
N. Aykin (Ed.): Usability and Internationalization, Part II, HCII 2007, LNCS 4560, pp. 114–122, 2007.
© Springer-Verlag Berlin Heidelberg 2007

User-Centered Design: Component-Based Web
Technology

Esin Kiris, Howard Abrams, and Roman Longoria

CA One CA Plaza
Islandia, NY 11749, USA

esin.kiris@ca.com, howard.abrams@ca.com, roman.longoria@ca.com

Abstract. In this age of rapid technological progression and heightened
competition, designers of interactive systems, especially web applications, must
be able to prepare for, cope with, and adopt to design processes that meet both
customer needs and expectations and cutting edge-technology. This paper
presents the authors’ experience with designing and prototyping a web
application using a new web user interface (UI) development technology. We
describe how the technological progression forced significant changes in User-
Centered Design (UCD) process and design tools. We then discuss the
contributions of these changes to the design and development of an
internationalized web application. We provide background information about an
Abstract UI and the web implementation using JavaServer Faces (JSF)[1]
technology. We describe how this new technology will be adopted into CA’s
UCD process and present a case study in which the new JSF technology
solution is used for a prototype of an enterprise storage management
application. We then discuss the pros and cons of using this technology at the
design stage, providing some structure and guidance to designers who might be
faced with similar situations. This paper suggests there may be a more
appropriate alternative to the current design processes and tools used for
designing web applications.

Keywords: UI technology, Java Server Faces (JSF), Prototyping, User-
Centered Design, Internationalization, AJAX.

1 Introduction

In technologically-developed countries, people have become increasingly reliant on
electronically-delivered information and services as information technology is
embedded into more and more every day items. Users’ expectations of the interactive
performance of these items have also increased. Today’s users expect to interact with
electronic applications like they interact with the desktop applications – simply and
intuitively.

To meet user expectations, web UI technology has been rapidly changing and web
applications are providing more and more interactive UI functions and features
similar to desktop applications. In other words, web application UIs are becoming
“rich” interfaces. A rich interface reduces server round-trips, receives data from the

 User-Centered Design: Component-Based Web Technology 115

server without a full page refresh, and increases interactivity with desktop-like
interaction. The new goal of web applications is to be as rich as possible. The web
technologies used to create rich and universal web applications presented in this paper
are JavaServer Faces (JSF) [1] and Asynchronous JavaScript and XML (AJAX).

This paper evaluates the JSF technology and new prototyping tool, Exadel Studio
Pro1 ™. In addition, a case study is presented on a pilot project which examined the
implications for the web application design process and UCD methods.

2 Background

Several years ago, CA undertook the ambitious goal of creating a single UI look and
feel across hundreds of products. One result of this effort is a large and continuously
updated set of UI standards for the products.

Early in the standardization process it was realized that, without a set of reusable
technologies, it would be extremely costly to implement any standard, let alone one as
detailed as the company’s. The technology standardization process started with
typically web application artifacts: CSS stylesheets and Java Server Page (JSP) tags.
But the limits of these relatively simple technologies became evident in the face of the
evolving, complex UI standards. At the same time, there were non-web-based
products that also needed a consistent look and feel.

To overcome these obstacles, CA has developed an Abstract UI. An Abstract UI is
a defined, consistent set of declarative application programming interfaces (APIs),
independent of the underlying technology and the UI’s look and feel. This technique
allows the technology and look of the UI to change with limited impact on the
development team. It also allows UI designers to develop UIs that can quickly and
easily be reused. The downside to this approach is the need to develop and maintain
the API and a set of implementing technologies

3 UI Technology

The current Abstract UI implementation for web-based applications uses JSF as its
underlying technology. While JSF is a relatively new J2EE standard for web-based
UIs, it was chosen for three key concepts that it employs: components, renderers, and
tool support. Instead of building a user interface with raw HTML, CSS, and
JavaScript, JSF uses reusable components, like traditional desktop-based applications.
Rendering is separated from the model of the component, allowing the rendering to
change over time without affecting the developer’s use of the component when
programming. This separation can also mean the same UI could be rendered in two
different styles without modifying the application. In Addition, this separation enables
UI to be universal where UI can be localized into several languages [2]. Tool support
was also an important consideration during the design of the JSF framework. Since
tooling was standard, there were many tool venders to choose from. WYSIWYG
design tools were important since they let UI designers, who are not trained as

1 Trademark or registered trademark of Exadel, Inc.

116 E. Kiris, H. Abrams, and R. Longoria

programmers, build working UIs that development teams can then hook up to live
data. This means the actual UI can be tested by users during UI design stage without
having to build the application. This is a key feature in CA’s overall UCD program.

