schema of Figure 3 and infer the DOM instances
as updated by the program of Figure 5, we can obtain a set of DOM instances
represented by the following schema that represents a checked checkbox and an
unchecked checkbox.

Checkbox Any[A*, Checked, A*]

Checked @checked[true|false]

A (@id[String]|@class[String]|…)
In addition, if we use the sliced program shown in Figure 5, we can obtain a set of

DOM instances represented by the following schema that represents only an
unchecked checkbox.

Checkbox Any[A*, Checked, A*]

Checked @checked[false]

A (@id[String]|@class[String]|…)
Those schemata can be compared with other schema such as CheckedSchema and

UncheckedSchema of Figure 5 using the same algorithm as for regular expression
types.

3.2 Verifying the Accessibility of UI Widgets

In order to verify the accessibility of a UI widget on a dynamic webpage against a
corresponding accessibility rule, we first extract a DOM element providing a view of
each UI widget and all event handlers that update the DOM instance (as described in
Step 1), and then we check that the UI widget always satisfies a corresponding
schema (in Step 2 and 3).

Step 1: Extract an UI widget and its event handlers
Accessibility roles are the key metadata for extracting UI widgets. We consider a
DOM element having an accessibility role as a UI widget since assistive tools
recognize classes of UI widgets based on the accessibility roles. In addition, we
identify event handlers based on attributes such as onclick and onkeydown. For
example, Figure 1 and Figure 2 are an extracted UI widget and the event handlers
respectively, since the span element has the checkbox role and the onclick and
onkeydown attributes are specified in the JavaScript program of Figure 2.

Step 2: Check that the initial DOM instance satisfies a schema
The main idea for checking accessibility of a DOM instance that could be updated
without limit is to divide the verification against its corresponding accessibility rule
into verifications against each state transition. This inductive idea is valid if the initial
DOM instance is accessible. Thus we have to verify that the initial DOM instance
extracted in Step 1 is accessible by comparing the DOM instance with the schema of
the initial state. For the checkbox widget, we check if the DOM instance described in
Figure 1 satisfies the CheckedSchema schema described in Figure 3.

Step 3: Check that every update is legal according to a corresponding state transition
We divide verification against an accessibility rule into verification against each state
transition as described above. In the verification against a state transition, we verify

174 T. Tateishi et al.

that an accessible DOM instance is transformed into another accessible one with a
corresponding event handler.

For example, when we verify that the checkbox described in Figures 1 and 2 is
updated according to the state transition from the checked state to the unchecked state
shown in Figure 3, we can extract the same slice as in Figure 5. This is because the
state transition has a click event and the guard condition button=0 and thus we can use
“click” and 0 for event.target and event.button respectively. Next we can infer a set of
DOM instances from the CheckedSchema schema. The set of the inferred DOM
instances are represented by the following schema.

Checkbox Any[A*, Checked, A*]

Checked @checked[false]

A (@id[String]|@class[String]|…)
Finally we check that the set of the inferred DOM instances is included in the

UncheckedSchema schema.
For this verification, we perform the following three steps:

1. Extract a slice corresponding to the target state transition from the event handler. In
order to extract a slice corresponding to a target state transition, we use an event, a
guard condition and a schema associated with a pre-state to identify the input data.

2. Infer a set of updated DOM instances from a set of DOM instances that satisfies
the schema associated with the pre-state of the state transition by applying DOM
analysis to the extracted slice. Note that the set of the inferred DOM instances
contains all of DOM instances arising at run-time and it is represented in the
schema language.

3. Check that the set of the updated DOM instances is included in the corresponding
schema associated with the post-state of the state transition.

4 Experiments

We developed a prototype of a DHTML accessibility checker based on the proposed
technique. The prototype has prior knowledge of the accessibility rules corresponding
to the UI widgets. Thus developers need not prepare any accessibility rules by
themselves.

We used the prototype for checking the accessibility of a checkbox in accessible
DHTML samples provided by the Mozilla.org project against three types of the
accessibility rules shown in Figures 3, 6 and 7, testing on a laptop PC with a Pentium-
M 2.13GHz CPU and 1.5GB of memory. The time for the slicing steps (Step 3-1), the
inference steps (Step 3-2), the comparison steps (Step 3-3) and the total time are
shown in Table 1.

As shown in the results, most of time was taken by the comparison phases, since
we employed only the basic algorithm for comparing regular expression types though
there are some high-level techniques to improve performance. In addition, theoretical
total time for inference phases and comparison phases proportionally increases
according to the number of state transitions. This prospect is shown in the results of
Figure 3 and 6. However, the inference time and the comparison time for Figure 7 is
worse than Figure 3 since an extracted slice and a set of inferred DOM instances for
Figure 7 become larger or more complex than Figure 3.

 DHTML Accessibility Checking Based on Static JavaScript Analysis 175

Table 1. Execution time of the verification

accessibility
rule

slicing time
(ms)

inference time
(ms)

comparison time
(ms)

total time
(ms)

Figure 3 234 516 3860 7391

Figure 6 251 953 6186 10140

Figure 7 203 750 24625 28266

click[button=0]

Checked Unhecked

click[button=0]

keydown[keyCode=32]

keydown[=]keyCode 32

Fig. 6. An accessibility rule with one state Fig. 7. An accessibility rule with the keydown

event

5 Related Work

There are a lot of automated accessibility check tools [16] such as WebXACT [17] or
WebKing [9] and related research activity. As for WebKing, it provides functionality
for checking dynamically constructed webpages. For this check, it requires scripts in
which the tester describe how a user reacts to the webpage, such as by filling out an
input form with text, and then it checks the pre-defined rules, including the
accessibility by executing the applications. On the other hand, our proposed technique
does not need to execute so it is applicable to accessibility checking during the
development phase.

From the viewpoint of the flexibility of tools, a concept of separation between
checking rules (i.e.: standards and guidelines) and rule engines (i.e.: system for
evaluating the checking rules) is important. Some tools such as Lift [12] allow us to
customize a guideline according to specific requests such as a corporate guideline by
selecting pre-defined rules. In order to make a customization more flexible, a
language for defining guidelines and a framework for evaluating custom guidelines
was proposed [1, 6]. We can describe static features of guidelines using the guideline
definition language, but we can not describe dynamic features such as the behavior of
the UI widget.

In addition, Sun et al. [11] and Pontelli et al. [10] focus on semantic features of
webpages for improving navigability. Sun uses automata for modeling online web
transactions as we use state transition diagrams for modeling the behavior of the UI

click[button=0]Checkbox

CheckboxSchema:
Checkbox → Any[A*, Checked, A*]
Checked @checked[true|false]
A ((@id[String]|@class[String]|…)

→

→

176 T. Tateishi et al.

widgets. Pontelli provides a language for providing semantic description of tables
found in web pages and for navigation strategies.

6 Conclusion

In this paper, we proposed a fundamental technique for verifying the accessibility of
UI widgets in a DHTML application during the development phase. In this
verification, we check that an UI widget always has proper accessibility state
according to a corresponding accessibility rule. In addition, we use power of static
program analysis techniques so that we can perform the accessibility checking
without execution. In the future, we will improve our prototype so as to apply it to a
set of UI widgets implemented as a part of JavaScript libraries such as DOJO.

References

1. Beirekdar, A., Keita, M., Noirhomme, M., Randolet, F., Vanderdonckt, J., Mariage, C.:
Flexible Reporting for Automated Usability and Accessibility Evaluation of Web Sites. In:
Proc. of Human-Computer Interaction (2005)

2. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., Tommasi,
M.: Tree Automata Techniques and Applications http://www.grappa.univ-lille3.fr/tata

3. Hosoya, H., Vouillon, J., Pierce, B.: Regular expression types for XML. In: Proc. of the
International Conference on Functional Programming, pp. 11–22 (2000)

4. Hosoya, H., Pierce, B.: Regular expression pattern matching for XML. In: Proc. of
Principles of Programming Languages, pp. 67–80 (2001)

5. Mozilla: Accessible Rich Internet Application
http://developer.mozilla.org/en/docs/Accessible_DHTML

6. Vanderdonckt, J., Beirekdar, A.: Automated Web Evaluation by Guideline Review.
Journal of Web. Engineering 4(2), 102–117 (2005)

7. Tateishi, T., Miyashita, H., Saito, S., Ono K.: Automated Verification Tool for DHTML.
In: Proc. of Automated Software Engineering (2006)

8. Tip, F.: A survey of program slicing techniques, Journal of Programming Languages, pp.
121–181 (1995)

9. Parasoft: WebKing, http://www.parasoft.com/jsp/products/home.jsp?product=WebKing
10. Pontelli, E., Xiong, E., Gupta, G., Karshmer, A.I.: A Domain Specific Language

Framework for Non-Visual Browsing of Complex HTML Structures. In: Proc. of the
International Conference on Assistive technologies (2000)

11. Sun, Z., Mahmud, J., Mukherjee, S., Ramakrishnan, I.V.: Model-directed web transactions
under constrained modalities. In: Proc. of the International Conference on World Wide
Web, pp. 447–456 (2006)

12. UsableNet Inc.: Lift for Dreamweaver
http://www.usablenet.com/products_services/lift_dw/lift_dw.html

13. W3C: Dynamic Accessible Web Contents Roadmap
http://www.w3.org/WAI/PF/roadmap/

14. W3C: Roles for Accessible Rich Internet Applications http://www.w3.org/TR/aria-role/
15. W3C: States and Properties Module for Accessible Rich Internet Applications

http://www.w3.org/TR/aria-state/
16. W3C: Web Accessibility Evaluation Tools http://www.w3.org/WAI/ER/tools/
17. Watchfire Corporation: WebXACT http://webxact.watchfire.com/

	Introduction
	DHTML Accessibility and Its Formalization
	UI Widgets and Accessibility Metadata
	Formal Description for Accessible UI Widgets

	Checking DHTML Accessibility
	Static Program Analyses
	Verifying the Accessibility of UI Widgets

	Experiments
	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