To implement the Abstract UI and CA UI Standards, a comprehensive set of
reusable JSF UI components were created. The rationale behind creating a set of CA-
specific components rather than re-style a set of generic third party components was
that CA’s UI Standards are very specific and detailed, allowing the custom
components to encapsulate knowledge of the standards beyond simple colors and
fonts. The resulting reusable components encapsulate complex rules, for example data
validation error message and icon display. By simply placing a label and a text field
in the interface, the complex rules describing how, where, and when messages and
icons should be used are automatically implemented for the developer or designer.
Figure 1 shows an example from CA’s UI Standards on message display.

Another example is that the CA UI Standards specify that the UI designer can
place anchor links at the top of the page that allow the user to jump to specific
sections within the page (see Figure 2). Under each section, a ‘back to top’ link is
placed to return the user back to the top of the page. Rather than making the developer
understand the UI Standard and place each anchor and ‘back to top’ link, the
components allow the developer to specify an anchor bar and list each section it
should contain. When the page renders, it not only renders the bar in the proper colors
and fonts, but can automatically place the ‘back to top’ links under each section, set
proper tooltips, etc.

Fig. 1. An example of reusable components automatically implementing validation error
message and icon display

 User-Centered Design: Component-Based Web Technology 117

Fig. 2. An example of ‘back to top’ links being automatically place in the page based on the
anchors links at the top

4 User-Centered Design Process and UI Technology

The UCD team saw several benefits of using CA web components during product
design cycle, especially at prototyping and testing stages. The following benefits were
identified:

• Prototypes would be as interactive as real applications;
• Prototype building time would be shortened;
• Prototypes would be migrated into real UI application development;
• UI localization would be done and tested during the design cycle;
• The components would meet usability and accessibility criteria.

While these benefits were exciting, there were concerns about how a UCD
professional (UI designer) would be able to use these JSF web components with
limited or no Java programming experience. The team hypothesized that if there was
a tool that allowed users to build web pages using JSF web components without Java
programming experience, then the UI designers would be able to use the web
components along with JSF technology to create prototypes during the product design
cycle. An evaluation study was performed to determine the JSF UI development tool
suitable for the UCD organization.

4.1 Tool Selection

A UI designer and GUI developer conducted a tool evaluation study. The goal was to
identify a tool that could easily be used by UI designers without Java programming
experience. Since it is a new technology, tool availability was limited. Two candidate

118 E. Kiris, H. Abrams, and R. Longoria

tools were identified and evaluated for ease of use from a designer’s perspective. At
the end of the evaluation, Exadel™ was chosen since it creates web project
deployment automatically and had several features that eased UI prototyping such as
a drag and drop feature for UI components, visual view mode, source code mode,
outline features, and a graphical navigational model.

4.2 User-Centered Design Infrastructure Project

After Exadel™ was chosen, the UCD team planned an infrastructure project. The goal
of this project was to create an infrastructure with a number of reusable template
pages and applications for UI designers and change the UCD process from creating
HTML prototypes to creating JSF prototypes. The initial step of this project was to
engage a pilot design project and validate the selected tool and technology. An
enterprise storage management web application project was selected as the pilot JSF
project.

Pilot Project: An Enterprise Storage Management Web Application UI Design. The
next release of enterprise storage management web application underwent a typical UCD
process. This involved performing customer interviews to gather user interface
requirements and determining user roles and features. After the process flow and
architectural diagrams were complete, storyboards were created. A prototype of the user
interface was then created using JSF technology and Exadel™. A remote usability
evaluation was conducted to gather feedback on the prototype. A UI designer was
assigned to this project.

JSF Prototype. Initially, the UI designer took an online training course to learn JSF
technology and Exadel™. This was a week long course with a lot of hands-on lab
exercises. At the end of the class, she became familiar with the tool, understood JSF
technology, and was able to build a few simple JSF web applications. She spent few
days on training herself on CA web components using the available documents and
input from the component development team. At the end of two weeks, she became
comfortable with JSF, Exadel™, and CA web components. However, she could not
create Java source files for binding UI elements to the events, data, and navigational
model. As a result, a Java developer joined the project to provide Java programming
support. The UI designer built the presentation layer based on CA web components
using Exadel™ and delivered them to the Java developer who added necessary Java
source code behind the presentation layer. The result was an interactive UI prototype
which could eventually be reused in application development. In addition, since the
UI model was an Abstract UI where all locale-sensitive objects are separated from the
core source [2], the user interface was also localized. This added value to the UCD
process by potentially allowing the team to test a localized interface with users.

A remote usability evaluation was conducted to gather feedback on the JSF
prototype. Since the JSF prototype was as interactive as the targeted application, the
tasks that were designed to get user feedback were highly comprehensive. Some tasks
included filtering, grouping, and deleting data. Participants were able to accomplish
these tasks exactly as they could in the targeted application. This allowed the team to
collect detailed and complete usability data on the proposed UI design.

 User-Centered Design: Component-Based Web Technology 119

Localization of JSF Prototype. Since localization of prototype results in cost and time
savings in the development cycle, it is not common to localize prototypes at design
cycle, due to the time consuming nature of this process. Most commonly, localization
is left as a separate exercise at the end of development cycle during which problems
resulting from word length or orientation often causes costly UI redesigns. Using JSF
prototyping, it was easy to localize with no extra cost or time. This allowed the team
to conduct expert design reviews and identify and solve potential localization design
problems at early design stage. Although the team had a goal to conduct
international usability tests, this was not accomplish due to difficulties in finding
international participants as well as project time and cost limitations. However, the
team did identify the most important localization issues on the user interface, such as
tab and button labels and solved them before the development started.

JSF Template Pages. The pilot project results suggest that JSF Prototype has several
potential benefits. However, the effort was not as minimal as it was thought at the
beginning. To further streamline the process, it was decided to create reusable JSF
template pages. The template pages were identified based on CA page layout
standards. The identified template pages were: Dashboard (home page), Full Page
with Tabs, Full Page with Tabs and Subtabs, Object Detail Page, Report Page, Wizard
Drill-Down Page, and Wizard Multi-Tab Page. The UI designer reused the pilot JSF
prototype and created the JSF template pages. Since no Java developer resource was
available for this activity, these pages were not fully generalized in terms of Java
source code. Currently, this part of the project is still in progress. However, the user
interface design of template pages was completed as was the localization of the pages
(see Figures 3 and 4).

Fig. 3. An example JSF template page: Dashboard

120 E. Kiris, H. Abrams, and R. Longoria

Fig. 4. An example JSF template page localized in German: Dashboard

5 Advantages and Disadvantages of JSF Prototyping

The pilot project study demonstrates that JSF prototyping has a number of
advantages:

• The resulting prototype is as interactive as the targeted application.
• The prototype is the real front layer of the targeted application and is reusable in

the development of application.
• Reusable CA web components are complete in terms of data validation, error

messages, etc. The resulting prototype also becomes complete using these
components.

• New technological updates on CA web components can automatically go into the
prototypes built with them by updating the linked CA web component package.

• The UI designer directly contributes to the application development process. This
eliminates the need for a detailed UI design quality test at the end of development
cycle.

• The prototyping effort can be generalized using template pages. This results in
savings in both cost and time in the product design and development cycles.

• The UI standards are converted into working JSF web components. This ensures
the UI standards are implemented correctly and eliminates discrepancies that might
be caused by different interpretations of the standards.

There are numerous challenges associated with JSF prototyping:

• Java programming experience is required to create fully interactive prototypes.
This is not a typical experience owned by UI Designers.

 User-Centered Design: Component-Based Web Technology 121

• XML coding and simple Java data binding knowledge is needed for the UI
designer.

• There is dependency on custom web components development. For any required
change, the web components need to be updated first.

6 Preparing for Change

Based on the lessons learned from the pilot project, the requirements were identified
for moving forward:

• Development of a JSF training program for UI designers. This program shall
include the following trainings:
− JSF UI technology training
− CA web components training and/or tutorials for UI designers
− Exadel tool training

• Development of CA web component working project samples.
• Availability of both a UI designer and a Java developer for any JSF prototype

development. The UI designer will create the presentation layer and the Java
developer will bind the presentation layer to the XML data file and navigational
model.

• UI designers must understand the concept of XML and data binding.
• Simple, XML data models that allow the designer to add data to the prototype

without a developer

While this change presents a challenge for UI designers, it brings significant
potential benefits to the design and development process.

7 Future Direction

There is no a complete JSF prototyping tool for UI designers in the market. There is
still plenty of work to be done in developing a tool that is easy to be used with no Java
programming experience. As a next step, we will continue searching a complete tool
suite to the UI designers’ needs.

Template pages project is still in progress. The next step is to complete
development of template pages and continuously enhance them in order to ease the
task of creating JSF prototypes.

Another area that will continuously be renewed and maintained is CA web
components. More AJAX technology will be applied to the components and they will
be as “rich” as possible. In addition, bi-direction localization features will also be
applied to the components

Acknowledgments. UI Web Component Development team, Rebecca Baker, and
Kerry Harrison from UCD team at CA, Inc.

122 E. Kiris, H. Abrams, and R. Longoria

References

1. JavaServer Faces Technology, News and Information. Available as, http://java.sun.com/
javaee/javaserverfaces

2. O’Conner, J.: Java Internationalization: Localization with ResourceBundles (1998),
Available as http://java.sun.com/developer/technicalArticles/Intl/ResourceBundles

	Introduction
	Background
	UI Technology
	User-Centered Design Process and UI Technology
	Tool Selection
	User-Centered Design Infrastructure Project

	Advantages and Disadvantages of JSF Prototyping
	Preparing for Change
	Future Direction

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

